Back to Bargaining Basics

October 31, 2018

Eric Rasmusen

Abstract

Nash (1950) and Rubinstein (1982) give two different justifications for a 50-50 split of surplus to be the outcome of bargaining with two players. Nash’s axioms extend to \(n \) players, but the search for a satisfactory \(n \)-player non-cooperative game theory model of bargaining has hitherto been fruitless. I offer a simple static theory that reaches a 50-50 split as the unique equilibrium of a game in which each player chooses a “toughness level” simultaneously, but greater toughness always generates a risk of breakdown. Introducing asymmetry, a player who is more risk averse gets a smaller share in equilibrium. If breakdown is merely delay, then the players’ discount rates affect their toughness and their shares, as in Rubinstein. The model is easily extended to three or more players and requires minimal assumptions on the functions which determine breakdown probability and pie division.

Rasmusen: Dan R. and Catherine M. Dalton Professor, Department of Business Economics and Public Policy, Kelley School of Business, Indiana University. 1309 E. 10th Street, Bloomington, Indiana, 47405-1701. (812) 855-9219. erasmuse@indiana.edu, http://www.rasmusen.org. Twitter: @erasmuse.

This paper: http://www.rasmusen.org/papers/bargaining50.pdf.

Keywords: bargaining, splitting a pie, Rubinstein model, Nash bargaining solution, hawk-dove game, Nash Demand Game, Divide the Dollar

I would like to thank Benjamin Rasmusen, Michael Rauh, and participants in the BEPP Brown Bag for helpful comments.
1. Introduction

Bargaining shows up as part of so many models in economics that it’s especially useful to have simple models of it with the properties appropriate for the particular context. Often, the modeller wants the simplest model possible, because the outcome doesn’t matter to his question of interest, so he assumes one player makes a take-it-or-leave it offer and the equilibrium is that the other player accepts the offer. Or, if it matters that both players receive some surplus (for example, if the modeller wishes to give both players some incentive to make relationship-specific investments, the modeller chooses to have the surplus split 50-50. This can be done as a “black box” reduced form. Or, it can be taken as the unique symmetric equilibrium and the focal point in the “Splitting a Pie” game (also called “Divide the Dollar”), in which both players simultaneously propose a surplus split and if their proposals add up to more than 100% they both get zero. The caveats “symmetric” and “focal point” need to be applied because this game, the most natural way to model bargaining, has a continuum of equilibria, including not only 50-50, but 70-30, 80-20, 50.55-49.45, and so forth. Moreover, it is a large infinity of equilibria: as shown in Malueg (2010) and Connell & Rasmusen (2018), there are also continua of mixe-strategy equilibria such as the Hawk-Dove equilibria (both players mixing between 30 and 70), more complex symmetric discrete mixed-strategy equilibria (both players mixing between 30, 40, 60, and 70), asymmetric discrete mixed-strategy equilibria (one player mixing between 30 and 40, and the other mixing between 60 and 70), and continuous mixed-strategy equilibria (both players mixing over the interval [30, 70]).

Commonly, though, modellers cite to Nash (1950) or Rubinstein (1982), which do have unique equilibria. On Google Scholar these two papers had 9,067 and 6,343 cites as of September 6, 2018. It is significant that the Nash model is the entire subject of Chapter 1 and the Rubinstein model is the entire subject of Chapter 2 of the best-know

Nash (1950) finds his unique 50-50 split using four axioms. *Efficiency* says that the solution is pareto optimal, so the players cannot both be made better off by any change. *Anonymity (or Symmetry)* says that switching the labels on players 1 and 2 does not affect the solution. *Invariance* says that the solution is independent of the units in which utility is measured. *Independence of Irrelevant Alternatives* says that if we drop some possible pie divisions as possibilities, but not the equilibrium division, the division that we call the equilibrium does not change. For Splitting a Pie, only Efficiency and Symmetry are needed to get 50-50 as the unique equilibrium when the players have the same utility functions. Nash’s approach really just assumes away the problem of how to pick one of the continuum of possible pie divisions. The other two axioms handle situations where the utility frontier is not $u_1 = 1 - u_2$, i.e., the diagonal from (0,1) to (1,0). Essentially, they handle it by relabelling the pie division as being from player 1 getting 100% of his potential maximum utility and player 2 getting 0% to the opposite, where player 2 gets 100%.

Rubinstein (1982) obtains the 50-50 split quite differently. Nash’s equilibrium is in the style of cooperative games, a reduced form without rational behavior. The idea is that somehow the players will reach a split, and while we cannot characterize the process, we can characterize implications of any reasonable process. The “Nash program” as described in Binmore (1980, 1985) is to give noncooperative microfoundations for the 50-50 split. Rubinstein (1982) is the great success of the Nash program. In Rubinstein’s model, each player in turn proposes a split of the pie, with the other player responding with Accept or Reject. If the response is Reject, the pie’s value shrinks according
to the discount rates of the players. This is a stationary game of complete information with an infinite number of possible rounds. In the unique subgame perfect equilibrium, the first player proposes a split giving slightly more than 50% to himself, and the other player Accepts, knowing that if he Rejects and waits to the second period so he has the advantage of being the proposer, the pie will have shrunk, so it is not worth waiting. If one player is more impatient, that player’s equilibrium share is smaller.

The split in Rubinstein (1982) is not exactly 50-50, because the first proposer has a slight advantage. As the time periods become shorter, though, the asymmetry approaches zero. Also, it is not unreasonable to assume that each player has a 50% chance of being the one who gets to make the first offer, an idea used in the Baron & Ferejohn (1989) model of legislative bargaining. In that case, the split will not be exactly 50-50, but the ex-ante expected payoffs are 50-50, which is what is desired in many applications of bargaining as a submodel.

Note that this literature is distinct from the mechanism design approach to bargaining of Myerson (1981). The goal in mechanism design is to discover what bargaining procedure the players would like to be required to follow, with special attention to situations with incomplete information about each other’s preferences. In the perfect-information Nash bargaining context, an optimal mechanism can be very simple: the players must accept a 50-50 split of the surplus. The question is how they could impose that mechanism on themselves. Mechanism design intentionally does not address the question of how the players can be got to agree on a mechanism, because that is itself a bargaining problem.

