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Extra Proofs for: “The Learning Curve in a Competitive Industry”

One of the implications of assumption (A5) is that the minimum one-period
average cost with no learning, p,,, is attained at some finite positive output level.
This is part of a more general lemma:

LEMMA I. Under assumptions (A1) - (A5), the functions [C(q,0)/q¢], [f(¢,0)/q]

and [f(0,q)/q] attain their minima at finite positive output levels.

PROOF. First note that since C'(0,0) > 0, the average costs in the statement
of the lemma diverge to 400 as ¢ — 0.

Let my = inf{[f(¢,0)/q] : ¢ > 0]}. Suppose the infimum is not attained at
any finite ¢. Then, there exists {g,} — +oo such that f(g,,0)/q, — m1 and,
further, for each n,

[f(q,0)/q] > [f(gn,0)/qn] for q€[0.qy] (1)

There exists N such that ¢, > K for all n > N. Then, using (A5), for each n > N,
there exists z < qn,y < g, such that z +y = ¢, and: f(¢n.0) > f(2,0) 4+ f(y,0),
that is,

(@, 0)/qn > [2/(z + ][ f(2,0) /2] + [y/(z + v)][f (y,0) /y]
> [2/(z+ ] (@n, 0)/an] + [y/(z + IS (¢n, 0) /an] = f(qn,0)/qn.

(using (1)), a contradiction.

A similar method can be used to show that f(0,q)/q attains its minimum at
a finite positive output. Lastly, note that (A5) implies that for any ¢ > K, there
exists z,y > 0,2 +y < ¢,

C(0,0) + 6C(g,0) > 2C(0,0) + 5C(2,0) + 5C(y,0)

which implies

C(q,0) > C(z,0) + C(y,0)

Again, the same set of steps can be replicated to show that [C'(g,0)/q] attains its
minimum at a finite positive level. //

PROPOSITION 2. Under assumptions (A1)-(A6), an equilibrium exists. It
is unique in prices, and it is socially optimal.



PROOF. Section III of the text defines the social planner’s problem. Based
on that definition, we can define the social cost minimization problem for any
@1 > 0,02 > 0 to be produced by S-type firms as:

(SCM1)  Minimize /0715' [C(q1(4),0) + 0C(q2(7), q1(7))]di

w.r.t. ng > 0,q; : [0,ns] = Ry, t =1,2,¢(.) integrable w.r.t. Lebesgue measure,
subject to the restrictions:

ns
/ qi(i)di > Q,t=1,2.
J0O

Let ¢(Q1,Q2) be the value of the minimization problem.

Similarly, if Qg > 0 is the amount to be produced by E-type firms in period
1, then the social cost minimization problem is given by:

ng
(SCM2)  Minimize / C(qp(1),0)d:
0

w.r.t. ng > 0,qp : [0,ng] = Ry, qe(.) integrable w.r.t. Lebesgue measure, subject
to the restriction:

ng
/ qE,(i)di Z (2]3
0
Let ¥ p(QE) be the value of the minimization problem.

Lastly, if @7, > 0 is the amount to be produced by L-type firms in period 2,
then the social cost minimization problem is given by:

ng
(SCM3) Mim'mize/ 6C (qr,(7),0)di
0

w.r.t. ng > 0,q1 : [0,n] = Ry, qr(.) integrable w.r.t. Lebesgue measure, subject
to the restriction:

ny . .
| i = Qi)
Let +1,(Q;,) be the value of this minimization problem.

First consider (SCM1). For @1 = @2 = 0. the solution is obviously ng = 0.
Suppose Q2 =0 and @1 > 0. Let

m1 = man{[(C(q,0) + 6C(0,q9))/q] : ¢ > 0} (2)



From Lemma I we have the existence of finite ¢ > 0 which solves this minimization
problem. Let g(m1) > 0 be any such solution. Consider the feasible set in (SCM1).
One may without loss of generality confine attention to the subset of the feasible
set where ¢2(7) = 0 a.e. and

/”’S qi(i)di = Q.
0

Let (ng,q1(7),q2(7)) be any such feasible solution. Then

= [ [(Cq1(i),0) + 6C(0,q1(4))) /q1 (i) q1 (i) di
> [0 miqi(2)di

=mi1Q

= [C(q(m1),0) 4+ 6C(0,q(m1))]n

where 1 = Q1/q(my).

