Fondamenti di geometria a più dimensioni ea più specie di unità rettilinee esposti in forma elementare. Foundations of geometry in higher dimensions and more species of rectilinear units exposed in elemental form. Lezioni per la scuola di magistero in matematica Lessons for school teaching in mathematics

Front Matter Front Matter

Page [unnumbered] Page [unnumbered]

Production Note Cornell University Library pro- duced this volume to replace thè irreparably deteriorated originai. Production Notes Cornell University Library pro-duced this volume to replace deteriorated irreparably originai tea. It was scanned using Xerox soft- ware and equipment at 600 dots per inch resolution and com- pressed prior to Storage using CCITT Group 4 compression. It was scanned using Xerox equipment and soft-ware at 600 dots per inch resolution and com-pressed prior to storage using CCITT Group 4 compression. The digitai data were used to create Cornell's replacement volume on paper that meets thè ANSI Stand- ard Z39.48-1984. The date digitai Were used to create Cornell's replacement volume on paper That Meets The Stand-ard ANSI Z39.48-1984. The production of this volume was supported in part by thè Commission on Pres- ervation and Access and thè Xerox Corporation. The production of this volume was supported in part by tea Commission on Pres-ervation and Access tea and Xerox Corporation. Digital file copy- right by Cornell University Library 1991. Digital files copy-right 1991 by Cornell University Library.

Page [unnumbered] Page [unnumbered]

Page [unnumbered] Page [unnumbered]

Itofeemtg pitting ^ BOUGHT WITH THE INCOME FROM THE 7 SAGE ENDOWMENT VuND THE GIFT OF Henry */2 y 72 ^ BOUGHT WITH THE Itofeemtg pitting INCOME FROM THE SAGE Endowment VuND 7 THE GIFT OF Henry * / 2 y 72

Page [unnumbered] Page [unnumbered]

Title Page Title Page

Page [unnumbered] Page [unnumbered]

i DI u ini i ir, 11 A PIO DIMENSIONI EA Pili SPECIE DI UNITÀ RETTILINEE ESPOSTI IN FORMA ELEMENTARE DI GIUSEPPE VERONESE PROFESSORE NELLA R. FOR i u i ini ir, 11 A PIO Pili DIMENSIONS AND UNITS OF SPECIES EXPOSED IN LINEAR FORM OF JOSEPH ELEMENTARY TEACHER IN VERONA R. UNIVERSITÀ DI PADOVA Siffatti tentativi di rinnovamento radi- cale dei principii si incontrano non di rado nella storia dello scibile. UNIVERSITY OF PADUA Such attempts at renewal of the sparse-cal principles come together often in the history of scholarship. Oggi poi sono un portato naturale dello spirito critico, cui a buon diritto si vanno sempre informando le indagini scientifiche (E. BELTRAMI: saggio di inter-prelazione della Geometria non Eu- clidea. Giorn. di Battaglini, 1869). Today then is a natural outcome of a critical spirit, which are becoming quite rightly informing the scientific investigations (E. Beltrami: inter-assay pre-emption of Geometry no Eu-clidea. Daily. Of Battaglini, 1869). * INTRODUZIONE PRINCIPII FOMENTALI DELLE FORME MATEMATICHE ASTRATTE PARTE I. * FOMENTALI INTRODUCTION PRINCIPLES OF MATHEMATICS ABSTRACT FORMS PART I. LA UETTA, IL PIANO E LO SPAZIO A TRE DIMENSIONI NELLO SPAZIO GENERALE PARTE II. THE UETTA, THE FLOOR SPACE AND THREE DIMENSIONS IN SPACE GENERAL PART II. LO SPAZIO A QUATTRO EAN DIMENSIONI NELLO SPAZIO GENERALE APPENDICE i'A DO VA TIPOGRAFIA DKL SEMINARIO 1891 SPACE FOUR DIMENSIONS IN SPACE EAN GENERAL APPENDIX MUST DO i'A DKL TYPOGRAPHY WORKSHOP 1891