In Rubinstein (1982), the player always reach immediate agreement. That is because he interprets the discount rate as time preference, but another way to interpret it—if both players have the same discount rate and are risk neutral—is as an exogenous probability of complete bargaining breakdown. Or, risk aversion can replace discounting in an alternating-offers model, in which case the more risk averse
player will receive a smaller share in equilibrium. Binmore, Rubinstein & Wolinsky (1986) and Chapter 4 of Muthoo (2000) explore these possibilities. If there is an exogenous probability that negotiations break down and cannot resume, so the surplus is forever lost, then even if the players are infinitely patient they will want to reach agreement quickly to avoid the risk of losing the pie entirely. Especially when this assumption is made, the idea in Shaked and Sutton (1984) of looking at the “outside options” of the two players becomes important.

Nash’s axiomatic theory of bilateral bargaining extends unchanged to n players. Symmetry and efficiency require $s_i = s_j$ and $\sum_{i=1}^{n} s_i = 1$, so $s_i = 1/n$. Finding a model that attains an equilibrium less directly has proven elusive. Many attempts have been made to extend the Rubinstein Model to n players, but none has attained the success of the 2-player version. (See section 3.13 of Osborne & Rubinstein for the natural way to extend the model.) Muthoo (2000) p. 337 says

“It has been shown by Avner Shaked that the model possesses a multiplicity of subgame perfect equilibria, provided that the time interval between two consecutive offers is sufficiently small... This result— which concerns a basic multilateral bargaining situation (in the absence of any coalition-formation issue)— has been a source of frustration in the development of a theory of multilateral bargaining. ...There is indeed room for much further research on such multilateral bargaining situations.”

The present paper will present a simple, one-period, model that achieves an equal split as a unique equilibrium with a plausible intuition based on marginal incentives. Real-world bargaining does not follow the rules of the games in the Nash and Rubinstein models, of course. Instead, the models are meant to represent the situation in which the two players prepare a bargaining strategy in advance and then meeting to negotiate. Once they meet, they find it hard to change their strategy on the fly, so it may turn out that they have both decided to be tough, in which case bargaining breaks down. In those two models, breakdown follows a discontinuous threshold function: if the two players both choose to be mild enough, the probability of breakdown is zero, but if they both choose to be over a certain threshold of combined toughness, breakdown is certain. The difference in the present paper is that the breakdown function will be continuous in toughness. If both players enter the room prepared to be mild, the probability of breakdown will be positive, but low. If they both enter prepared to be tough, the probability of breakdown will be high, but not to the point of certainty. This simple change is crucial. It will result in a simpler model, with a unique equilibrium, that is easily extendable to any number of players.

The model will depend crucially on a positive probability of breakdown, but the breakdown will not be exogenous. Rather, the two players will each choose how tough to be, and both their shares of the pie and the probability of breakdown will increase with their toughnesses. This is different from Nash (1950) because his axiom of Efficiency rules out breakdown by assumption. This is different from Rubinstein (1982), because in his model there is not even temporary breakdown unless a player chooses to reject an offer, and in equilibrium no player will make an offer he knows will be rejected. This is different from Binmore, Rubinstein & Wolinsky (1986), because there the probability of breakdown in that model is exogenous, independent of the actions of the players, except for breakdown caused by rejection of offers, which (as in Rubinstein’s mode) will not occur in equilibrium.
The significance of endogenous breakdown is that it imposes a continuous cost on a player who chooses to be tougher. In Rubinstein (1982), the proposer’s marginal cost of toughness is zero as he proposes a bigger and bigger share for himself up until the point where the other player would reject his offer—where the marginal cost becomes infinite. In the model you will see below, the marginal cost of toughness is the increase in the probability of breakdown times the share that is lost, so a player cannot become tougher without positive marginal cost. Moreover, since “the share that is lost” is part of the marginal cost, that cost will be higher for the player with the bigger share. This implies that if the player with the bigger share is indifferent about being tougher, the other player will have a lower marginal cost of being tougher and will not be indifferent. As a result, a Nash equilibrium will require that both players have the same share. This is subject to caveats about symmetric preferences and convexity of the payoff and breakdown functions, but the caveats will be quite weak. Moreover, the model is even simpler than Rubinstein (1982), because it is a static model, so stationarity and subgame perfectness do not come into play. It nonetheless can be interpreted as a multi-period model, with breakdown being temporary, in which case its behavior is much like Rubinstein’s except with splits that are exactly 50-50 and a possibility of delay before negotiation eventually ends in success.

2. The Model

Players 1 and 2 are splitting a pie of size 1. Each simultaneously chooses a toughness level x_i in $[0, \infty)$. With probability $p(x_1, x_2)$, bargaining fails and each ends up with a payoff of zero. Otherwise, player 1 receives $\pi(x_1, x_2)$ and Player 2 receives $1 - \pi(x_1, x_2)$. For technical convenience, we will assume there is an infinitesimal fixed cost of effort for toughness greater than zero (the implication is that a player will prefer a toughness of zero to a toughness level so high that it would result in certain explosion of the pie). I will omit that infinitesimal from the payoff equations.
Example 1: The Basics. Let $p(x_1, x_2) = \frac{x_1 + x_2}{12}$ and $\pi(x_1, x_2) = \frac{x_1}{x_1 + x_2}$. The payoff functions are

$$Payoff_1 = p(0) + (1-p)\pi = (1-\frac{x_1 + x_2}{12})\frac{x_1}{x_1 + x_2} = \frac{x_1}{x_1 + x_2} - \frac{x_1}{12}$$

(1)

and

$$Payoff_2 = p(0) + (1-p)(1-\pi) = (1-\frac{x_1 + x_2}{12})(1-\frac{x_1}{x_1 + x_2}) = \frac{x_2}{x_1 + x_2} - \frac{x_2}{12}$$

(2)

Maximizing equation (1) with respect to x_1, Player 1’s first order condition is

$$\frac{\partial Payoff_1}{\partial x_1} = \frac{1}{x_1 + x_2} - \frac{x_1}{(x_1 + x_2)^2} - 1/12 = 0$$

(3)

so $x_1 + x_2 - x_1 - \frac{(x_1 + x_2)^2}{12} = 0$ and $12x_2 - (x_1 + x_2)^2 = 0$. Player 1’s reaction curve is

$$x_1 = 2\sqrt{3}\sqrt{x_2} - x_2,$$

(4)

as shown in Figure 1.