Thus, there exists a solution to SCM1 for @1 > 0,Q2 = 0 and (Q1,0) =
m1Q1.

Similarly, let mo be defined by
s = min{[(C(0.0) + 6C(q.0))/d] : g > 0}, (3)

Using Lemma I, there exists a finite positive solution to the minimization problem
in (3). Consider (SCM1) for the case where Q1 = 0,Q2 > 0. One can show by

similar arguments as above, that there exists a solution to (SCM1) for this case

and that (0, Q2) = maQ>.

In fact, the same set of arguments will show that there exists solution to

(SCM2) and (SCM3) and that ¥ (Qr) = pmQr and Y1,(Qr) = dpn Q1.

Lastly, consider (SCM1) for the case where Q1 > 0,Q2 > 0. First note that
(ng =1,q1(7) = Q1,q2(2) = Q2) is a feasible solution. Let N be defined by

N =[C(Q1,0) +6C(Q2,Q1)]/[C(0,0)]

Suppose there is a feasible solution (ng,q1(7), g2(7)) where ng > N. Then

/0 [C1(1), 0)+6C (ga (i), 1(3))]di > n5C(0,0) > NC(0,0) = [C(Q1, 0)+6C(Q, Q1)].



We may, therefore, without loss of generality confine attention to feasible
points where ng < N. Given assumption (A5), we may confine attention to feasible
solutions where ¢;(7) < K,7 = 1,2. Lastly, it would be wasteful to introduce an
S-type firm which produces zero output in both periods. So, w.l.o.g. one can
confine attention to feasible points where ¢(¢) > 0 for some ¢, for all ¢ € [0, ng].

Note that it is possible to extend any function ¢;(7) on [0, ng] to an integrable
function on [0, N] by setting ¢;(z) = 0 for ¢ € (ng, N].

Let I(q1,q2) =1, if ¢; > 0 for some t,q; < K for t = 1,2 and I = 0 otherwise.
One can rewrite (SCM1) for Q1,Q2 >> 0 as
N
(SCM71) M'[Cnimize/ Glq1(7), C(g2(7)]di
J0

w.r.t. ¢ : [0, N]z[0, K], ¢(.) integrable, subject to

N
[t Q.
J0O
where G : Ri — R is given by

G(q1,92) = C(q1,0) + 0C(q2.q1)1(q1. g2).

Check that G is a bounded function on R% (bounded above by (14+46)C(K.,0)).
A direct appeal to Theorem 6.1 in Aumann and Perles (1965) shows that there
exists a solution to (SCM1’). This, in turn, implies that there exists a solution to

(SCM1) for all Q1,Q2 > 0.1

Let A1 and Ay be the Lagrangean multipliers associated with the constraints
(*) in (SCM1). Then at any optimal solution (ng,qi(7),g2(2)) the necessary con-
ditions

q1(2) > 0 implies Cy(q1(2),0) + 0Cy(q2(), q1(4)) = f1(q1(2), g2(2)) = A1(Q1, Q2),
(4)
and

q2(1) > 0 implies Cy(g2(7), q1(2)) = f2(q1(7), q2(2)) = A2(Q1, Q2)- (5)

'R.J. Aumann and M. Perles (1965) “A Variational Problem Arising in Economics.”
Journal of Mathematical Analysis and Applications, 11: 488 - 503.



We claim that ¢(Q1, Q2) is a convex function on Ri Let us define the “cost-
possibility set” of any firm ¢« € Ry by

f) ={lar.q2, —y)ar = 0,y > Cq1,0) + 6C (g2, q1) } U{(0,0,0)}
(no-entry is equivalent to (0,0,0))

f(2) is identical for all 7. Let F' be the “cost-possibility set” of the social
planner, i.e. the set of all output-cost combinations that are feasible for the social
planner by using any number of S-type firms and any distribution of output across
such firms. Thus, F is the integral of the set-valued correspondence f(i) : Ry —
R with respect to Lebesgue measure. A direct appeal to the Lyapunov-Richter
theorem 2 shows that F' is a convex set. By definition of  in (SCM1), F' is also
the set of all {(Q1,Q2,—Y) : Y >4(Q1,Q2),Qr > 0,1 =1,2}. It is easily checked
that convexity of F' implies that v is a convex function on R%r.

