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Extra Proofs for: \The Learning Curve in a Competitive Industry"

One of the implications of assumption (A5) is that the minimum one-period

average cost with no learning, pm, is attained at some �nite positive output level.

This is part of a more general lemma:

LEMMA I. Under assumptions (A1) - (A5), the functions [C(q; 0)=q]; [f(q; 0)=q]

and [f(0; q)=q] attain their minima at �nite positive output levels.

PROOF. First note that since C(0; 0) > 0, the average costs in the statement

of the lemma diverge to +1 as q ! 0.

Let m1 = inff[f(q; 0)=q] : q � 0]g. Suppose the in�mum is not attained at

any �nite q. Then, there exists fqng ! +1 such that f(qn; 0)=qn ! m1 and,

further, for each n,

[f(q; 0)=q] � [f(qn; 0)=qn] for q 2 [0; qn] (1)

There exists N such that qn > K for all n � N . Then, using (A5), for each n � N ,

there exists z < qn; y < qn such that z + y = qn and: f(qn; 0) > f(z; 0) + f(y; 0),

that is,

f(qn; 0)=qn > [z=(z + y)][f(z; 0)=z] + [y=(z + y)][f(y; 0)=y]

� [z=(z + y)][f(qn; 0)=qn] + [y=(z + y)][f(qn; 0)=qn] = f(qn; 0)=qn;

(using (1)), a contradiction.

A similar method can be used to show that f(0; q)=q attains its minimum at

a �nite positive output. Lastly, note that (A5) implies that for any q > K, there

exists z; y � 0; z + y � q,

C(0; 0) + �C(q; 0) > 2C(0; 0) + �C(z; 0) + �C(y; 0)

which implies

C(q; 0) > C(z; 0) + C(y; 0)

Again, the same set of steps can be replicated to show that [C(q; 0)=q] attains its

minimum at a �nite positive level. //

PROPOSITION 2. Under assumptions (A1)-(A6), an equilibrium exists. It

is unique in prices, and it is socially optimal.
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PROOF. Section III of the text de�nes the social planner's problem. Based

on that de�nition, we can de�ne the social cost minimization problem for any

Q1 � 0; Q2 � 0 to be produced by S-type �rms as:

(SCM1) Minimize

Z
nS

0

[C(q1(i); 0) + �C(q2(i); q1(i))]di

w.r.t. nS � 0; qt : [0; nS ]! R+; t = 1; 2; qt(:) integrable w.r.t. Lebesgue measure,

subject to the restrictions:

Z
nS

0

qt(i)di � Qt; t = 1; 2:

Let  (Q1; Q2) be the value of the minimization problem.

Similarly, if QE � 0 is the amount to be produced by E-type �rms in period

1, then the social cost minimization problem is given by:

(SCM2) Minimize

Z
nE

0

C(qE(i); 0)di

w.r.t. nE � 0; qE : [0; nE ]! R+; qE(:) integrable w.r.t. Lebesgue measure, subject

to the restriction: Z
nE

0

qE(i)di � QE :

Let  E(QE) be the value of the minimization problem.

Lastly, if QL � 0 is the amount to be produced by L-type �rms in period 2,

then the social cost minimization problem is given by:

(SCM3) Minimize

Z
nL

0

�C(qL(i); 0)di

w.r.t. nL � 0; qL : [0; nL]! R+; qL(:) integrable w.r.t. Lebesgue measure, subject

to the restriction: Z
nL

0

qL(i)di � QL(�)

Let  L(QL) be the value of this minimization problem.

First consider (SCM1). For Q1 = Q2 = 0, the solution is obviously nS = 0.

Suppose Q2 = 0 and Q1 > 0. Let

m1 = minf[(C(q; 0) + �C(0; q))=q] : q � 0g (2)
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From Lemma I we have the existence of �nite q > 0 which solves this minimization

problem. Let q(m1) > 0 be any such solution. Consider the feasible set in (SCM1).

One may without loss of generality con�ne attention to the subset of the feasible

set where q2(i) = 0 a.e. and

Z
nS

0

q1(i)di = Q1:

Let (nS; q1(i); q2(i)) be any such feasible solution. Then

R
nS

0 [C(q1(i); 0) + �C(0; q1(i))]di

=
R
nS

0 [(C(q1(i); 0) + �C(0; q1(i)))=q1(i)]q1(i)di

�
R
nS

0 m1q1(i)di

= m1Q1

= [C(q(m1); 0) + �C(0; q(m1))]n̂

where n̂ = Q1=q(m1).

Thus, there exists a solution to SCM1 for Q1 > 0; Q2 = 0 and  (Q1; 0) =

m1Q1.

