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Abstract

In the modern literature on game theory there are several versions

of what is known as Zermelo's theorem. It is shown that most of these

modern statements of Zermelo's theorem bear only a partial relationship

to what Zermelo really did. We also give a short survey and discussion

of the closely related but almost unknown work by K�onig and K�almar.

Their papers extend and considerably generalize Zermelo's approach. A

translation of Zermelo's paper is included in the appendix.
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1 Introduction

It is generally agreed that the �rst formal theorem in the theory of games was
proved by E. Zermelo2 in an article on chess appearing in German in 1913
(Zermelo (1913)). In the modern literature on game theory there are many
variations in the statements of this theorem. Some writers claim that Zermelo
showed that chess is determinate, e.g. Aumann (1989b, p.1), Eichberger (1993,
p.9) or Hart (1992, p.30): \In chess, either white can force a win, or black
can force a win, or both sides can force a draw." Others state more general
propositions under the heading of Zermelo's theorem, e.g. Mas Colell et al.
(1995, p.272): \Every �nite game of perfect information �E has a pure strategy
Nash equilibrium that can be derived by backward induction. Moreover, if no
player has the same payo�s at any two terminal nodes, then there is a unique
Nash equilibrium that can be derived in this manner." Dimand and Dimand
(1996, p.107) claim that Zermelo showed that white can not lose: \[I]n a �nite
game, there exists a strategy whereby a �rst mover (. . . ) cannot lose, but it
is not clear whether there is a strategy whereby the �rst mover can win." In
addition many authors claim that Zermelo's method of proof was by backward
induction, e.g. Binmore (1992, p.32): \Zermelo used this method way back in
1912 to analyze Chess. It requires starting from the end of the game and then
working backwards to its beginning. For this reason, the technique is sometimes
called `backward induction'."

Despite a growing interest in the history of game theory, see for example
Aumann (1989a), Dimand and Dimand (1996, 1997), Kuhn (1997), Leonard
(1995) and Weintraub (1992), confusion, at least in the English language litera-
ture, as to the contribution made by Zermelo and some of the other early game
theorists seems to prevail. This problem may be due, in part, to a language
barrier. Many of the early papers in game theory were not written in English
and have not been translated. For example, to the best of our knowledge, there
is no English version of the Zermelo article on chess. The same holds for the
lesser known but related work by K�onig (1927)3. A second paper related to that
of Zermelo, Kalm�ar (1928/29)4, has recently been translated, see Dimand and
Dimand (1997)5. The lack of an English translation may help to explain the
apparent confusion in the modern game theory literature as to what Zermelo's
theorem states and the method of proof employed. It appears that there is only
one accurate summary of Zermelo's paper. This was published in a book on the
a

2Ernst Friedrich Ferdinand Zermelo (1871-1951), was a Germanmathematician. He studied
mathematics, physics and philosophy at Halle, Freiburg and Berlin where he received his
doctorate in 1894. He taught at G�ottingen, Z�urich and Freiburg and is best known for his
work on the axiom of choice and axiomatic set theory.

3D�enes K�onig (1884-1944), was a Hungarian mathematician, the son of the mathematician
Julius K�onig. He studied mathematics in Budapest and G�ottingen and received his doctorate
in 1907. He spent his whole career in Budapest, �rst as an assistant and later as a professor.
Most of K�onig's work was in the �eld of combinatorics and he wrote the �rst comprehensive
treatise on graph theory, Theorie der endlichen und unendlichen Graphen (Theory of Finite
and In�nite Graphs).

4L�aszl�o Kalm�ar (1905-1976) was also a Hungarianmathematician. He studied mathematics
and physics in Budapest. From 1930 until his death he worked at Szeged University, �rst as
an assistant, later as a professor. His main research was in mathematical logic, computer
science and cybernetics.

5However, the translation of Kalm�ar's paper contains so many severe mistakes that it is
almost impossible to understand what Kalm�ar really did.
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history of game theory by Vorob'ev (1975) which is unfortunately only available
in the original Russian version or in a German translation.

In this note, we attempt to shed some light on the original statement and
proof of Zermelo's theorem and the closely related work of K�onig and Kalm�ar.
This will clarify the relationship between Zermelo's result and the modern state-
ments of it. It is shown that most of the modern statements of Zermelo's theo-
rem are to some degree incorrect - only the statement on the determinateness of
chess comes close to what Zermelo did, but even this covers only a minor part
of his paper. A translation of Zermelo's paper is included in the appendix.6

2 Zermelo's two theorems on chess

In his paper, Zermelo concentrates on the analysis of two person games without
chance moves where the players have strictly opposing interests. He also assumes
that in the game only �nitely many positions are possible. However, he allows
for in�nite sequences of moves since he does not consider stopping rules. Thus,
he allows for the possibility of in�nite games. This is in contrast to what is
normally assumed in the modern literature.7 He remarks that there are many
games of this type but he uses the game of chess as an example since it is the
best known of them.