The equilibrium is symmetric, since the payoff functions are. Solving with $x_1 = x_2 = x$ we obtain $x = 3$ in the unique Nash equilibrium, with no need to apply the refinement of subgame perfection. The pie is split equally, and the probability of breakdown is $p = \frac{3}{3+3} = 50\%$.

Note that the infinitesimal fixed cost of effort rules out uninteresting exploding-pie equilibria such as $(x_1 = 13, x_2 = 13)$ and $(x_1 = \infty, x_2 = 13)$.
The General Model

Let us now generalize. As in Example 1, let the probability of bargaining breakdown be \(p(x_1, x_2) \), Player 1’s share of the pie be \(\pi(x_1, x_2) \), and let there be a positive but infinitesimal fixed cost of effort for toughness greater than zero. Let us add an effort cost \(c(x_i) \) for player \(i \), with \(c \geq 0, \frac{dc}{dx_i} \geq 0, \frac{d^2c}{dx_i^2} \geq 0 \). We will also allow players to be risk averse, but with, for now, identical quasilinear utility functions \(u(1) = u(\pi) - c(x_1) \) and \(u(2) = u(1 - \pi) - c(x_2) \) with \(u' > 0 \) and \(u'' \leq 0 \) and normalized to \(u(0) \equiv 0 \).

We will assume for the breakdown probability \(p \) that \(\frac{\partial p}{\partial x_1} > 0 \)
\(\frac{\partial p}{\partial x_2} > 0, \frac{\partial^2 p}{\partial x_1^2} \geq 0, \frac{\partial^2 p}{\partial x_2^2} \geq 0, \) and \(\frac{\partial^2 p}{\partial x_1 \partial x_2} \geq 0 \) for all values of \(x_1, x_2 \) such that \(p < 1 \). The probability of breakdown rises with each player’s toughness, and it rises weakly convexly up until it reaches 1. Also, let us assume that \(p(a, b) = p(b, a) \), which is to say that the breakdown probability does not depend on the identity of the players, just the combination of toughnesses they choose (not the permutation).
We will assume for Player 1’s share of the pie $\pi \in [0, 1]$ that $\frac{\partial \pi}{\partial x_1} > 0$, $\frac{\partial^2 \pi}{\partial x_1^2} < 0$, $\frac{\partial^2 \pi}{\partial x_2^2} \leq 0$, $\frac{\partial^2 \pi}{\partial x_1 \partial x_2} \leq 0$ and $\frac{\partial^2 \pi}{\partial x_1 \partial x_2} \geq 0$. A player’s share rises with toughness, and rises weakly concavely. Also, $\pi(a, b) = 1 - \pi(b, a)$, which is to say that if one player chooses a and the other chooses b, the share of the player choosing a does not depend on whether he is player 1 or player 2.

These assumptions on π imply that $\lim_{x_1 \to \infty} \frac{\partial \pi}{\partial x_1} \to 0$, since $\frac{\partial \pi}{\partial x_1} > 0$, $\frac{\partial^2 \pi}{\partial x_1 \partial x_2} \leq 0$, and $\pi \leq 1$; as x_1 grows, if its marginal effect on π is constant then p will hit the ultimate level $\pi = 1$ eventually and for higher x_1 we would have $\frac{\partial \pi}{\partial x_1} = 0$, but if the marginal effect on π diminishes, it must diminish to zero (and similarly for x_2’s effect).

Proposition 1. The general model has a unique Nash equilibrium, and that equilibrium is in pure strategies with a 50-50 split of the surplus ($x_1^* = x_2^*$ and $\pi(x_1^*, x_2^*) = .5$).

Proof. The expected payoffs are

$$\text{Payoff}(1) = p(x_1, x_2)(0) + (1 - p(x_1, x_2))u(\pi(x_1, x_2)) - c(x_1)$$

and

$$\text{Payoff}(2) = p(x_1, x_2)(0) + (1 - p(x_1, x_2))u(1 - \pi(x_1, x_2)) - c(x_2).$$

The first order conditions are

$$\frac{\partial \text{Payoff}(1)}{\partial x_1} = \left(\frac{du}{d\pi} \cdot \frac{\partial \pi}{\partial x_1} - p \frac{du}{d\pi} \frac{\partial \pi}{\partial x_1}\right) - \frac{\partial p}{\partial x_1} u(\pi) + \frac{dc}{dx_1} = 0$$

and

$$\frac{\partial \text{Payoff}(2)}{\partial x_2} = \left(\frac{du}{d\pi} \cdot \frac{\partial \pi}{\partial x_2} - p \frac{du}{d\pi} \frac{\partial \pi}{\partial x_2}\right) - \frac{\partial p}{\partial x_2} u(1 - \pi) + \frac{dc}{dx_2} = 0,$$

where the first two terms in parentheses are the marginal benefit of increasing one’s toughness and the second two terms are the marginal cost. The marginal benefit is an increased share of the pie, adjusted for diminishing marginal utility of consumption. The marginal cost is the loss from more breakdown plus the marginal cost of toughness.
First, note that if there is a corner solution at \(x_1 = x_2 = 0 \), it is a unique solution with a 50-50 split of the surplus. That occurs if \(\frac{\partial \text{Payoff}(1)(0,0)}{\partial x_1} < 0 \), since the weak convexity assumptions tell us that higher levels of toughness would also have marginal cost greater than marginal benefit. That is why we did not need to make a limit assumption such as \(\lim_{x_1 \to 0} \frac{\partial \pi}{\partial x_1} \to \infty \) and \(c'' < \infty \) for the theorem to be valid, though of course the model is trivial if the toughness levels of both players are zero.

There is not a corner solution with large \(x_1 \). Risk-neutral utility with zero direct toughness costs makes risking breakdown by choosing large \(x_1 \) most attractive, so it is sufficient to rule it out for that case. Set \(u_1(\pi) = \pi \) and \(c(x_1) = 0 \), so \(\frac{\partial \text{Payoff}(1)}{\partial x_1} = (1-p) \frac{\partial \pi}{\partial x_1} - \frac{\partial p}{\partial x_1} \pi \). The function \(p \) is linear or convex, so it equals 1 for some finite \(x_1 \equiv \bar{x} \) (for given \(x_2 \)). \(\frac{\partial p}{\partial x_1} > 0 \), by assumption, and does not fall below \(\frac{\partial p}{\partial x_1}(0, x_2) \) by the assumption of \(\frac{\partial^2 p}{\partial x_1^2} \geq 0 \). Hence, at \(x_1 = \bar{x} \), \((1-p(\bar{x}, x_2) \frac{\partial p}{\partial x_1} - \frac{\partial p}{\partial x_1}(\bar{x}, x_2) \pi = 0 - \frac{\partial p}{\partial x_1}(\bar{x}, x_2) \pi < 0 \) and the solution to player 1’s maximization problem must be \(x_1 < \bar{x} \).