Similarly, let m2 be de�ned by

m2 = minf[(C(0; 0) + �C(q; 0))=q] : q � 0g: (3)

Using Lemma I, there exists a �nite positive solution to the minimization problem

in (3). Consider (SCM1) for the case where Q1 = 0; Q2 > 0. One can show by

similar arguments as above, that there exists a solution to (SCM1) for this case

and that  (0; Q2) = m2Q2.

In fact, the same set of arguments will show that there exists solution to

(SCM2) and (SCM3) and that  E(QE) = pmQE and  L(QL) = �pmQL:

Lastly, consider (SCM1) for the case where Q1 > 0; Q2 > 0: First note that

(nS = 1; q1(i) = Q1; q2(i) = Q2) is a feasible solution. Let N be de�ned by

N = [C(Q1; 0) + �C(Q2; Q1)]=[C(0; 0)]

Suppose there is a feasible solution (nS; q1(i); q2(i)) where nS > N . Then

Z
nS

0

[C(q1(i); 0)+�C(q2(i); q1(i))]di� nSC(0; 0) > NC(0; 0) = [C(Q1; 0)+�C(Q2; Q1)]:
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We may, therefore, without loss of generality con�ne attention to feasible

points where nS � N . Given assumption (A5), we may con�ne attention to feasible

solutions where qt(i) � K; i = 1; 2. Lastly, it would be wasteful to introduce an

S-type �rm which produces zero output in both periods. So, w.l.o.g. one can

con�ne attention to feasible points where qt(i) > 0 for some t, for all i 2 [0; nS]:

Note that it is possible to extend any function qt(i) on [0; nS] to an integrable

function on [0; N ] by setting qt(i) = 0 for i 2 (nS; N ].

Let I(q1; q2) = 1; if qt > 0 for some t; qt � K for t = 1; 2 and I = 0 otherwise.

One can rewrite (SCM1) for Q1; Q2 >> 0 as

(SCM10) Minimize

Z
N

0

G[q1(i); C(q2(i)]di

w.r.t. qt : [0; N ]x[0;K]; qt(:) integrable, subject to

Z
N

0

qt(i)di � Qi;

where G : R2
+ ! R+ is given by

G(q1; q2) = C(q1; 0) + �C(q2; q1)I(q1; q2):

Check thatG is a bounded function onR2
+ (bounded above by (1+�)C(K; 0)).

A direct appeal to Theorem 6.1 in Aumann and Perles (1965) shows that there

exists a solution to (SCM1'). This, in turn, implies that there exists a solution to

(SCM1) for all Q1; Q2 � 0:1

Let �1 and �2 be the Lagrangean multipliers associated with the constraints

(*) in (SCM1). Then at any optimal solution (nS; q1(i); q2(i)) the necessary con-

ditions

q1(i) > 0 implies Cq(q1(i); 0) + �Cw(q2(i); q1(i)) = f1(q1(i); q2(i)) = �1(Q1; Q2);

(4)

and

q2(i) > 0 implies Cq(q2(i); q1(i)) = f2(q1(i); q2(i)) = �2(Q1; Q2): (5)

1R.J. Aumann and M. Perles (1965) \A Variational Problem Arising in Economics."
Journal of Mathematical Analysis and Applications, 11: 488 - 503.
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We claim that  (Q1; Q2) is a convex function on R
2
+: Let us de�ne the \cost-

possibility set" of any �rm i 2 R+ by

f(i) = f(q1; q2;�y)qt � 0; y � C(q1; 0) + �C(q2; q1)g [ f(0; 0; 0)g

(no-entry is equivalent to (0,0,0))

f(i) is identical for all i. Let F be the \cost-possibility set" of the social

planner, i.e. the set of all output-cost combinations that are feasible for the social

planner by using any number of S-type �rms and any distribution of output across

such �rms. Thus, F is the integral of the set-valued correspondence f(i) : R+ !

R+ with respect to Lebesgue measure. A direct appeal to the Lyapunov-Richter

theorem 2 shows that F is a convex set. By de�nition of  in (SCM1), F is also

the set of all f(Q1; Q2;�Y ) : Y �  (Q1; Q2); Qt � 0; t = 1; 2g. It is easily checked

that convexity of F implies that  is a convex function on R2
+.