The Zermelo paper addresses two problems: First, what does it mean for
a player to be in a `winning' position and is it possible to de�ne this in an
objective mathematical manner; secondly, if he is in a winning position, can the
number of moves needed to enforce the win be determined? To answer the �rst
question, he states that a necessary and su�cient condition is the nonemptyness
of a certain set, containing all possible sequences of moves such that a player
(say white) wins independently of how the other player (black) plays. However,
should this set be empty, the best a player could achieve would be a draw. So he
de�nes another set containing all possible sequences of moves such that a player
can postpone his loss for an in�nite number of moves, which implies a draw.8 If
this set is also empty, the other player can enforce a win. This is the basis for all
modern versions of Zermelo's theorem. The possibility of both sets being empty
means that white can not guarantee that he will not lose. This contradicts the
`�rst mover has an advantage' version of Zermelo's theorem given by Dimand
and Dimand (1996).

However, this problem was only of minor interest for Zermelo. He was much
more interested in the following question: Given that a player (say white) is in
`a winning position', how long does it take for white to enforce a win? Zermelo
claimed that it will never take more moves than there are positions in the game.
His proof of this is by contradiction: Assume that white can win in a number
of moves which is larger than the number of positions. Of course, at least one
winning position must have appeared twice. So white could have played at the
�rst occurrence in the same way as he does at the second and thus could have
won in less moves than there are positions.
a

6A Russian translation was published in 1961.
7All of Aumann (1989b), Binmore (1992), Dimand and Dimand (1996), Eichberger (1993),

Hart (1992) and Mas Colell et al. (1995), for example, assume a �nite game.
8Zermelo does not consider the stalemate position, which ends the game in �nitely many

moves without any party winning the game.

2



Notice that in Zermelo's paper, in contrast to what is often claimed, no use
is made of backward induction. The �rst time a proof by backward induction is
used seems to be in von Neumann and Morgenstern (1944). The �rst mentioning
of Zermelo in connection with induction was made by Kuhn (1953).

3 K�onig's paper and Zermelo's proof

Thirteen years after Zermelo, K�onig published a paper `�Uber eine Schlu�weise
aus dem Endlichen ins Unendliche' (1927) (On a Method of Conclusion From
the Finite to the In�nite). In this paper, K�onig states a general lemma from
the theory of sets which he formulates in a graph-theoretic framework. This
theorem states that: If the countably in�nite set of points (= vertices) of an
in�nite graph G can be partitioned into countably many �nite non-empty sets
E1; E2; E3; : : : such that each point of E

n+1 (n = 1; 2; 3 : : :) is connected with a
point of En by an edge, there exists in the graph an `in�nite path' a1; a2; a3; : : :,
containing in each of the sets En a point an. (K�onig (1928, p.121))

He applies this theorem to a number of di�erent topics including the colour-
ing of maps, relationships between relatives, and to the theory of games. The
latter application was suggested to him by John von Neumann. Von Neumann
conjectured, and K�onig proved the proposition that \if q is such a winning po-
sition ( . . . ) there exists a number N which depends on q such that starting
from this position q, white can enforce a win in less than N moves."

This is a generalization of Zermelo's second problem to games with an in�nite
number of positions. However, from each position there are only �nitely many
new positions that can be reached. An example would be chess played on an
in�nite board, where the pieces have to move as on a normal chessboard. K�onig
shows that if one of the players can win at all, there is only a �nite number of
moves necessary to do so.

In addition, he argued that Zermelo's proof was incomplete for two reasons:
First, he remarks that Zermelo failed to prove that a player, say white, who is in
a winning position is always able to enforce a win in a number of moves that is
less than the number of positions in the game. Zermelo had argued that white
could do so by changing his behaviour at the �rst occurrence of any repeated
winning position and thus win without repetition. However Zermelo implicitly
assumes that black would never change his behaviour at any occurrence of such
a position. He just considered the special case of unchanging behaviour on
black's part. What he needed to show was that his claim is true for all possible
moves by black.