Next, we claim that 1 is continuous on Ri Continuity on Ra_ . follows from
its convexity. Continuity on the border can be verified directly. For example,
choose any sequence {Q7",Q5'} — (Q1,Q2) such that Q1 = 0,Q2 > 0. Let g(m2)
be a solution to the minimization problem in (2). Then

maQy' = P(0,0Q5) <Y (QT,Q5) < {C([(QT q(m2))/Q5'],0) + 6C (q(ma),
and [(Q7'q(m2))/Q5 ) HAY /q(m2)} = maQo = 1(0,Q2) as m — +oc.

Since the left hand side of the inequality equals m2Q5 — maQa = (0, Q2),
we have that ¥ (Q7", Q%) — 1(0,Q2). Similar arguments can be used when the
limits (Q1,Q2) of the sequence {Q7", Q45'} are such that Q2 = 0,01 > 0 and also
when both @; = 0.

Next we want to establish that the partial derivatives of ¥ (Q1,Q2) exist on
Ri+ . For any fixed Q2 = z > 0, let g(Q1) = ¥ (Q1,2z). We will show that g is
differentiable on R, ;.

Firstly, note that g is a convex function and so its right and left hand deriva-
tives exist. Furthermore,

9. >4 . (6)
Let (ng,q1(4), g2(7)) be the optimal solution of (SCM1) at (Q1, z). For ¢ > 0 small
enough, consider the vector (Q1 + ¢, z). Let ¢1(¢) = q1(i) + ¢[q1(¢)/Q1]. Note that

2See 1..1.3 in A. Mas-Colell (1985) The Theory of General Economic Equilibrium: A
Differentiable Approach. Cambridge University Press, Cambridge, England.
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Gi1(7) = 0 if q1(i) = 0. It is easy to check that (ng,q1(7),q2(2)) is a feasible way to
produce (@ + ¢, z). Thus,

9(Q1 +¢e) =9(Q1 +¢,2) < [ [£(q1(5), g2(4))]di
= [ *[f (@) +e(q1(2)/Q1)], g2(4))di

so that
7.(Q1) =l.’é’$”8 {191 +2) - g(@)/e}
<20 (1/e) Jio L ([ () + £ (a1 () /Q1)]. a2(0)
—f(q1(i), q2(4)) }da.

(Use the dominated convergence theorem and note that in the last expression the
term within curly brackets equals zero if ¢ (i) = 0.)

ltm

9@ = 5 1o [Tl + @ D/Qu) D) — Flarli)aa(i) M ()i
where I(2) =1 if ¢1(2) > 0 and I(7) = 0 otherwise.

Since f(q1,q2) is differentiable and further using (4), we have from the above
inequality that:

7H(Qu) < i 1010, a2(i) [0 (0)/QUI6)di
= Jo  {M(Q1, 2)]/ Q1 }q1 (D) di (using(4)) @)
= )\] (Q] 9 Z)‘

By a similar argument one can show that:

QD) = [9(Q1) — 9(Q1 — O)(1/e) = M (Q1.2). (8)

Thus (7) and (8) imply
g (@Q) <N < g (),

which combined with (6) yields
94 (Q1) = g_(Q1) = A1,
that is, ¢ is differentiable at )1 and

§(Q1) =¥1(Q1.Q2) = M (Q1.Q2). (9)



Note that at Q2 = 0,¢(Q1,Q2) = m1Q so that ¥ (Q1,0) = m;. Similar reasoning
shows that given @1 > 0, the partial derivative of ¢ w.r.t. Q2 exists on Ry, and
is given by
P2(Q1,Q2) = Aa(Q1,Q2)
and, in particular, ¥2(0,Q2) = ma.
As the partial derivatives of 9 exist at each point in R?H_ and 7 is convex, it

follows that 1 is continuously differentiable on Ra_ + (Section 42, Theorem D and
Section 44, Theorem E in Roberts and Varberg [1973]).3

We summarize the above discussion in the Lemma II:
Lemma II: (a) There exists a solution to the (SCM1), (SCM2) and (SCM3).