Next, we claim that  is continuous on R2
+. Continuity on R

2
++ follows from

its convexity. Continuity on the border can be veri�ed directly. For example,

choose any sequence fQm

1 ; Q
m

2 g ! (Q1; Q2) such that Q1 = 0; Q2 > 0. Let q(m2)

be a solution to the minimization problem in (2). Then

m2Q
m

2 =  (0; Qm

2 ) �  (Qm

1 ; Q
m

2 ) � fC([(Q
m

1 q(m2))=Q
m

2 ]; 0) + �C(q(m2);

and [(Qm

1 q(m2))=Q
m

2 ])gfQ
m

2 =q(m2)g ! m2Q2 =  (0; Q2) as m! +1:

Since the left hand side of the inequality equals m2Q
m

2 ! m2Q2 =  (0; Q2),

we have that  (Qm

1 ; Q
m

2 ) !  (0; Q2). Similar arguments can be used when the

limits (Q1; Q2) of the sequence fQ
m

1 ; Q
m

2 g are such that Q2 = 0; Q1 > 0 and also

when both Qt = 0.

Next we want to establish that the partial derivatives of  (Q1; Q2) exist on

R2
++ . For any �xed Q2 = z > 0, let g(Q1) =  (Q1; z). We will show that g is

di�erentiable on R++.

Firstly, note that g is a convex function and so its right and left hand deriva-

tives exist. Furthermore,

g0+ � g0
�
: (6)

Let (nS; q1(i); q2(i)) be the optimal solution of (SCM1) at (Q1; z). For " > 0 small

enough, consider the vector (Q1+ "; z). Let q̂1(i) = q1(i) + "[q1(i)=Q1]. Note that

2See L.1.3 in A. Mas-Colell (1985) The Theory of General Economic Equilibrium: A

Di�erentiable Approach. Cambridge University Press, Cambridge, England.
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q̂1(i) = 0 if q1(i) = 0. It is easy to check that (nS; q̂1(i); q2(i)) is a feasible way to

produce (Q1 + "; z). Thus,

g(Q1 + ") =  (Q1 + "; z) �
R
nS

0 [f(q̂1(i); q2(i))]di

=
R
nS

0 [f([q1(i) + "(q1(i)=Q1)]; q2(i))di

so that

g0+(Q1) =
lim
"!0 f[g(Q1 + ")� g(Q1)]="g

�
lim
"!0 (1=")

R
nS

0 ff([q1(i) + "(q1(i)=Q1)]; q2(i))

�f(q1(i); q2(i))gdi:

(Use the dominated convergence theorem and note that in the last expression the

term within curly brackets equals zero if q1(i) = 0.)

g0+(Q1) =
lim
"!0 (1=")

Z
nS

0

ff([q1(i) + "(q1(i)=Q1)]; q2(i))� f(q1(i); q2(i))gI(i)di

where I(i) = 1 if q1(i) > 0 and I(i) = 0 otherwise.

Since f(q1; q2) is di�erentiable and further using (4), we have from the above

inequality that:

g0+(Q1) �
R
nS

0 f1(q1(i); q2(i))[q1(i)=Q1]I(i)di

=
R
nS

0 f[�1(Q1; z)]=Q1gq1(i)di (using(4))

= �1(Q1; z):

(7)

By a similar argument one can show that:

g0
�
(Q1) =

lim
"!0 [g(Q1)� g(Q1 � ")](1=") � �1(Q1; z): (8)

Thus (7) and (8) imply

g0+(Q1) � �1 � g0
�
(Q1);

which combined with (6) yields

g0+(Q1) = g0
�
(Q1) = �1;

that is, g is di�erentiable at Q1 and

g0(Q1) =  1(Q1; Q2) = �1(Q1; Q2): (9)
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Note that at Q2 = 0;  (Q1; Q2) = m1Q1 so that  1(Q1; 0) = m1. Similar reasoning

shows that given Q1 � 0, the partial derivative of  w.r.t. Q2 exists on R++ and

is given by

 2(Q1; Q2) = �2(Q1; Q2)

and, in particular,  2(0; Q2) = m2.

As the partial derivatives of  exist at each point in R2
++ and  is convex, it

follows that  is continuously di�erentiable on R2
++ (Section 42, Theorem D and

Section 44, Theorem E in Roberts and Varberg [1973]).3

We summarize the above discussion in the Lemma II:

Lemma II: (a) There exists a solution to the (SCM1), (SCM2) and (SCM3).

(b) For any QE � 0;  E(QE) = pmQE and in the solution to (SCM2), qE(i) 2

fq : [C(q; 0)=q] = pmg

(c) For any QL � 0;  L(QL) = �pmQL and in the solution to (SCM3), qL(i) 2

fq : [C(q; 0)=q] = pmg.

(d) For Q1 = 0;  (Q1; 0) = m1Q1 where m1 > 0 is de�ned by (2); For

Q2 � 0;  (0; Q2) = m2Q2, where m2 is de�ned by (3).