We can now look at interior solutions. It will be useful to establish that the marginal return to toughness is strictly decreasing, which we can do by showing that \(\frac{\partial^2 \text{Payoff}(1)}{\partial x_1^2} < 0 \). The derivative of the first two terms in (7) with respect to \(x_1 \) is

\[
\left[\frac{d^2 u_1}{dx_1^2} \frac{\partial \pi}{\partial x_1}^2 + \frac{d u_1}{dx_1} \frac{\partial^2 \pi}{dx_1^2} \right] + \left[- \frac{\partial p}{\partial x_1} \frac{d u_1}{dx_1} \frac{\partial \pi}{\partial x_1} + p \frac{d u_1}{dx_1} \frac{\partial^2 \pi}{dx_1^2} \right] = (1-p) \frac{d^2 u_1}{dx_1^2} \frac{\partial \pi}{\partial x_1}^2 + (1-p) \frac{d u_1}{dx_1} \frac{\partial^2 \pi}{dx_1^2} - \frac{\partial p}{\partial x_1} \frac{d u_1}{dx_1} \frac{\partial \pi}{\partial x_1} \tag{9}
\]

The first term of (9), the marginal benefit, is zero or negative because \((1-p) > 0 \) and \(\frac{d^2 u_1}{dx_1^2} \leq 0 \). The second term is zero or negative because \((1-p) > 0 \), \(\frac{d u_1}{dx_1} > 0 \) and \(\frac{\partial^2 \pi}{dx_1^2} \leq 0 \). The third term—the key one—is strictly negative because \(\frac{\partial p}{\partial x_1} > 0 \), \(\frac{d u_1}{dx_1} > 0 \), and \(\frac{\partial \pi}{\partial x_1} > 0 \).

The derivative of the third and fourth terms of (7) with respect to \(x_1 \), the marginal cost, is

\[
- \frac{\partial^2 p}{\partial x_1^2} u - \frac{\partial p}{\partial x_1} \frac{d u}{dx_1} \frac{\partial \pi}{\partial x_1} - \frac{d^2 c}{dx_1^2} \tag{10}
\]
The first term of (10) is zero or negative because \(\frac{\partial^2 p}{\partial x_1^2} \geq 0\) and \(u > 0\). The second term— another key one— is strictly negative because \(\frac{\partial p}{\partial x_1} > 0\), \(\frac{du}{d\pi} > 0\), and \(\frac{\partial \pi}{\partial x_1} > 0\). The third term is zero or negative because \(\frac{d^2 \pi}{dx_1^2} \geq 0\). Thus, the marginal return to toughness is strictly decreasing.

The derivative of (7) with respect to \(x_2\), the other player’s toughness, is

\[
\frac{\partial^2 \text{Payoff}}{\partial x_1 \partial x_2} = (1 - p) \frac{du}{d\pi} \frac{\partial^2 \pi}{\partial x_1 \partial x_2} - \frac{\partial p}{\partial x_2} \frac{du}{d\pi} \frac{\partial \pi}{\partial x_1} - \frac{\partial^2 p}{\partial x_1 \partial x_2} u - \frac{\partial p}{\partial x_1} \frac{du}{d\pi} \frac{\partial \pi}{\partial x_2} - 0.
\]

(11)

The first term is zero or negative because \(\frac{d^2 \pi}{dx_2^2} \leq 0\) and \(\frac{\partial^2 \pi}{\partial x_1 \partial x_2} \geq 0\) by assumption. The third term is zero or negative because \(\frac{\partial^2 p}{\partial x_1 \partial x_2} \geq 0\) by assumption. The second and fourth terms sum to \(-\frac{du}{d\pi} (\frac{\partial p}{\partial x_2} \frac{\partial \pi}{\partial x_1} + \frac{\partial p}{\partial x_1} \frac{\partial \pi}{\partial x_2})\). The sign of this depends on whether \(x_1 < x_2\). If \(x_1 < x_2\), then \(\frac{\partial p}{\partial x_2} \geq \frac{\partial p}{\partial x_1}\) and \(|\frac{\partial \pi}{\partial x_1}| \geq |\frac{\partial \pi}{\partial x_2}|\) because (i) \(\frac{\partial^2 p}{\partial x_1^2} \geq 0\), \(\frac{\partial^2 p}{\partial x_2^2} \geq 0\), and \(p(a,b) = p(b,a)\) and (ii) \(\frac{\partial^2 \pi}{\partial x_1^2} \leq 0\), \(\frac{\partial^2 \pi}{\partial x_2^2} \leq 0\), and \(\pi(a,b) = \pi(b,a)\). Thus the second and fourth terms sum to a positive number. If \(x_1 > x_2\), the sum is negative, and if \(x_1 = x_2\) the sum is zero. Using the implicit function theorem, we can conclude that if \(x_1 > x_2\), \(\frac{dx_1}{dx_2} < 0\), but for \(x_1 < x_2\), we cannot determine the sign of \(\frac{dx_1}{dx_2}\) without narrowing the model. Figure 1 illustrates this using Example 1. (See, too, Figure 2 below, though that is for the infinite-period model.)

Note that this means the reaction curve will start rising, but as soon as it \(x_1 = x_2\) it will start falling, and the reaction curves will never cross again (see Figures 1 and 2 for illustration, noting that the apparent \(x_1 = x_2 = 0\) intersection is not actually on the reaction curves because the two first derivatives are both positive there). So the equilibrium must be unique, and with \(x_1 = x_2 = a\) the assumption that the pie-splitting function is symmetric ensures that \(\pi(a,a) = .5\).

There are no mixed-strategy equilibria, because unless \(x_1 = x_2\), one player’s marginal return to toughness will be greater than the other’s, so they cannot both be zero, and existence of a mixed-strategy
equilibrium requires that two pure strategies have the same payoffs given the other player’s strategy.