(b) For any Qg > 0,vr(Qr) = pm@r and in the solution to (SCM2), ¢ (i) €
{(] : [C‘(q, 0)/(1] = pm}

(¢) For any Qr, > 0,%1,(Qr) = 0p, Q1 and in the solution to (SCM3), q1,(7) €
{g:[C(q.0)/q] = pm}-

(d) For Q1 = 0,%(Q1,0) = m1Q1 where m; > 0 is defined by (2); For
Q2 > 0,9(0,Q2) = maQ2, where mo is defined by (3).

(e) 9 is continuous and convex on Ri;

(f) For any (Q1,@Q2) > 0, there exists Lagrangean multipliers A\| (Q1, Q2), A2 (Q1,Q2),
such that the solution (ng,q1(7),q2(7)) to (SCM1) is characterized by (4) and (5).

(g) 9 is continuously differentiable on R%r + and its partial derivatives are

given by ¢:(Q1,Q2) = A (Q1,Q2),t = 1,2; further, 41 (Q1,0) = my and ¢2(0,Q2) =

mso.

We now rewrite (SPP*) as the following problem (hereafter referred to as
SPP)
Mazimize
Q1,02.Q,Q1>0 W(Q1,Q2,Qr, QL)

where

W(Q1,Q2,Qp, QL) = {S(Q1+Qp)+6S(Q2+QL)—(Q1,Q2)—¢e(Qr)—yr(QL)},
and S(y) = [ P(q)dg.

3Roberts, A. and D.F. Varberg (1973) Convex Functions, Academic Press, New York.
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Note that S is a strictly concave function, continuous on R, continuously
differentiable on R4 and S'(y) = P(y).

Thus, using Lemma II, W is continuous and strictly concave on Ri. Further,
at any point (@1 > 0,Q2 > 0,Qp > 0,Q1, > 0), the partial derivatives of W w.r.t
all arguments exist. In particular,

OW/0Q1 = P(Q1 + Qp) —¥1(Q1,Q2) = P(Q1 + Qp) — M (Q1,Q2) (10)
OW/0Q2 = P(Q2+ QL) — ¥2(Q1,Q2) = P(Q2+ QL) — X2(Q1,Q2) (11)
OW/0Qr = P(Q1+Qr) —¢%(Qr) = P(Q1 +Qp) — pm (12)

OW/0Qr = dP(Q2+ Q1) — 11, (Qr) = §[P(Q2 + QL) — pm]. (13)

Since P(y) — 0 as y — 400 and p,, > 0, there exists Q9 > 0, such that
OW/0Qr < 0 for any (Q1,Q2, Qp,Qr) where Qp > Qo and OW/90Qr < 0 for
Q1 > Q. Note that A(Q1,Q2) = Cy(g2(2), q1(2)) > min{Cy(q,z) : 0 < g <
K, 0 < w < K}. Using (Al) we can check that the minimum in the previous
expression is actually attained at some (¢”,w”) € [0, K] X [0, K]. Thus, for all
(Q1,Q2) such that Q2 > 0, we have ¥2(Q1.Q2) > Cq(¢",h") = h where, using
(A2), we have h > 0. So, there exists Q% > 0 such that OW/9Q2 < 0 for Q2 > Q°
. Let Q = 777,(1,.7:(Q$, Qo). One can without loss of generality, rewrite SPP as

Maximize

0120,Q2,Q5,Q1€0,Q] W(Q1,Q2,Qr.Qr)

We claim there exists a solution to this maximization problem. Let Wk be the
supremum of the maximand (which can be +0c). Then, there exists a sequence
{1, Q5. Q. Q7 ,m = 1,2,..., where W(QT",Q5,Q%, Q7)) — W*. Suppose
{Q7'} is bounded above. Then the sequence {Q7", Q5. Q% . Q7' } is bounded above
and has a convergent subsequence, whose limit is the optimal solution, using con-
tinuity of W.