(e)  is continuous and convex on R2
+;

(f) For any (Q1; Q2) � 0, there exists Lagrangean multipliers �1(Q1; Q2); �2(Q1; Q2),

such that the solution (nS; q1(i); q2(i)) to (SCM1) is characterized by (4) and (5).

(g)  is continuously di�erentiable on R2
++ and its partial derivatives are

given by  t(Q1; Q2) = �t(Q1; Q2); t = 1; 2; further,  1(Q1; 0) = m1 and  2(0; Q2) =

m2.

We now rewrite (SPP*) as the following problem (hereafter referred to as

SPP)
Maximize

Q1;Q2;QE ;QL�0 W (Q1; Q2; QE ; QL)

where

W (Q1; Q2; QE ; QL) = fS(Q1+QE)+�S(Q2+QL)� (Q1; Q2)� E(QE)� L(QL)g;

and S(y) =
R
y

0 P (q)dq:

3Roberts, A. and D.F. Varberg (1973) Convex Functions, Academic Press, New York.

7



Note that S is a strictly concave function, continuous on R+, continuously

di�erentiable on R++ and S0(y) = P (y).

Thus, using Lemma II,W is continuous and strictly concave on R4
+. Further,

at any point (Q1 > 0; Q2 > 0; QE � 0; QL � 0), the partial derivatives of W w.r.t

all arguments exist. In particular,

@W=@Q1 = P (Q1 +QE)�  1(Q1; Q2) = P (Q1 +QE)� �1(Q1; Q2) (10)

@W=@Q2 = P (Q2 +QL)�  2(Q1; Q2) = P (Q2 +QL)� �2(Q1; Q2) (11)

@W=@QE = P (Q1 +QE)�  0
E
(QE) = P (Q1 +QE)� pm (12)

@W=@QL = �P (Q2 +QL)�  0
L
(QL) = �[P (Q2 +QL)� pm]: (13)

Since P (y) ! 0 as y ! +1 and pm > 0, there exists Q0 > 0, such that

@W=@QE < 0 for any (Q1; Q2; QE ; QL) where QE > Q0 and @W=@QL < 0 for

QL > Q0. Note that �2(Q1; Q2) = Cq(q2(i); q1(i)) � minfCq(q; x) : 0 � q �

K; 0 � w � Kg. Using (A1) we can check that the minimum in the previous

expression is actually attained at some (q00; w00) 2 [0;K] � [0;K]. Thus, for all

(Q1; Q2) such that Q2 > 0, we have  2(Q1; Q2) � Cq(q
00; h00) = h where, using

(A2), we have h > 0. So, there exists Q$ > 0 such that @W=@Q2 < 0 for Q2 � Q$

. Let Q̂ = max(Q$; Q0). One can without loss of generality, rewrite SPP as

Maximize
Q1�0;Q2;QE ;QL2[0;Q̂] W (Q1; Q2; QE ; QL)

We claim there exists a solution to this maximization problem. LetW� be the

supremum of the maximand (which can be +1). Then, there exists a sequence

fQm

1 ; Q
m

2 ; Q
m

E
; Qm

L
g;m = 1; 2; :::; where W (Qm

1 ; Q
m

2 ; Q
m

E
; Qm

L
) ! W �. Suppose

fQm

1 g is bounded above. Then the sequence fQm

1 ; Q
m

2 ; Q
m

E
; Qm

L
g is bounded above

and has a convergent subsequence, whose limit is the optimal solution, using con-

tinuity of W .

Now suppose that fQm

1 g is not bounded above; abusing notation somewhat,

suppose that fQm

1 g ! +1. Choose M such that QM

1 > 0. Then for m �M ,

 1(Q
m

1 ; Q
m

2 ) �  1(Q
M

1 ; Q
m

2 ) � inff 1(Q
M

1 ; x) : 0 � x � Kg = �(say):

Let f(x) =  1(Q
M

1 ; x). There exists a sequence fxkg 2 [0;K], such that f(xk)!

�. We claim that � > 0. To see this, consider a convergent subsequence of

fxkg, e.g. fx0
k
g ! x�. If x� > 0, then from continuous di�erentiability of  
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(implying continuity of partial derivatives) onR2
++, we have that f(xn)! f(x�) =

 1(Q
M

1 ; x�) = �1(Q
M

1 ; x�) > 0. Suppose x� = 0. Note that  1(Q
M

1 ; 0) = m1. For

" > 0;  1(Q
M

1 ; ") � [ (QM

1 ; ")� (0; ")]=Q
M

1 (using convexity of  ) so that taking

the limit as "! 0 (using the continuity of  on R2
+ and the fact that  (0; 0) = 0)

yields:
lim
"!0  1(Q

M

1 ; ") �  (QM

1 ; 0)=Q
M

1 = m1

so that
lim

k
0
!+1 f(x0

k
) = � > 0.