Many of the assumptions behind Proposition 1 are stated with weak inequalities. The basic intuition is about linear relations; we can add convexity to strengthen the result and ensure interior solutions, but convexity of functions is not driving the result like it usually does in economics. Rather, the basic intuition is that if one player is tougher than the other, he gets a bigger share and so has more to lose from breakdown, which means he has less incentive to be tough. Even if his marginal benefit of toughness—an increase in his share—were to be the same as the other player’s (a linear relationship between \(\pi \) and \(x_i \)), his marginal cost—the increase in breakdown probability times his initial share—is bigger, and that is true even if his marginal effect on breakdown probability is the same as the other player’s (again, a linear relationship, between \(p \) and \(x_i \)). That is why we get a 50-50 equilibrium in Example 1 even though \(p \) is linear, \(u \) is linear (and so the notation \(u \) does not even have to appear), and \(c = 0 \). Proposition 1 tells us that if we make the natural convexity assumptions about \(p \), \(u \), and \(c \), the 50-50 split continues to be the unique equilibrium, \emph{a fortiori}. Very likely we could even dispense with differentiability and continuity to a certain extent, something I will leave to others to explore.

This model relies on a positive probability of breakdown in equilibrium. In Example 1, the particular breakdown function \(p \) leads to a very high equilibrium probability of breakdown—50%. The model retains its key features, however, even if the equilibrium probability of breakdown is made arbitrarily small by choice of a breakdown function with sufficiently great marginal increases in breakdown as toughness increases. Example 2 shows how that works.

Example 2: A Vanishingly Small Probability of Breakdown.
Keep \(\pi(x_1, x_2) = \frac{x_1}{x_1+x_2} \) as in Example 1, but let the breakdown probability be \(p(x_1, x_2) = \frac{(x_1+x_2)^k}{12k} \) for \(k \) to be chosen. We want an equilibrium
maximizing

\[
Payoff(1) = p(0) + (1 - p)\pi
\]

\[
= \left(1 - \frac{(x_1 + x_2)^k}{12k}\right)\frac{x_1}{x_1 + x_2}
\]

\[
= \frac{x_1}{x_1 + x_2} - \frac{x_1(x_1 + x_2)^{k-1}}{12k}
\]

(12)

The first order condition is

\[
\frac{1}{x_1 + x_2} - \frac{x_1}{(x_1 + x_2)^2} - x_1(k - 1)(x_1 + x_2)^{k-2}/12k - \frac{(x_1 + x_2)^{k-1}}{12k} = 0
\]

so \(12k(x_1 + x_2) - 12kx_1 - x_1(k - 1)(x_1 + x_2)^k - (x_1 + x_2)^k = 0\) and \(12kx_2 - x_1(k - 1)(x_1 + x_2)^k - (x_1 + x_2)^k = 0\). Player 2's payoff functions is

\[
Payoff(2) = (1 - \frac{(x_1 + x_2)^k}{12k})(1 - \frac{x_1}{x_1 + x_2}) = \frac{x_2}{x_1 + x_2} - \frac{x_2(x_1 + x_2)^{k-1}}{12k}
\]

(14)

The equilibrium is symmetric, by Theorem 1. We solve \(12kx - x(k - 1)(2x)^k - (2x)^{k+1} = 0\), so \(x = (\frac{12k(2^{k-1})}{k+1})^{1/k}\), and

\[
x^* = 0.5(\frac{12k}{k+1})^{1/k}
\]

(15)

If \(k = 1\) then \(x^* = (\frac{12(2-1)}{2})^{1} = 3\), and \(p = \frac{6}{12} = 0.5\), as in Example 1. If \(k = 2\) then \(x^* \approx 1.4\) and \(p = 1/3\). If \(k = 5\) then \(x^* \approx 0.79\) and \(p \approx 0.17\). This converges to \(x^* = 0.5\) as \(k\) becomes large. Since the probability of breakdown is \(p(x_1, x_2) = \frac{(x_1 + x_2)^k}{12k}\), the probability of breakdown converges to \(p = \frac{k}{12k}\) as \(k\) increases, which approaches 0.

Thus, it is possible to construct a variant of the model in which the probability of breakdown approaches zero, but we retain the other features, including the unique 50-50 split of the surplus. Note that it is also possible to construct a variant with the equilibrium probability of breakdown approaching one, by using a breakdown probability function with a very low marginal probability of breakdown as toughness increases.
3. $N > 2$ Players

Let’s next modify Example 1 by generalizing to N bargainers.

Example 3: N Players. Return to the risk neutrality of Example 1, but with N players instead of 2. Player i’s payoff function will be

$$Payoff(i) = (1 - \frac{\sum_{i=1}^{N} x_i}{12}) \frac{x_i}{\sum_{i=1}^{N} x_i} \quad (16)$$

with first order condition

$$\frac{1}{\sum_{i=1}^{N} x_i} - \frac{x_i}{(\sum_{i=1}^{N} x_i)^2} - \frac{1}{12} = 0 \quad (17)$$

All N players have this same first order condition, so $x_i = x$ and

$$\frac{1}{Nx} - \frac{x}{(Nx)^2} - \frac{1}{12} = 0 \quad (18)$$

so $12Nx - 12x - N^2x^2 = 0$ and $12(N - 1)x - N^2x^2 = 0$ and $12(N - 1) - N^2x = 0$ and

$$x = \frac{12(N - 1)}{N^2}, \quad (19)$$

so the probability of breakdown is

$$p(x, \ldots, x) = \frac{n^{12(N-1)}}{N^2} = \frac{(N - 1)}{N^2} \quad (20)$$

Thus, as N increases, the probability of breakdown approaches but does not equal one. If $N = 2$, $x = 12 \cdot 1/4 = 3$ and the probability of breakdown is 50%. If $N = 3$, $x = 12 \cdot 2/9 \approx 2.67$ so the probability of breakdown rises to about $3 \cdot 2.67/12$, about 67%. If $N = 10$, $x = 12 \cdot 9/100 = 1.08$ and the probability rises further, to $10 \cdot 1.08/12$, which is 90%. There is a negative externality from increasing toughness, and the effect of this externality increases with the number of players because each player’s equilibrium share becomes smaller, so by being tougher he is mostly risking the destruction of the other players’ payoffs.

4. Risk Aversion
Theorem 1 allowed for risk aversion, but it required the players’ to have identical utility functions. The model can be applied even when the players have different utility functions. Theorem 2 confirms what one would expect: if one player is uniformly more risk averse, he will end up with a smaller share of the pie.

Proposition 2: If for every level of consumption he is more risk averse than player 2, player 1 gets a smaller share of the pie in equilibrium.