Now suppose that {Q7'} is not bounded above; abusing notation somewhat,

suppose that {Q]"'} — +oo. Choose M such that QP[ > 0. Then for m > M,
PL(QT, Q%) > (Ql”,Q%”) > anf{y (QlM z): 0 <z <K} =A(say).

Let f(z) = ¢1(Q, ). There exists a sequence {x} € [0, K], such that f(zz) —
A. We claim that A > 0. To see this, consider a convergent subsequence of
{zp}, e.g. {x},} — xx. If 2% > 0, then from continuous differentiability of ¢



(implying continuity of partial derivatives) on R?H_, we have that f(z,) — f(xx) =
PL(QM, zx) = A (Q)T, z%) > 0. Suppose zx = 0. Note that 1y (Q1,0) = my. For
e> 0,41 (QM.e) > [(QM,e) —4(0,)]/QM (using convexity of ) so that taking
the limit as ¢ — 0 (using the continuity of 7/ on Ri and the fact that v (0,0) = 0)
yields:

lam M

=01 (Q1.6) 2 (@1 0)/Q1 = m

lam
so that ¥ —+oo f(z]) = A > 0.

Since Q7" — +o0o , there exists M’ > 0 such that for m > M’', P(Q]") < A.
Thus, for m > maz(M, M'), P(Q7 + Q") < ¥ (Q", Q%) ie. IW/IQ1 < 0
when evaluated at m large enough. This is a contradiction. Thus, {Q7"} must be
bounded above. The proof of existence is complete.

Note that since W is strictly concave on Ri, the solution to (SPP) is unique.

It is easy to check that assumption (A6) implies P(0) > ¢/,(0) = pp, and
6P(0) > 4 (0) = §pp, which, in turn, is sufficient to assert that if (Q1,Q2,Qr, Q1)
solves (SPP) then Q1 + Qg > 0 and Q2+ Qr > 0. Further, it is impossible that in
the optimal solution )y = 0 for either t = 1 or t = 2 or both. Suppose ()1 = 0 and
@2 > 0. Now, consider the original form of the social planner’s problem (SPP*).
Since Q1+ @ > 0, it must be true that Q@ > 0. Then the social planner can easily
reduce total cost by letting the existing ng firms of type S (who currently produce
zero in period 1) produce a total amount ()1 = Qg (setting ng = 0). The cost in
period 1 is unchanged and that in period 2 is reduced (using assumption (A2)), a
contradiction. Similarly, ()1 > 0,2 = 0 is ruled out as this implies ¢}, > 0 and
total cost can be reduced by letting S-type firms (who currently produce nothing
in period 2) produce a total amount Qs = Qp (setting ny = 0). Lastly, if both
Q; are equal to zero, then Qp > 0,Qr > 0. Suppose we let £ be the measure of
E-type firms that produce in period 2— i.e. convert them to S-type firms, reduce
the number of L-type firms by ¢ and transfer their output to these ¢ S-type firms.
Then it is easy to see that total costs are reduced, a contradiction. To summarize:

Lemma III: There exists a solution to SPP and, hence, (SPP*). The solution

to the social planner’s problem is unique in (Q1,Q2,Qp,Qr). If (Q1,Q5,Q%. Q1)
is an optimal solution in total output produced by different “types” of firms then

Qi >0, Q5> 0.

Let us now write down the first order necessary conditions for (Q7, @5, Q7},, Q7))



to be an optimal solution to (SPP)

P(QT + Q%) = ¢1(Q1, Q1) [= M(Q1,Q3)] < ¥u(Qp)[= pa] (14)
PQT+Qk) =pm if Q>0 (15)

IP(Q5+ Q1) = ¥2(Q7, Q3)[= M(Q7, Q3)] < ¥L(QL)[= dpn] (16)
P(Qy+ QL) =pm if Q>0 (17)

Define pi = P(Q1+QF). p5 = P(Q3+Q1). Let (ng, np,ni.q7(4),¢5(2). 4p(v). g (4))
be the solutions to (SCM1), (SCM2), and (SCM3) associated with (Q7,Q3), Q%
and Q)] respectively.