Since Qm

1 ! +1 , there exists M 0 > 0 such that for m � M 0; P (Qm

1 ) < �.

Thus, for m � max(M;M 0); P (Qm

E
+ Qm

1 ) <  1(Q
m

1 ; Q
m

2 ) i.e. @W=@Q1 < 0

when evaluated at m large enough. This is a contradiction. Thus, fQm

1 g must be

bounded above. The proof of existence is complete.

Note that sinceW is strictly concave on R4
+, the solution to (SPP) is unique.

It is easy to check that assumption (A6) implies P (0) >  0
E
(0) = pm and

�P (0) >  0
L
(0) = �pm which, in turn, is su�cient to assert that if (Q1; Q2; QE ; QL)

solves (SPP) then Q1+QE > 0 and Q2+QL > 0. Further, it is impossible that in

the optimal solution Qt = 0 for either t = 1 or t = 2 or both. Suppose Q1 = 0 and

Q2 > 0. Now, consider the original form of the social planner's problem (SPP*).

SinceQ1+QE > 0, it must be true thatQE > 0. Then the social planner can easily

reduce total cost by letting the existing nS �rms of type S (who currently produce

zero in period 1) produce a total amount Q1 = QE (setting nE = 0). The cost in

period 1 is unchanged and that in period 2 is reduced (using assumption (A2)), a

contradiction. Similarly, Q1 > 0; Q2 = 0 is ruled out as this implies QL > 0 and

total cost can be reduced by letting S-type �rms (who currently produce nothing

in period 2) produce a total amount Q2 = QL (setting nL = 0). Lastly, if both

Qt are equal to zero, then QE > 0; QL > 0. Suppose we let " be the measure of

E-type �rms that produce in period 2| i.e. convert them to S-type �rms, reduce

the number of L-type �rms by " and transfer their output to these " S-type �rms.

Then it is easy to see that total costs are reduced, a contradiction. To summarize:

Lemma III: There exists a solution to SPP and, hence, (SPP*). The solution

to the social planner's problem is unique in (Q1; Q2; QE; QL). If (Q
�

1; Q
�

2; Q
�

E
; Q�

L
)

is an optimal solution in total output produced by di�erent \types" of �rms then

Q�1 > 0, Q�2 > 0.

Let us now write down the �rst order necessary conditions for (Q�1; Q
�

2; Q
�

E
; Q�

L
)

9



to be an optimal solution to (SPP)

P (Q�1 +Q�
E
) =  1(Q

�

1; Q
�

2)[= �1(Q
�

1; Q
�

2)] �  0
E
(Q�

E
)[= pm] (14)

P (Q�1 +Q�
E
) = pm if Q�

E
> 0 (15)

�P (Q�2 +Q�
L
) =  2(Q

�

1; Q
�

2)[= �2(Q
�

1; Q
�

2)] �  0
L
(Q�

L
)[= �pm] (16)

P (Q�2 +Q�
L
) = pm if Q�

L
> 0 (17)

De�ne p�1 = P (Q�1+Q
�

E
); p�2 = P (Q�2+Q

�

L
). Let (n�

S
; n�

E
; n�

L
; q�1(i); q

�

2(i); q
�

E
(i); q�

L
(i))

be the solutions to (SCM1), (SCM2), and (SCM3) associated with (Q�1; Q
�

2); Q
�

E

and Q�
L
respectively.

We want to show that [p�1; p
�

2; n
�

S
; n�

E
; n�

L
; (q�1(i); q

�

2(i); 0 � i � n�
S
); (q�

E
(i); 0 �

i � n�
E
; (q�

L
(i); 0 � i � n�

L
)] constitutes an equilibrium. Recall the conditions

(i)-(xi) that de�ne an equilibrium. By de�nition of the prices, conditions (i) and

(ii) in the de�nition of equilibrium are satis�ed. From (14) and (15) we have that

p�1 � pm; p
�

2 � pm which implies conditions (vii) and (viii) of the de�nition of

equilibrium are satis�ed. If n�
E
> 0, then it must be the case that Q�

E
> 0 so that

(15) implies p�1 = pm and from Lemma II(b) we have that q�
E
(i) maximizes one

period pro�t at price pm and the maximum pro�t is equal to 0. Thus, conditions

(iv) and (x) of the de�nition of equilibrium are satis�ed. Similarly (17) and Lemma

II(c) imply that conditions (v) and (xi) are met. Since n�
S
; Q�1; Q

�

2 >> 0, it just

remains to show that conditions (iii) and (ix) are satis�ed (condition (vi) then holds

automatically). In other words, we need to show that (q�1(i); q
�

2(i)) maximizes two

period discounted sum of pro�ts at prices (p�1; p
�

2) and that this maximum is equal

to 0.