The second argument of K�onig was, that the strategy `do the same at the
�rst occurrence of a position as at the second and thus win in less moves' cannot
be carried out if it is black's turn to move in this position. However, the second
argument is incorrect since Zermelo considers two positions as di�erent if black
or white has to move.

In an appendix to K�onig's paper Zermelo provided a new proof of his theorem
without referring to white winning without any repeated positions. Instead, he
uses the lemma of K�onig. Zermelo also supplies a proof of von Neumann's
conjecture without referring to the general lemma. However, as K�onig points
out, Zermelo implicitly proves the lemma itself.
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4 Kalm�ar's generalization of the work of Zer-

melo and K�onig

One year after the publication of K�onig's work, Kalm�ar published a paper `Zur
Theorie der abstrakten Spiele' (1928/29) (On the Theory of Abstract Games).
Starting from the work of Zermelo and K�onig, he generalizes both models by
allowing not only in�nitely many positions in a game, but also in�nitely many
new positions being able to be reached from any given position. The major
question he considers is that of Zermelo and K�onig: If a player is in a winning
position, is there an upper bound to the number of moves that it takes him to
enforce a win?

As K�onig pointed out, in the original formulation of Zermelo's proof there
is a gap since Zermelo claimed, but did not show, that a player who is in a
winning position can always win `without repetition'. However, K�onig did not
try to bridge this gap but used a di�erent method of proof instead. In contrast,
Kalm�ar's approach returns to Zermelo's original idea. Without making any
assumption on the �niteness of the number of positions etc., he is able to show
that even in this much more general class of games Zermelo's claim holds: If a
win is possible, it can be enforced without any position appearing twice.

In the �rst section of his paper Kalm�ar de�nes the concepts of a game, which
is given by a set of positions qi and a set of ordered pairs (qi; qj), where qi is a
position at which player i has the move and qj is a position at which player j has
the move, such that qi ! qj is a feasible move. In other words, this set implies
the rules of the game. Further, winning and losing positions are de�ned as well
as the idea of a `subgame'. However, his concept of a subgame is di�erent from
the concept used in the modern literature. In Kalm�ar's terminology, a subgame
is given by any subset of the positions and the corresponding subset of feasible
moves. He also introduces the concept of a strategy which he calls a `tactic'.
A tactic `in the strict sense' (i.t.s.s.) for player A is a subgame such that each
move which is feasible for player B in the original game is also feasible in the
subgame, i.e. does not restrict player B.

Using the concept of a tactic in the strict sense he de�nes winning, non-
losing or losing positions in the strict sense. Of course, a position is only called
a winning position if a player can win in a �nite number of moves. He then
shows that a winning position i.t.s.s. for player A is always a losing position
i.t.s.s. for player B.

To introduce these concepts `in a weak sense', Kalm�ar uses the notion of a
`script game' S of a given game S. A position in the script game is de�ned as a
position qn in the game S including the history of this position, i.e. the sequence
q0; q1; q2; : : : ; qn. Of course, moves in the script game have to be consistent with
the rules of the game S.

Using the script game, he de�nes a tactic `in the weak sense' (i.t.w.s.) which
is a tactic in the strict sense in the script game. In other words: a tactic i.t.s.s.
depends only on the current position while a tactic i.t.w.s. takes into account the
whole history of the game. Analogously, he de�nes winning and losing positions
etc. in the weak sense and proves that a winning position i.t.w.s. for one player
is a losing position i.t.w.s. for the other. In a footnote, Kalm�ar mentions,
that K�onig informed him, that this theorem was known to von Neumann. This
comment suggests that the three men were aware, at least indirectly, of each
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other's work. Of course, if a player can enforce a win without taking into account
the history of the game, he can also enforce a win if he does so, i.e. a winning
position i.t.s.s. is always a winning position i.t.w.s. He also proves that a losing
position in the strict sense is the same as in the weak sense.

In section II he uses the concepts and theorems developed to formulate and
prove the �rst of his two main theorems: If player A is in a winning position q0,

then q0 is also a winning position without repetition for A. (K�almar (1928/29,
p.79)) Here, a winning position is without repetition if there exists a winning
strategy such that during the play of the game no position is repeated.

To prove his claim, Kalm�ar characterizes the set of winning positions for
player A as follows: The set of winning positions i.t.w.s. is the smallest set M
of positions in the game S with the following closure property: If it is A's turn
to move and if A can make a move to a position in M, then A has already
started from a position inM. If every move of B leads to a position inM, then
B has started from a position inM.