Page [unnumbered] Page [unnumbered]

Proprietà riservata Proprietary

Front Matter Front Matter

Page v Page v

PREFAZIONE Le vive dispute intorno alla geometria a più di tre dimensioni fra matematici e fra matematici e filosofi, originate a parer nostro in gran parte dal metodo puramente analitico col quale essa veniva trat- tata, e dallo scambio che si faceva e si fa tuttora delle varietà astratte o numeriche an dimensioni cogli spazi geometrici propriamente detti; la credenza comune che sia sempre nascosto un concetto analitico nella con- siderazione di questi spazi e non si possano trattare sicuramente che con T analisi 1), la conseguente confusione sul concetto di spazio e quindi anche sull'essenza della geometria stessa, ci persuasero fin dal 1882 di ciò, che uri libro inteso a mostrare elementarmente coma la geo- metria degli spazi a più di tre dimensioni si possa svolgere in modo perfettamente analogo a quella del piano e dello spazio ordinario, sa- rebbe riuscito utile e importante, sia perché avrebbe difeso il con- cetto prettamente geometrico di tali spazi, come anche perché avreb- be reso più facile e comune lo studio di questa geometria 2). PREFACE The disputes around the lives of more than three-dimensional geometry between mathematicians and between mathematicians and philosophers, in our opinion originated mostly from the purely analytical method by which it was treated accord-ing and the exchange that you did and still do the variety or abstract numerical n-dimensional geometric spaces Take proper; the common belief that it is always hidden in an analytical concept with consideration of these areas-and that surely can not be treated with T analysis 1), the resulting confusion on the concept of space and therefore also the essence of the geometry itself, since 1882 we persuaded of this, the book aims to show that uri coma elementary geo-metry of the space to more than three dimensions you can play in a perfectly analogous to that of the plane and space Ordinary, would successful know-useful and important, because it would be defended, the concept of such purely geometrical spaces, and also because it would ultimately make it easier and common study of this geometry 2). Se avessimo potuto ammettere come nota la geometria dello spa- zio ordinario, il lavoro sarebbe stato molto meno difficile e in più 1) II concetto di forme spaziali che non devono corrispondere all'intuizione ordinaria, può essere svolto sicuramente soltanto colla geometria analitica (v. Helmoltz : Die Thatsachen in der Wahrnehmung, pag. 24; Berlin, 1879). If we could admit the known geometry of the ordinary spa-uncle, the work would be much less difficult and more 1) The concept of spatial forms that do not have to pay ordinary intuition, can surely be done only with the analytic geometry (see . Helmoltz: Die in der Thatsachen Wahrnehmung, p. 24, Berlin, 1879). Parecchi confidano che si riescirà a liberare da concetti analitici, dall'uso delle coordinate, persine la definizione degli spazi ad n dimensioni (D'O vidi o - Uno sguardo all'origine ed allo sviluppo della matematica pura, pag. 58. Torino, 1889). Many are confident that you riescirà to free from analytical concepts, the use of coordinates, even the definition of the spaces of n dimensions (or saw D'Or - A look at the origin and development of pure mathematics, p. 58. Turin , 1889). 2) A questi studi abbiamo accennato in una nota della nostra memoria La superficie oma- loide normale del 4 ordine a due dimensioni dello spazio a cinque dimensioni, e le sue proiezioni nel piano e nello spazio ordinario (Atti della R. Acc. dei Lincei, 1884), oltre che ad un nostro corso di lezioni tenuto nella R. 2) In these studies we have mentioned in a footnote of our memory-oma Lois surface normal order of 4 two-dimensional space of five dimensions, and its projections in the plane and in ordinary space (Proceedings of R. Acc Lincei , 1884), as well as to our course of lectures held in R. Università di Padova intorno a questo argomento; lezioni che si ripeterono poi in alcuni degli anni successivi sui punti principali di questo libro. University of Padua around this topic, lessons that were repeated in later years some of the main points of this book. Il manoscritto di quest'opera fu consegnato alla R. The manuscript of this work was delivered to R. Acc. dei Lincei fino dal 1889, ma, quando potemmo, abbiamo tenuto conto, specialmente nell'appendice, che fu l'ultima parte ad esser stampata, dei lavori pub- blicati su questo argomento dopo il 1889. Acc Lincei up since 1889, but when we could, we took into account, especially in the appendix, which was the last part to be printed, pub-lished work on this subject after 1889.