Proof.

\[Payoff(1) = pu(0; \alpha_1) + (1 - p)u(\pi; \alpha_1) \] (21)

which has the first-order condition

\[\frac{\partial p}{\partial x_1} u(0; \alpha_1) - \frac{\partial p}{\partial x_1} u(\pi; \alpha_1) + (1 - p)u'(\pi; \alpha_1) \frac{\partial \pi}{\partial x_1} = 0 \] (22)

We can rescale the units of utility functions of two people, so let’s normalize so \(u(0; \alpha_1) \equiv u(0; \alpha_2) \equiv 0 \) and \(u'(0; \alpha_1) \equiv u'(0; \alpha_2) \). Then,

\[\frac{\partial p}{\partial x_1} u(\pi; \alpha_1) = (1 - p)u'(\pi; \alpha_1) \frac{\partial \pi}{\partial x_1}, \] (23)

so

\[\frac{\partial p}{\partial x_1} = \frac{u'(\pi; \alpha_1) \frac{\partial \pi}{\partial x_1}}{u(\pi; \alpha_1)} \] (24)

Similarly, for player 2’s choice of \(x_2 \),

\[\frac{\partial p}{\partial x_2} = \frac{u'(1 - \pi; \alpha_2) \frac{\partial \pi}{\partial x_2}}{u(1 - \pi; \alpha_2)} \] (25)

If player 1 is less risk averse, his utility function is a concave increasing transformation of player 2’s (Crawford [1991]). This means that for a given \(y \), for player 1 the marginal utility \(u_1'(y) \) is bigger than for player 2, which also means that the average utility \(u(y)/y \) is further from the marginal utility, because \(u'' < 0 \), and \(u'(0) \) is the same for both. In that case, however, \(\frac{u'(y)}{u(y)/y} \) is bigger for player 1, so \(\frac{u'(y)}{u(y)} \) is also bigger. If \(y = \pi = 1 - \pi = .5\pi \), we would need \(\frac{\partial p}{\partial x_1} > \frac{\partial p}{\partial x_2} \) (unless both equaled zero) and \(\frac{\partial \pi}{\partial x_1} < \frac{\partial \pi}{\partial x_2} \), which would require \(x_1 \neq x_2 \), which
would contradict $\pi = .5$. The only way both conditions could be valid is if $x_1 > x_2$, so that $\frac{\partial p}{\partial x_1} \geq \frac{\partial p}{\partial x_2}$ and $\frac{\partial \pi}{\partial x_1} < \frac{\partial \pi}{\partial x_2}$. ■

We can illustrate Theorem 2 with an example.

Example 4: Risk Aversion. Now add risk aversion to Example 1. Let the players have the constant average risk aversion (CARA) utility functions $u(y_i; \alpha_i) = -e^{-\alpha_i y_i}$. This means that the player whose value of α is bigger will be more risk averse for any value of y.

Payoff \((1) = pu(0) + (1-p)u(\pi) = \frac{x_1 + x_2}{12}(-1) + (1 - \frac{x_1 + x_2}{12})u_1(\frac{x_1}{x_1 + x_2})
\)

which has the first-order condition

\[-\frac{1}{12} + \frac{1}{12}u_1 - (1 - \frac{x_1 + x_2}{12})u'_1 \cdot \left[\frac{1}{x_1 + x_2} - \frac{x_1}{(x_1 + x_2)^2} \right] = 0.
\]

With CARA utility, if $\alpha_1 \neq 0$ then $u' = -\alpha_1 u$, so

\[-\frac{1}{12} + \frac{1}{12}u_1 - (1 - \frac{x_1 + x_2}{12})\alpha_1 u_1 \cdot \left[\frac{1}{x_1 + x_2} - \frac{x_1}{(x_1 + x_2)^2} \right] = 0
\]

and

\[-\frac{1}{12} + e^{-\alpha_1 \frac{x_1}{x_1 + x_2}} \left(\frac{1}{12} + (1 - \frac{x_1 + x_2}{12})\alpha_1 \cdot \left[\frac{1}{x_1 + x_2} - \frac{x_1}{(x_1 + x_2)^2} \right] \right) = 0.
\]

We cannot solve this expression to get analytic solutions for x_1 and x_2, but I have used Mathematica’s FindRoot function to find numerical solutions, as shown in Table 1.
Table 1:
Toughness, \((x_1/x_2)\) and Player 1’s Share \(\pi\) As Risk Aversion \((\alpha_1, \alpha_2)\) Increases (unfinished table)

<table>
<thead>
<tr>
<th>(\alpha_2)</th>
<th>.01</th>
<th>.50</th>
<th>1.00</th>
<th>2.00</th>
<th>5.00</th>
<th>10.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>.01</td>
<td>3.00/3.00</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.50</td>
<td>2.82/2.99</td>
<td>2.81/2.81</td>
<td>49</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>2.64/2.98</td>
<td>2.63/2.79</td>
<td>2.61/2.61</td>
<td>47</td>
<td>49</td>
<td>50</td>
</tr>
<tr>
<td>(\alpha_1)</td>
<td>2.00</td>
<td>2.33/2.95</td>
<td>2.31/2.75</td>
<td>2.28/2.56</td>
<td>xxx</td>
<td></td>
</tr>
<tr>
<td></td>
<td>44</td>
<td>45</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.00</td>
<td>1.64/2.79</td>
<td>1.60/2.57</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
<td>23</td>
</tr>
<tr>
<td>10.00</td>
<td>1.01/2.47</td>
<td>0.96/2.22</td>
<td>0.90/1.98</td>
<td>xxx</td>
<td>xxx</td>
<td>xxx</td>
</tr>
</tbody>
</table>

This makes sense. The more risk averse a player is relative to his rival, the lower his share of the pie. He doesn’t want to be tough and risk breakdown, and both his direct choice to be less tough and the reaction of the other player to choose to be tougher in response reduce his share.