He shows that every set M with this property contains the set of winning
positions for A and that the winning positions without repetition have this
closure property. Since the set of winning positions is the smallest set with this
property, the set of winning positions without repetition contains the set of all
winning positions. Or stated otherwise, if player A is in a winning position, he
is also in a winning position without repetition.

This result shows that the gap in Zermelo's proof can be bridged using
Zermelo's original idea of non-repetition of positions. This is in contrast to
K�onig's conjecture which suggests that for the proof of Zermelo's theorem the
boundedness of the number of moves has to be shown �rst.

In the last part of his paper, Kalm�ar proves that if a player is in a winning
position, there exists a - possibly trans�nite - ordinal number of moves in which
this player can win independently of the behaviour of his opponent.

If in addition, the cardinality of the set of possible moves is smaller than a
trans�nite cardinal number �, then a player in a winning position can win in
� < � moves. The possibly trans�nite ordinal number � is the generalization
of the natural number N in K�onig's theorem.

In the summary of his paper, Kalm�ar gives a clear and concise formula-
tion of what is referred to today as Zermelo's theorem, as stated in the �rst
interpretation above.

\Each position of the game S belongs either to the set of the winning po-
sitions of A, GA or to the set of winning positions of B, GB or it belongs to
the set R of draw positions, i.e. positions where A as well as B can avoid a
loss by using an appropriate non losing tactic. For each position which belongs
to GA (GB), there is a winning tactic (also in the strict sense) GA (GB) which
depends only on the game S by which players A (B) can enforce a win. For
each position which belongs to R there is a non-losing tactic (also in the strict
sense) RA (RB) which depends only on the game S by which A (B) can avoid
a loss." (Kalm�ar (1928/9, p.84))

Kalm�ar's generalization of both Zermelo's and K�onig's frameworks is the last
contribution in a line of research which was mainly concerned with the following
question: Given a winning position, how quickly can a win be enforced? His
paper proves the claim made by Zermelo, but doubted by K�onig, that winning
without repetition is possible if winning is possible at all.

In a recent book by Dimand and Dimand (1996) some comments on the work
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of Kalm�ar are included, which are however mostly incorrect. They claim that
\. . .Kalm�ar attempted to show that a game of perfect information has a solution
by giving a more general proof of non-repetition which, unlike K�onig's, did not
depend on any �niteness assumption. The original thought process followed by
Kalm�ar was, in fact, backwards induction. Kalm�ar's proof of non-repetition by
backward induction (a concept which in itself makes non-repetition intuitive)
rested on de�ning the types of positions which could be reached in play as win-
ning, non-losing or losing. Unfortunately, Kalm�ar did not show that the types
of positions he de�ned must appear on every branch of the potentially in�nitely
and thus in�nitely branched game tree. Without this sort of spanning argu-
ment for the types of nodes de�ned, Kalm�ar's proof was not valid. Interesting
features of Kalm�ar's approach were his de�nition of the `script game' (what we
call a subgame) and his de�nition of strategy."(p.124-5)

First, it was not Kalm�ar's intention to show that a solution for this class
of games exists, but that if a player can win, he can do so without repetition
and that there is an upper bound to the number of moves necessary. His proof
is not an existence proof. Secondly, Zermelo's original thought process was not
backward induction but the idea of non-repetition. Thirdly Kalm�ar's proof of
non-repetition is not by backward induction, but by characterizing the set of
winning positions and by showing that the set of winning positions without
repetition is equal to this set. Fourthly, his proof does not rest on de�ning the
types of positions as winning, non-losing or losing. The characterization of a
winning position is su�cient for the proof of non-repetition. He does not need
any spanning argument and his proof is perfectly valid. Finally, the concept of
a `script game' is not the same as a subgame in the modern sense but a position
in the game with its history. A subgame looks `forward' from a given position
while a script game looks `back'.

5 Conclusion

This short survey on the work of Zermelo, K�onig and Kalm�ar shows, that these
early game theorists were dealing with what today would be called two-person
zero-sum games with perfect information. The common starting point for their
analysis was the concept of a winning position, de�ned in a precise mathematical
way: If a player is in a winning position, then he can always enforce a win no
matter what strategy the other player may employ.

Zermelo, K�onig, and Kalm�ar's main interest was to �nd an answer to the
question: Given that a player is in a winning position is there an upper bound
on the number of moves in which he can enforce a win? Or, for the case of being
in a losing position, how long can a loss be postponed?