Consider (SCM1) at (Q�1; Q
�

2) >> 0. From (14) and (16) we have that

�1(Q
�

1; Q
�

2) = p�1; �2(Q
�

1; Q
�

2) = p�2. Then (�1 = p�1; �2 = p�2; q
�

1(i); q
�

2(i); n
�

S
) mini-

mizes the Lagrangean function:

L =

Z
nS

0

f(q1(i); q2(i))di+ �1(Q1 �

Z
nS

0

q1(i)di) + �2(Q2 �

Z
nL

0

q2(i)di)

with respect to nS � 0; �j � 0; q1 : [0; nS] ! R+; q2 : [0; nS] ! R+; qt(:) inte-

grable.

Then it must, in particular, be true that given (�1 = p�1; �2 = p�2), the vector

(n�
S
; q�1(i); q

�

2(i)) maximizes:

Z
nS

0

[p�1q1(i) + p�2q2(i)� f(q1(i); q2(i))]di

10



with respect to nS � 0; q1 : [0; nS ] ! R+; q2 : [0; nS] ! R+; qt(:) integrable. But

this implies that (almost everywhere)

(a) (q�1(i); q
�

2(i)) maximizes [p�1q1+p
�

2q2�f(q1; q2)] with respect to (q1; q2) � 0,

and

(b) [p�1q1(i) + p�2q2(i)� f(q1(i); q2(i))] = 0.

Proof of (a) is obvious (for otherwise we could increase the maximand by

choosing a di�erent value for (q1(i); q2(i)) on a positive measure of �rms. To see

(b), suppose not. There are two possibilities:

(1) [p�1q1(i) + p�2q2(i) � f(q1(i); q2(i))] < 0 in which case the maximand is

increased by simply eliminating a positive measure of such �rms (reducing nS
below n�

S
), a contradiction;

(2) [p�1q1(i) + p�2q2(i) � f(q1(i); q2(i))] > 0 in which case the maximand can

be increased to +1 by setting nS = +1 and letting all j � n�
S
produce the same

output vector (q1(i); q2(i)), a contradiction as n�
S
<1 .

This proves (b). (a) and (b) imply that conditions (iii) and (ix) in the de�-

nition of equilibrium hold. We have therefore proved that:

Lemma IV: Every solution to the social planner's problem is implementable

as a competitive equilibrium. In particular, let (n�
S
; n�

E
; n�

L
; q�1(i); q

�

2(i); q
�

E
(i); q�

L
(i))

be a solution to (SPP*) with associated total output (Q�1; Q
�

2; Q
�

E
; Q�

L
). Then, if

p�1 = P (Q�1 + Q�
E
); p�2 = P (Q�2 + Q�

L
), then [p�1; p

�

2; n
�

S
; n�

E
; n�

L
; (q�1(i); q

�

2(i); 0 � i �

n�
S
); (q�

E
(i); 0 � i � n�

E
; (q�

L
(i); 0 � i � n�

L
)] is a competitive equilibrium.

Lemmas III and IV imply:

Lemma V: There exists an equilibrium.

Next, we show that every equilibrium is socially optimal. Let [p$1; p
$
2; n

$
S
;

n$
E
; n$

L
; (q̂1

$(i); q$2(i); 0 � i � nS); (q
$
E
(i); 0 � i � n$

E
); (q$

L
(i); 0 � i � n$

L
)] be

a equilibrium. Let (Q$
1; Q

$
2) be total output produced by S-type �rms in this

equilibrium. From Lemma III, we have that Q$
1 > 0; Q$

2 > 0. Let Q$
E
and Q$

L
be

the total quantity produced by E and L type �rms in their period of stay.

Our �rst claim is that (n$
S
; q̂1

$(i); q$2(i)) is a socially cost minimizing way of

producing (Q$
1; Q

$
2) i.e. it solves (SCM1) given (Q$

1; Q
$
2). Suppose not. Then there

11



exists (n̂; q̂1(i); q̂2(i)) which solves (SCM1) given (Q$
1; Q

$
2) and

 (Q$
1; Q

$
2) <

Z
n
$

S

0

f(q̂1$(i); q
$
2(i))di: (18)

The sum of total pro�ts of all S type �rms in equilibrium is zero. Therefore,

0 =
R n$

S

0 [p$1q̂1
$(i) + �p$2q

$
2(i)� f(q̂1

$(i); q$2(i))]di < p$1Q
$
1 + �p$2Q

$
2 �  (Q$

1; Q
$
2) (using (18))

=
R
n̂

0 [p$1q̂1(i) + �p$2q̂2(i)� f(q̂1(i); q̂2(i))]di

which implies, in turn, that there exists some i for which [p$1q̂1(i) + �p$2q̂2(i) �

f(q̂1(i); q̂2(i))] > 0. But by de�nition of equilibrium, the maximum possible dis-

counted sum of pro�t at prices (p$1; p
$
2) is 0. We have a contradiction. Hence,

(Q$
1; Q

$
2) =

Z
n
$

S

0

f(q̂1
$(i); q$2(i))di (19)

and (n$
S
; q̂1

$(i); q$2(i)) does solve (SCM1) given (Q$
1; Q

$
2).