We want to show that [p].p3,ng,np,ny, (g](¢),¢5(2),0 < i <n%), (¢5(4),0 <
t < np,(¢7(1),0 < i < nj)] constitutes an equilibrium. Recall the conditions
(i)-(xi) that define an equilibrium. By definition of the prices, conditions (i) and
(i) in the definition of equilibrium are satisfied. From (14) and (15) we have that
p] < pm,p5 < pm which implies conditions (vii) and (viii) of the definition of
equilibrium are satisfied. If n7, > 0, then it must be the case that Q7 > 0 so that
(15) implies p] = py, and from Lemma II(b) we have that ¢},(¢) maximizes one
period profit at price p,, and the maximum profit is equal to 0. Thus, conditions
(iv) and (x) of the definition of equilibrium are satisfied. Similarly (17) and Lemma
II(c) imply that conditions (v) and (xi) are met. Since ng, Q7,Q5 >> 0, it just
remains to show that conditions (iii) and (ix) are satisfied (condition (vi) then holds
automatically). In other words, we need to show that (¢j(¢), ¢5(¢)) maximizes two
period discounted sum of profits at prices (p],p5) and that this maximum is equal
to 0.

Consider (SCM1) at (Q7,Q3) >> 0. From (14) and (16) we have that

)‘1 (QT?Q;) = pT AZ(QIH Q;) = p; Then ()\] = pT? >‘2 = p§7q>f(7')7q§(l)wn2') mini-
mizes the Lagrangean function:

L= /Ons Flq1(2), go(2))di + A (Q1 — /Dns q1(2)di) + X2 (Qo — /"L g2 (1)di)

0

with respect to ng > 0,A; > 0,q1 : [0,ng] = Ry, ¢ : [0,ng] = Ry, q(.) inte-
grable.

Then it must, in particular, be true that given (A\; = pj, A2 = p3), the vector
(n, q7 (1), ¢5(2)) maximizes:

| i)+ et - fla(0. o)l

10



with respect to ng > 0,q1 : [0,n5] = R4, q2 : [0,n5] = R4, ¢ (.) integrable. But
this implies that (almost everywhere)

(a) (q7(7), ¢5(2)) maximizes [pq1+p5q2— f(q1, ¢2)] with respect to (q1,q2) > 0,
and

(b) [pai (1) + phg2(i) — fqi(i), q2(i))] = 0.

Proof of (a) is obvious (for otherwise we could increase the maximand by
choosing a different value for (¢;(¢), g2(7)) on a positive measure of firms. To see
(b), suppose not. There are two possibilities:

(1) [piq1(é) + piqa(i) — f(qu(7),¢2(2))] < 0 in which case the maximand is
increased by simply eliminating a positive measure of such firms (reducing ng
below n%), a contradiction;

(2) [piq1(2) + p3q2(i) — f(qi(2),q2(¢))] > 0 in which case the maximand can
be increased to +o0o by setting ng = +o0c and letting all 7 > n’ produce the same
output vector (qi(z),¢2(¢)), a contradiction as ng < oo .

This proves (b). (a) and (b) imply that conditions (iii) and (ix) in the defi-
nition of equilibrium hold. We have therefore proved that:

Lemma IV: Every solution to the social planner’s problem is implementable
as a competitive equilibrium. In particular, let (ng, ng. n7,q7(2), ¢5(2), g5 (%), g7 (7))
be a solution to (SPP*) with associated total output (Q7, Q5. Q7%, Q7). Then, if
pl = P(Q]+Q%),p5 = P(Q3+ Q7 ), then [PTaPEa”?an”ka”?» (g1(2),¢5(4),0 <@ <
ng), (gp(1),0 <1 <n¥, (g7 (1), 0 <i < nj)]is a competitive equilibrium.

Lemmas IIT and TV imply:
Lemma V: There exists an equilibrium.

Next, we show that every equilibrium is socially optimal. Let [pfpgnﬁ
77%,71%,(@1?5(7),(]3(1:),0 < < 77,‘5'),((]%(7:),0 <1 < 7’7,%),((]‘]%(7:),0 <1 < 172)] be
a equilibrium. Let (Q?,QE) be total output produced by S-type firms in this
equilibrium. From Lemma III, we have that Qf > 0, Q§ > 0. Let Qi and Qi be
the total quantity produced by E and L type firms in their period of stay.