Note that this is a different effect of risk aversion than has appeared in the earlier literature. In a cooperative game theory model such as Nash (1950), risk aversion seems to play a role, but there is no risk in those games. Nash’s Efficiency axiom means that there is no breakdown and no delay. Since we in economics conventionally model risk aversion as concave utility, however, risk seems to enter in when it is really just the shape of the utility function that does all the work;
the more “risk averse” player is the one with sharper diminishing returns as his share of the pie increases. Alvin Roth discusses this in 1977 and 1985 papers in *Econometrica*, distinguishing between this “strategic” risk and “ordinary” or “probabilistic” risk that arises from uncertainty. On the other hand, Osborne (1985) looks at risk aversion in a model that does have uncertainty, but the uncertainty is the result of the equilibrium being in mixed strategies. One might also look at risk aversion this way in the mixed-strategy equilibria of Splitting a Pie examined in Malueg (2010) and Connell & Rasmusen (2018). In the breakdown model, however, the uncertainty comes from the probability of breakdown, not from randomized strategies.

In Rubinstein (1982), breakdown just causes delay, not permanent loss of the bargaining surplus. The players have positive discount rates, though, so each period of delay does cause some loss, a loss which, crucially, is proportional to a player’s eventual share of the pie. Note, too, that the probability of breakdown is zero or one, rather than rising continuously with bargaining toughness.

In Rubinstein (1982), breakdown never occurs in equilibrium. That is because the game has no uncertainty and no asymmetric information. The players move sequentially, taking turns making the offer. The present model adapts very naturally to the setting of infinite periods. Breakdown simply means that the game is repeated in the next period, with new choices of toughness. Of course, the players must now have positive discount rates, or no equilibrium will exist because being tougher in a given period and causing breakdown would have no cost. (Paradoxically, if this happened every period, there would be a cost—eternal disagreement—but it is enough for Nash equilibrium to fail that no pairs of finite toughness in a given period can be best responses to each other.)
We will look at the effect of repetition and discounting in Example 5.

Example 5: Possibly Infinite Rounds of Bargaining. Let us return to Example 1, with two risk-neutral players, but say that if bargaining breaks down, it resumes in a second round and continues until eventual agreement. In addition, the players have discount rates \(r_1 \) and \(r_2 \), both strictly positive, and we will require that the equilibrium be subgame perfect, not just Nash. Let’s denote the equilibrium expected payoff of player 1 by \(V_1 \), which will equal

\[
Payoff(1) = V_1 = p \frac{V_1}{1 + r_1} + (1 - p)\pi
\]

(30)

Player 1’s choice of \(x_1 \) this period will not affect \(V_1 \) next period (because we require subgame perfectness, which makes the game stationary), so the first order condition is

\[
\frac{\partial p}{\partial x_1} \frac{V_1}{1 + r_1} + (1 - p) \frac{\partial \pi}{\partial x_1} - \frac{\partial p}{\partial x_1} \pi = 0
\]

(31)

We can rewrite the payoff equation (30) as

\[
V_1 = \frac{(1 + r_1)(1 - p)\pi}{(1 + r_1 - p)}
\]

(32)

Put (32) into the first order condition for \(V_1 \) and we get

\[
\frac{\partial p}{\partial x_1} \frac{(1 + r_1)(1 - p)\pi}{(1 + r_1 - p)} + (1 - p) \frac{\partial \pi}{\partial x_1} - \frac{\partial p}{\partial x_1} \pi = 0
\]

(33)

so

\[
\frac{\partial p}{\partial x_1} \frac{(1 - p)\pi}{1 + r_1 - p} + (1 - p) \frac{\partial \pi}{\partial x_1} - \frac{\partial p}{\partial x_1} \pi = 0
\]

(34)

Let us now use the particular functional form of the examples, which tells us that \(\frac{\partial p}{\partial x_1} = 1/12 \) and \(\frac{\partial \pi}{\partial x_1} = \frac{1}{x_1 + x_2} - \frac{x_1}{(x_1 + x_2)^2} \). Then solving (34) yields

\[
x_1 = \frac{-12r_1 x_2 + x_2^2 - 12x_2 + 12\sqrt{r_1 x_2(12r_1 - x_2 + 12)}}{12r_1 - x_2}
\]

(35)
Note that player 1’s toughness is a function of his own discount rate and of player 2’s toughness but depends only indirectly on player 2’s discount rate. Let’s look at the limiting cases of \(r_1 = 0 \) and \(r_1 = \infty \).

\[
\lim_{r_1 \to 0} x_1 = \frac{-12x_2(0) + x_2^2 - 12x_2 + 12\sqrt{5}}{6 - x_2} = 12 - x_2 \tag{36}
\]

and

\[
\lim_{r_1 \to \infty} x_1 = \frac{-12r_1x_2}{12r_1 - x_2} + \frac{12\sqrt{(12x_2^2 - 2x_2r_1 + 12r_1)}}{12r_1 - x_2} + \frac{+x_2^2 - 12x_2}{\infty} = -x_2 + \sqrt{(12x_2)} \tag{37}
\]

If the discount rates are the same, the first order conditions are the same for both players and we get a symmetric equilibrium with \(x_1 = x_2 = x \). As the discount rate approaches zero, the equation (36) tells us that toughness approaches 6 for each player, not the value of 3 we found in Example 1, and the probability of breakdown in any given period approaches 1. That is because breakdown is relatively harmless, so players find it worthwhile to be extremely tough in order to increase their share of the pie.\(^1\) As the discount rate approaches infinity, on the other hand, we have \(x = -x + \sqrt{(12x)} \), so \(2x = \sqrt{(12x)} \), \(4x^2 = 12x \), and \(x_1 = x_2 = 3 \). This is what we found in Example 1, which, indeed, is equivalent to the present game when the pie is worthless if the players have to wait to consume it till the second period. The diagonal values with the boldfaced 50% split in Table 2 show the equilibrium toughnesses for various discount rates when the players have the same discount rate.