Next, suppose n$
E
> 0. Then from Proposition 1, p$1 = pm and q$

E
(i) 2 fq �

0 : [C(q; 0)=q] = pmg which means that total cost of production of Q$
E
is equal

to pmQ
$
E
which is equal to  E(Q

$
E
), i.e. (n$

E
; q$
E
(i)) solves (SCM2) given Q$

E
.

Similarly, one can show that if n$
L
> 0, then (n$

L
; q$
L
(i)) solves (SCM3) given Q$

L
.

Therefore, in equilibrium, total output (Q$
1; Q

$
2; Q

$
E
; Q$

L
) produced by di�er-

ent types of �rms are produced in the socially cost minimizing way. Let the total

social welfare in equilibrium is equal toW (Q$
1; Q

$
2; Q

$
E
; Q$

L
), where the functionW

is as de�ned before introducing problem (SPP). As noted earlier, W (:) is strictly

concave on R4
+. The partial derivatives of W exist at all (Q1; Q2; QE; QL) � 0,

where Q1 > 0; Q2 > 0.

Suppose equilibrium is not socially optimal. Let (Q�1; Q
�

2; Q
�

E
; Q�

L
) maximize

social welfare. Then,

W (Q$
1; Q

$
2; Q

$
E
; Q$

L
)�W (Q�1; Q

�

2; Q
�

E
; Q�

L
) < 0: (20)

From Lemma III, Q�1 > 0; Q�2 > 0. As noted above, Q$
1 > 0, Q$

2 > 0. So strict

concavity of W implies

W (Q$
1; Q

$
2; Q

$
E
; Q$

L
)�W (Q�1; Q

�

2; Q
�

E
; Q�

L
)

� [@W (Q$
1; Q

$
2; Q

$
E
; Q$

L
)=@Q1][Q

$
1 �Q�1]

+[@W (Q$
1; Q

$
2; Q

$
E
; Q$

L
)=@Q2][Q

$
2 �Q�2]

+[@W (Q$
1; Q

$
2; Q

$
E
; Q$

L
)=@QE ][Q

$
E
�Q�

E
]

+[@W (Q$
1; Q

$
2; Q

$
E
; Q$

L
)=@QL][Q

$
L
�Q�

L
]:

(21)

12



Note that:

@W (Q$
1; Q

$
2; Q

$
E
; Q$

L
)=@Q1 = P (Q$

1+Q$
E
)� 1(Q

$
1; Q

$
2) = p$1� �1(Q

$
1; Q

$
2) (22)

= p$1 � f1(q̂1
$(i); q$2(i)) (from (4)): (23)

AsQ$
1 > 0; Q$

2 > 0, there exists positive measure of i such that q̂1
$(i) > 0; q$2(i) > 0,

so that the �rst order conditions of pro�t maximization (condition (iii) in de�nition

of equilibrium) implies that right hand side of (22) is equal to zero, i.e.

@W (Q$
1; Q

$
2; Q

$
E
; Q$

L
)=@Q1 = 0: (24)

Similarly, one can show that

@W (Q$
1; Q

$
2; Q

$
E
; Q$

L
)=@Q2 = 0: (25)

Next note that, from Proposition 1, p$1 � pm so that @W (Q$
1; Q

$
2; Q

$
E
; Q$

L
)=@QE =

p1 �  E(Q
$
E
) = p1 � pm � 0 and it is equal to zero if Q$

E
> 0 (since p$1 = pm).

Thus,

[@W (Q$
1; Q

$
2; Q

$
E
; Q$

L
)=@QE ][Q

$
E
�Q�

E
] � 0: (26)

Similarly, one can show that

[@W (Q$
1; Q

$
2; Q

$
E
; Q$

L
)=@QL][Q

$
L
�Q�

L
] � 0: (27)

From (21) , (24) - (27) we have W (Q$
1; Q

$
2; Q

$
E
; Q$

L
) � W (Q�1; Q

�

2; Q
�

E
; Q�

L
) � 0

contradicting (20) . The proof is complete. We have thus shown:

Lemma VI: Every competitive equilibrium is socially optimal.