Our first claim is that (n%,(jﬁ@),qi’(?)) is a socially cost minimizing way of
producing (Q;B, QE) i.e. it solves (SCM1) given (ng, QE) Suppose not. Then there

11



exists (7, §1(1). g2(4)) which solves (SCM1) given (QF, Q3) and

5
QLAY < [ 1@ a3 (1)
The sum of total profits of all S type firms in equilibrium is zero. Therefore,

0= Jo [pfdr* i) + pas () — F(d1° (). a3(0))1di < p}QS + 3735 — $(QF.Q3) (using (13))
= Jo [P (6) + 0p36a(i) — £ (d1(3), ga(i)))di

which implies, in turn, that there exists some i1 for which [p‘fql (1) + Op%(jg(&) —
f(G1(i),G2(2))] > 0. But by definition of equilibrium, the maximum possible dis-
counted sum of profit at prices (p?pg) is 0. We have a contradiction. Hence,

'7l$w . . .
@13 = [ 1@ ). a3 (19)
and ('rb%,(jls(i),qg(i)) does solve (SCM1) given (Q¥, Q3).

Next., suppose n% > 0. Then from Proposition 1, p% = p,, and q%(i) €{qg>
0:[C(q,0)/q] = pm} which means that total cost of production of Q} is equal

to pm@%, which is equal to d’P(Qi) ie. (ni,qi(i)) solves (SCM2) given ng’b
Similarly, one can show that if n§ > 0, then (n},q} (1)) solves (SCM3) given Q5 .

Therefore, in equilibrium, total output (Qi’ (23, Q‘BE Qj’:) produced by differ-
ent types of firms are produced in the socially cost minimizing way. Let the total
social welfare in equilibrium is equal to W(QT Q;, Qz Qz), where the function W
is as defined before introducing problem (SPP). As noted earlier, W {(.) is strictly
concave on R/jl_. The partial derivatives of W exist at all (Q1,Q2,Qp.Qr) > 0,
where Q@1 > 0,Q2 > 0.

Suppose equilibrium is not socially optimal. Let (Q7, @5, @7}, @} ) maximize
social welfare. Then,

W(QT.Q3. Q1. Q1) — W(QT. Q5. Q5. Q1) < 0. (20)

From Lemma III, Q7 > 0,035 > 0. As noted above, QT > 0, (23 > 0. So strict
concavity of W implies

W(QF,Q5,Q%,. Q) — W(Q1,Q5.Q1. Q7))

> [OW(Q, Q5,Q%, Q) /0Q1][Q] — Q7]

+HOW (QF. Q3, Q% Q%) /0Q2)[Q5 — Q3] (21)
HOW(QF. @3, Q. Q})/0Qr][Q}, — Q7]

+HoW Q. 03, Q73, Q})/0Q:[Q] - Q7]
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Note that:
W (QF, @5, Q1. Q1)/0Q1 = P(QT+ Q) — 41 (QF, @5) = pf — M(Q1, Q%) (22)

=p =A@’ (). 43() (from (4)). (23)
As Qi’ > 0, (23 > 0, there exists positive measure of 2 such that (j1$(i) > 0, qi’ (1) > 0,
so that the first order conditions of profit maximization (condition (iii) in definition
of equilibrium) implies that right hand side of (22) is equal to zero, i.e.

IW(QF. Q5. Q. Q1) /0Q1 = 0. (24)
Similarly, one can show that
IW(QF. Q5. Q. Q1) /0Q2 = 0. (25)

Next note that, from Proposition 1, p] < pm so that 0W(Q] Q* (2?3 QL)/GQb =

— P Qt) = p1 — pm < 0 and it is equal to zero if Qt > 0 (since p] = pm).
Thus

[OW (QF. Q5. Q% Q1)/0QE] Q% ~ Q3] > 0. (26)
Similarly, one can show that
oW (@, @3, Q5. Q1)/9QrIQ] — Q1] 2 0. (27)

From (21) , (24) - (27) we have W(Q},Q3, Q% Q) — W(Q1,Q5,Q3.Q;7) > 0
contradicting (20) . The proof is complete. We have thus shown:

Lemma VI: Every competitive equilibrium is socially optimal.