Thus, the problem of strategic interaction and the problem of an equilibrium
were not concerns for Zermelo, K�onig, and Kalm�ar. They did not ask the ques-
tion: How should a player behave to achieve a good result? This was the main
question von Neumann asked in his paper `Zur Theorie der Gesellschaftsspiele'
(1928) (On the Theory of Strategic Games). In contrast to the work of Zermelo,
K�onig, and Kalm�ar, von Neumann's main concerns were the strategic interac-
tion between players and the concept of an equilibrium. These two ideas have
become the building blocks of modern noncooperative game theory. The con-
cerns of Zermelo, K�onig, and Kalm�ar have been answered at a very high level
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of generality in the paper by Kalm�ar and thus have not generated an ongoing

research agenda.
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Appendix

Ernst Zermelo: On an Application of Set Theory

to the Theory of the Game of Chess9

The following considerations are independent of the special rules of the game of
chess and are valid in principle just as well for all similar games of reason, in
which two opponents play against each other; for the sake of determinateness
they shall be exempli�ed by chess as the best known of all games of this kind.
Also they do not deal with any method of practical play, but only with the an-
swer to the question: can the value of an arbitrary position, which could possibly
occur during the play of a game as well as the best possible move for one of the
playing parties be determined or at least de�ned in a mathematically-objective
manner, without having to make reference to more subjective-psychological no-
tions such as the `perfect player' and similar ideas? That this is possible at least
in singular special cases is shown by the so called `chess problems', i.e. examples
of positions in which it can be proved that the player whose turn it is to move
can enforce checkmate in a prescribed number of moves. However, it seems to
me worth considering whether such an evaluation of a position is at least theo-
retically conceivable and does make any sense at all in other cases as well, where
the exact execution of the analysis �nds a practically insurmountable obstacle
in the enormous complication of possible continuations, and only this validation
would give the secure basis for the practical theory of the `endgames' and the
`openings' as we �nd them in textbooks on chess. The method used in the fol-
lowing for the solution of the problem is taken from the `theory of sets' and the
`logical calculus' and shows the fertility of these mathematical disciplines in a
case, where almost exclusively �nite totalities are concerned.

Since the number of squares and of the moving pieces is �nite, so also is
the set P of possible positions p0; p1; p2; : : : ; pt, where positions always have to
be considered as di�erent, depending on whether white or black has to move,
whether one of the parties already has castled, a given pawn has been `promoted'
etc.

Now let q be one of these positions, then starting from q, `endgames' q =
(q; q1; q2; : : :) are possible, that is sequences of positions, which begin with q and
follow each other in accordance with the rules of the game, so that each position
q� emerges from the previous one q��1 by an admissible move of either white
or black in an alternating way. Such a possible endgame q can �nd its natural
end either in a `checkmate' or in a `stalemate' position but could also - at least
theoretically - go on forever in which case the game would without doubt has to
be called a draw or `remis'. The totality Q of all these `endgames' q associated
with q is always a well de�ned, �nite or in�nite subset of the set P a, which
comprises all possible countable sequences formed by elements p of P .10

Among these q endgames some can lead to a win for white in r or less `moves'
(i.e. simple changes of position p��1 ! p�, but not double moves) however this
also depends in general on the play of the opponent. What properties does a
a

9Translation by Ulrich Schwalbe and Paul Walker. In our translation we tried to stay as

close as possible to the German original.
10In modern terminology, Pa would be called the game tree and Q a subgame.
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position q have to have so that white, independently of how black plays, can
enforce a win in at most r moves? I claim, the necessary and su�cient condition
for that is the existence of a non-vanishing subset Ur(q) of the set Q with the
following properties:

1. All elements q of Ur(q) end in at most r moves with a win for white, such
that no sequence contains more than r+1 elements and Ur(q) is de�nitely
�nite.

2. If q = (q; q1; q2; : : :) is an arbitrary element of Ur(q), q� an arbitrary
element of this sequence which corresponds to a move carried out by black,
i.e. always one of even or odd order, depending on whether at q it is white's
or black's turn to move, and �nally q0� a possible variant, such that black
could have moved from q��1 to q0� as well as to q�, then Ur(q) contains
in addition at least an element of the form q

0

� = (q; q1; : : : ; q��1; q
0

�; : : :),
which shares with q the �rst � elements. Indeed in this and only in this
case white can start with an arbitrary element q of Ur(q) and in every
case, where black plays q0� instead of q� white can carry on playing with
a corresponding q0�, i.e. win under all contingencies in at most r moves.