Combining Lemmas (III) - (VI) yields Proposition 2.

PROPOSITION 3. Under assumptions (A1)-(A7), an equilibrium exists. It

is unique in prices, output, and number of �rms, and it is socially optimal.

Proof. It is su�cient to show that under (A7) there exists a unique solution

to (SCM1), (SCM2) and (SCM3). Proposition 2 then implies the result. To

see uniqueness in (SCM1) let (nS; q1(i); q2(i)); (n
0; q01(i); q

0

2(i)) be any two optimal

production plans producing (Q1; Q2) >> 0. Let N = max(nS; n
0). Suppose

nS < n0. Then extend qt(i) to the entire interval [0; n0] by setting qt(i) = 0 for

i > nS . Then let q̂t(i) = (1=2)[qt(i)+ q0
t
(i)]; t = 1; 2 be de�ned on [0; n0]. It is easy

to check that this is a feasible production plan for (Q1; Q2). Further,

Z
n

0

0

[f(q̂1(i); q̂2(i))]di <

Z
n

0

0

(1=2)[f(q1(i); q2(i)) + f(q01(i); q
0

2(i))]di =  (Q1; Q2);

13



a contradiction. Uniqueness in (SCM2) and (SCM3) are similarly established. //

PROPOSITION 4. Under assumptions (A1)-(A7), the following is true in

equilibrium:

(a) Each of the staying �rms behaves identically, and there exists a positive

measure of staying �rms. There exist q�1 and q�2 such that q�1(i) = q�1 and

q�2(i) = q�2 for all active staying �rms i.

(b) If exiting �rms exist, they produce at the initial minimum e�cient scale,

which is less than the q1 produced by the staying �rms. If nE > 0, then

qE(i) = qm for all i 2 [0; nE ], where qm is the unique solution to minimization

of [C(q; 0)=q] with respect to q � 0, and qE < q�1.

(c) There exist no late-entering �rms: nL = 0.

Proof. The �rst part of (a) and (b) follow immediately from strict concavity of

the pro�t function for each type of �rm. (Note that since the total amount (Q1; Q2)

produced by all S-type �rms is always strictly positive, (q�1; q
�

2) >> 0.) The second

part of (b) results from Proposition 1, because the negative �rst-period pro�ts of

the staying �rms result from their high production for the sake of learning. It

remains to show that nL = 0 for part (c).

Suppose that nL > 0. Then from Lemma II, nE = 0 and p2 = pm. Under

(A7), there exists a unique qm which minimizes [C(q; 0)=q] over q � 0. So, qL(i) =

qm and

p2 = pm = C(qm; 0)=qm = Cq(qm; 0): (28)

Furthermore,

D(p2) = D(pm) = nSq
�

2 + nLqm > nSq
�

2: (29)

From �rst order condition of pro�t maximization for �rms which produce in both

periods we have that Cq(q
�

2; q
�

1) = p2 = pm and, therefore (using (A7), (28) and

q�1 > 0)

q�2 � qm: (30)

Next we claim that the following inequality is true:

Cw(q
�

2; q
�

1)q
�

1 + Cq(q
�

2; q
�

1)q
�

2 � C(q�2; q
�

1) � 0: (31)

By convexity of C on R2
+,

C(qm; 0)� C(q�2; q
�

1) � Cq(q
�

2; q
�

1)(qm � q�2) + Cw(q
�

2; q
�

1)(0� q�1)

14



which implies that Cw(q
�

2; q
�

1)q
�

1+Cq(q
�

2; q
�

1)q
�

2�C(q
�

2; q
�

1) � Cq(q
�

2; q
�

1)qm�C(qm; 0) =

p2qm � C(qm; 0) = [p2 � (C(qm; 0)=qm)] = 0 (using (28) ).

From the �rst order conditions of pro�t maximization for S-type �rms and

the fact that in equilibrium, the discounted sum of pro�ts is zero, we have:

Cq(q
�

1; 0)q
�

1 + �Cw(q
�

2; q
�

1)q
�

1 + �Cq(q
�

2; q
�

1)q
�

2 � C(q�1; 0)� �C(q�2; q
�

1) = 0:

Using (31) in the above equation we have:

Cq(q
�

1; 0)q
�

1 � C(q�1; 0) � 0

which implies that

q�1 � qm (32)

so that, from (30) , we have q�1 � q�2. Thus,

nSq
�

1 � nSq
�

2: (33)

From (29) and (33) we have

D(p2) > nSq
�

2 � nSq
�

1 = D(p1);

and so, p1 > p2 = pm , which violates condition (vii) of the de�nition of equilib-

rium. //
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