\(^1\)The extreme case of \(r_1 = r_2 = 0 \) would yield \(x_1 = x_2 = 6 \) and \(p = 1 \) if the players followed the strategy of equation (36). That is paradoxical because each player would have a payoff of zero, and either of them could get a positive payoff by deviating to be less tough. No Nash equilibrium would exist, in fact, even in mixed strategies.
Table 2: Toughnesses \((x_1/x_2)\) and Player 1’s Share \(\pi\) As Impatience \((r_1, r_2)\) Increases (rounded)

\[
\begin{array}{cccccc}
\hline
r_2 & \quad .001 & .010 & .050 & .100 & .500 & 2.000 \\
\hline
.001 & 5.5/5.5 & & & & & 50 \\
.010 & 2.9/7.4 & 5.5/5.5 & & & & 28 \\
.050 & 2.5/7.6 & 3.5/7.0 & 4.9/4.9 & & & 25 \\
.100 & 1.4/9.6 & 2.9/7.4 & 4.2/5.4 & 4.6/4.6 & & 13 \\
.500 & 1.1/9.8 & 2.1/7.8 & 3.0/6.0 & 3.3/5.2 & 3.8/3.8 & 10 \\
2.000 & 1.0/9.9 & 1.9/7.9 & 2.6/6.2 & 2.8/5.4 & 3.2/3.9 & 3.3/3.3 \\
\hline
\end{array}
\]
The expected payoff is \(V \) when \(r_1 = r_2 = r \). It equals

\[
V = (1 + r)(1 - p) * (.5) / (1 + r - p)
\]

\[
= (1 + r)(1 - \frac{2x}{12}) * (.5) / (1 + r - \frac{2x}{12})
\]

(38)

As \(r \to 0 \), \(V \to .5 \). As \(r \to \infty \), we know \(x \to 3 \), so \(V \to \frac{25(1+r)}{5+r} \). As \(r \to \infty \), this last expression approaches \(\frac{25r}{r} = .25 \).

The derivative is negative,\(^3\) and \(V(r) \) has a lower bound of \(V = .25 \). Recall from Example 1 that if the surplus falls to 0 after breakdown, the equilibrium probability of breakdown is .5. If the players are patient, agreement takes longer, but the cost per period of delay is enough lower to outweigh that.

In the Rubinstein model, the split approaches 50-50 as the discount rate approaches zero. Here, the probability of breakdown approaches zero as the discount rate approaches zero. Note, however, that for a fixed discount rate, another way we could generate a near-zero breakdown rate would be by using a more convex breakdown function, as in Example 2.

We do not have Rubinstein’s first-mover advantage effect, because the present model does not have one player at a time making an offer. We also do necessarily have agreement in the first round, as in his equilibrium, though it becomes very likely if we use the convex breakdown function of Example 2. Another of his major results, though,

\[
\frac{2V}{r} = \frac{(1 + r)(6 - x)(12 + 12r - 2x)}{(12 + 12r - 2(6r - 6\sqrt{r^2 + r} + 6))} = (1 + r)(6 - 6\sqrt{r^2 + r} + 6 + 6r - 6\sqrt{r^2 + r})/(12 + 12r - 2(6r - 6\sqrt{r^2 + r} + 6)) = (1 + r)((-r + \sqrt{r^2 + r})/(2 + 2r - 2r - \sqrt{r^2 + r} + 1) = (1 + r)(-r + \sqrt{r^2 + r})/2\sqrt{r^2 + r} = \frac{(1+1)(\sqrt{r^2 + r} - r)}{2\sqrt{r^2 + r}} = \frac{(1+1)(\sqrt{r^2 + r} - r)}{2\sqrt{r^2 + r}}
\]

\[
= \sqrt{\frac{r^2 + r - r}{2\sqrt{r^2 + r}} = \frac{\sqrt{r^2 + r}}{2}} = \frac{\sqrt{r^2 + r}}{2} = \frac{r - \sqrt{r^2 + r}}{2} = \frac{r}{2} + .5 - \frac{\sqrt{r^2 + r}}{2}
\]

\[
3dV/dr = .5 - \frac{2r + 1}{4\sqrt{r^2 + r}}, \text{ which has the same sign, multiplying by } 4\sqrt{r^2 + r}, \text{ as}
\]

\[
2\sqrt{r^2 + r} - 2r - 1. \text{ Square the first term and we get } 4r^2 + 4r. \text{ Square the second term and we get } 4r^2 + 1 + 4r. \text{ Thus, the derivative is negative.}
that having a lower discount rate gives a player a bigger share of the pie, is present in the breakdown model, as we will next explore.

Figure 2:
REACTION CURVES FOR TOUGHNESSES x_1 **AND** x_2

(A) $r_1 = r_2 = .05$

(B) $r_1 = .25$, $r_2 = .05$

What if Player 1 has a lower discount rate than Player 2? No such neat functional form as in Rubinstein (1982) can be derived for the quartic functions x_1 (see equation (40)) and x_2 in terms of r_1 and r_2, but we can obtain a general qualitative result, Proposition 3.

Proposition 3. *In the multiperiod bargaining game, the player with the lower discount rate will have the bigger share.*

Proof. Equation (40) gives the reaction function for player 1:

$$x_1 = \frac{-12r_1x_2 + x_2^2 - 12x_2 + 12\sqrt{r_1x_2(12r_1 - x_2 + 12)}}{12r_1 - x_2} \tag{39}$$

Differentiating, the slope of the reaction curve is

$$\frac{\partial x_1}{\partial r_1} = \frac{-12x_2 - 12\frac{24r_1x_2 - x_2^3 + 12x_2}{\sqrt{r_1x_2(12r_1 - x_2 + 12)}} - 12(-12r_1x_2 + x_2^2 - 12x_2 + 12\sqrt{r_1x_2(12r_1 - x_2 + 12)})}{12r_1 - x_2} \frac{12r_1 - x_2}{(12r_1 - x_2)^2} \tag{40}$$

This is unfinished. I need to show that x_1 is positive and the slope is negative at the relevant place.
Particular reaction functions show us what is going on. We have already seen that $\frac{\partial x_i}{\partial r_1} < 0$. The reaction curves are plotted in (x_1, x_2) space in Figure 2. In the relevant range, near where they cross, they are downward sloping. Not only does this make the equilibrium unique, it also tells us that the indirect effect of an increase in r_1 goes in the same direction as the direct effect. If r_1 rises, that reduces x_1, which increases x_2, which has the indirect effect of reducing x_2 further, and so the indirect effects continue ad infinitum. Table 1 above shows the equilibrium toughneses and pie split for various combinations of discount rates.

Concluding Remarks

The purpose of this model is to show how a simple and intuitive force—the fear of inducing bargaining breakdown by being too tough—leads to a 50-50 split of the pie being the unique equilibrium outcome. Such a model also implies that the more risk-averse player gets a smaller share of the pie, and it can be easily adapted to n players. All this has been in the context of complete information. I hope to write a companion paper on how incomplete information can be incorporated into the model.
References

Connell, Christopher & Eric Rasmusen (2018) “Divide the Dollar: Mixed Strategies in Bargaining under Complete Information,” (September 2018). [As of September 14 we do not have a working paper version, because we just came across Malueg’s paper and need to revise heavily to note his contributions.]