Of course there can be several such subsets Ur(q), but the sum of any two
always has the same properties and also the union �Ur(q) of all such Ur(q), which
is uniquely determined by q and r and de�nitely has to be di�erent from 011,
i.e. has to contain at least one element if such Ur(q) exist at all.

Thus, �Ur(q) 6= 0 is the necessary and su�cient condition such that white
can enforce a win in at most r moves. If r < r0 then �Ur(q) is always a subset
of �Ur0 (q) since every set Ur(q) de�nitely satis�es the conditions imposed on
Ur0 (q), i.e. has to be contained in �Ur0 (q), and to the smallest r = �, for which
�Ur(q) 6= 0 corresponds the common component U�(q) = �U�(q) of all such �Ur(q);
this contains all continuations such that white must win in the shortest time.
Now all these minimum values � = �q have on their part a maximum � � t

which is independent of q, where t+1 denotes the number of possible positions,
thus U (q) = �U� (q) 6= 0 is the necessary and su�cient condition that in position
q some �Ur(q) does not vanish and white is `in a winning position' at all. Namely
if in a position q the win can be enforced at all, then it can be enforced in at
most t moves as we want to show. Indeed every endgame q = (q; q1; q2; : : : ; qn)
with n > t would have to contain at least one position q� = q� a second time
and white could have played at the �rst appearance of it in the same way as at
the second and thus could have won earlier than by move n, i.e. � � t.

If on the other hand U (q) = 0, so that white can only achieve a draw, if
the opponent plays correctly, but white can also be `in a losing position' and
will try in this case to postpone a checkmate as long as possible. If he should
hold out until the sth move there must exist a subset Vs(q) with the following
properties:

1. There is no endgame contained in Vs(q) where white loses before the sth
move.

2. If q is an arbitrary element of Vs(q) and if in q the element q� can be
replaced with q0� by black using an allowed move, then Vs(q) contains at
a

11To denote an empty set, Zermelo uses the symbol 0 instead of ;.
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least one element of the form

q
0

� = (q; q1; : : : ; q��1; q
0

�; : : :)

that coincides with q up to the �th member and then continues with q0�.

Also these sets Vs(q) are all subsets of their union �Vs(q) which is uniquely
determined by q and s and which has the same property as Vs(q) itself, and for
s > s0 now �Vs(q) becomes a subset of �Vs0(q). The numbers s for which �Vs(q)
di�ers from 0 are either in�nite or � � � � � t, since the opponent, if he can
win at all, must be able to enforce a win in at most � moves12. Thus if and only
if V (q) = �V�+1(q) 6= 0 white can obtain a draw and in the other case, by virtue
of V �(q) = �V�(q) he can postpone the loss for at least � � � moves. Since every
Ur(q) certainly satis�es the conditions imposed on Vs(q), each �Ur(q) is a subset
of each set �Vs(q), and U (q) is a subset of V (q). The result of our examination
is thus the following:

To each of the positions q that are possible during play, there correspond two
well-de�ned subsets U (q) and V (q) of the totality of the endgames beginning
with q where the second contains the �rst. If U (q) is di�erent from 0, then white
can enforce a win, independently of how black might play and can do so in at
most � moves by virtue of a certain subset U�(q) of U (q), but not for certain in
fewer moves. If U (q) = 0 but V (q) 6= 0, then white can at least enforce a draw
by virtue of the endgames contained in V (q). However, if V (q) vanishes also and
the opponent plays correctly, white can postpone the loss up until the �th move
at best by virtue of a well de�ned subset V �(q) of continuations. In any case only
the games contained in U� respectively V � have to be considered as `correct'
for white, with any other continuation he would, if in a winning position, forfeit
or delay the certain win or otherwise make possible or accelerate the loss of the
game given that the opponent plays correctly. Of course an exact analogy exists
for black and only those games that satisfy both conditions simultaneously could
be considered as played `correctly' until the end, in any case they form a well
de�ned subset W (q) of Q.

The numbers t and r are independent of the position and only determined
by the rules of the game. To each possible position there corresponds a number
� = �q or � = �q smaller than � , depending on whether white or black can
enforce a win in � respectively � moves but not less. The special theory of the
game would have, as far as possible, to determine these numbers or at least
include them within certain boundaries, which hitherto has only been possible
for special cases such as the `problems' or the real `endgames'. The question as
to whether the starting position p0 is already a `winning position' for one of the
parties is still open. Would it be answered exactly, chess would of course lose
the character of a game at all.

a

12Zermelo doesn't de�ne the number �; it denotes the smallest number of moves for which

white can postpone his loss.
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