Combining Lemmas (III) - (VI) yields Proposition 2.

PROPOSITION 3. Under assumptions (A1)-(A7), an equilibrium exists. It

is unique in prices, output, and number of firms, and it is socially optimal.

Proof. Tt is sufficient to show that under (A7) there exists a unique solution
o (SCM1), (SCM2) and (SCM3). Proposition 2 then implies the result. To
see uniqueness in (SCM1) let (ng, q1(7), q2(2)), (n', ¢} (i), ¢5(7)) be any two optimal
production plans producing (Q1,Q3) >> 0. Let N = maz(ng,n’). Suppose
ng < n'. Then extend q;(¢) to the entire interval [0,n'] by setting ¢;(7) = 0 for
i >mng. Then let §:(7) = (1/2)[q:(i) + q,(2)],t = 1,2 be defined on [0,n']. It is easy
to check that this is a feasible production plan for (Q1,Q2). Further,

/ @ ) o) < / D () 20 + F(d) (). b)) = Q1. Qo).
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a contradiction. Uniqueness in (SCM2) and (SCM3) are similarly established. //

PROPOSITION 4. Under assumptions (A1)-(A7), the following is true in
equilibrium:

(a) Each of the staying firms behaves identically, and there exists a positive
measure of staying firms. There exist ¢ and ¢5 such that ¢(¢) = ¢f and
g5 (1) = g5 for all active staying firms 1.

(b) If exiting firms exist, they produce at the initial minimum efficient scale,
which is less than the ¢; produced by the staying firms. If ng > 0, then
qr(i) = qm for all 7 € [0, ng], where ¢y, is the unique solution to minimization
of [C(q,0)/q] with respect to ¢ > 0, and g < ¢J.

(¢) There exist no late-entering firms: ny = 0.

Proof. The first part of (a) and (b) follow immediately from strict concavity of
the profit function for each type of firm. (Note that since the total amount (Q1, Q)2)
produced by all S-type firms is always strictly positive, (¢}, ¢3) >> 0.) The second
part of (b) results from Proposition 1, because the negative first-period profits of
the staying firms result from their high production for the sake of learning. It
remains to show that n; = 0 for part (c).

Suppose that ny > 0. Then from Lemma II, ngy = 0 and p» = p,,. Under
(A7), there exists a unique g, which minimizes [C(q,0)/q] over ¢ > 0. So, q7.(i) =
Gm and

P2 =Pm = C((J'm s 0)/(1771 = Cq ((J'm ) 0)- (28)
Furthermore,
D(p2) = D(pm) = nsqs5 + npgm > nsqs. (29)
From first order condition of profit maximization for firms which produce in both
periods we have that Cy(¢5,q7) = p2 = pm and, therefore (using (A7), (28) and
i >0)

45 > Gm- (30)
Next we claim that the following inequality is true:
Culgz.q1)di + Colaz. a1)as — Claz. q1) 2 0. (31)

: 2
By convexity of C'on RZ,

C(qm,0) — Cla2,q1) > Cylg3,91)(gm — ¢3) + Cu(g5.91)(0 — q7)
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which implies that Cy. (43, 47)qi+Cy (42, 41) % —C (43, 47) = C4(45: 47)gm—C(gm, 0) =
P2Gm — C(Gm,0) = [p2 - (C((Im-/ O)/(Im)] =0 (USng (28) )

From the first order conditions of profit maximization for S-type firms and
the fact that in equilibrium, the discounted sum of profits is zero, we have:

Cyla1:0)q1 + 6Cu (g3, 41)q1 + 6C4(q3.41)@2 — C(q1,0) — 6Cg2,47) = 0.
Using (31) in the above equation we have:
Cylq1.0)q1 — Clq1.0) <0

which implies that
QI < gm (32)

so that, from (30) , we have ¢; < ¢5. Thus,
nsqi < nsgs. (33)
From (29) and (33) we have
D(p2) > nsg5 > nsqy = D(p1),

and so, p1 > p2 = pm , which violates condition (vii) of the definition of equilib-
rium. //