Page vi Page I

Vi breve tempo stampato. I quickly printed. Ma non lo potevamo per due ragioni: prima, per* che dovevamo risalire alle origini dei concetti della geometria, svolgendo graduatamente quella della retta, del piano e dello spazio a tre dimen- sioni per passare poi nello stesso modo a quella degli spazi superiori, o iperspazì ; poi, perché accettando le premesse e le deduzioni della geometria elementare ordinaria così come fu svolta sino ad oggi avremmo dovuto porre a base delle nostre considerazioni la proprietà che il mondo fisico è a tre dimensioni nei limiti delle nostre osservazioni, proprietà che non è punto necessaria allo svolgimento scientifico della geo- metria. But could not, for two reasons: first, for * that we had to trace the origins of the concepts of geometry, that of gradually doing right, and the floor space in three dimensions and then move in the same way that the space above, or hyperspace, then, for accepting the premises and the deductions of the ordinary elementary geometry as it was carried out so far we have placed at the base of our considerations, the property that the physical world has three dimensions within the limits of our observations, properties that do not point is necessary for the performance of scientific geometry. D'altronde per ricostruire col metodo sintetico i principi fonda- mentali di questa scienza, ci pareva indispensabile considerarli da un punto di vista più generale, così che la geometria dello spazio ordinario, come quella di ogni altro spazio ad n dimensioni, avesse i proprì fondamenti e le proprie leggi nei fondamenti e nelle leggi dello spazio generale; e ci pareva d'altra parte necessario, anche per sbarazzare la via da ogni pregiudizio, di non presuppore alcuna co- gnizione matematica, ma di ammettere soltanto nel lettore una qual- che attitudine e abitudine a pensare matematicamente. Besides, with the synthetic method to reconstruct the basic principles of this science, it seemed necessary to consider a more general point of view, so that the geometry of ordinary space, like that of every other space in n dimensions, had their foundations and their own laws in fundamental and general laws of space, and there seemed to be on the other hand, even the way to rid of all prejudice, not to any co-presuppore gnizione mathematics, but to admit only one player in what- that attitude and habit of thinking mathematically. Senonchè a voler cominciare dai fondamenti, ci siamo trovati dinanzi alla questione molto intricata degli assiomi geometrici, e quindi anche a quella dei principi della matematica pura che è intimamente collegata colla prima, e intorno alle quali si sono affaticati non po- chi dei più illustri matematici, specialmente di questo secolo. Except to want to start with the basics, before we found the question very intricate geometric axioms, and then also to the principles of pure mathematics which is intimately connected with the former, and around which there is not some-those who are tired of the most illustrious mathematicians, especially in this century. In questa prefazione diamo un resoconto sommario del nostro metodo e svolgiamo considerazioni colle quali e coli*aiuto dell'appendice si pos- sono meglio giudicare le idee che dominane nella nostra opera. In this preface we give a summary of our method and considerations with which we carry, and Appendix coli * help you may have better judge the ideas dominane in our work. In questo resoconto facciamo alcune considerazioni sugli assiomi geometrici, e sulla geometria propriamente detta, che è utile di leggere per formarsi un'idea chiara delle serie difficoltà che presenta una tale questione e della necessità che siano rimosse. In this report we make some remarks on the axioms of geometry, and geometry itself, which is useful to read in order to form a clear idea of ​​the serious difficulties that this presents an issue and the need to be removed. Ma il corpo del libro ne è indi- pendente, dimodoché chi non ha una sufficiente preparazione o chi incontra qualche difficoltà nel comprendere o giudicare certe discus- sioni delicate, le quali hanno bisogno dello svolgimento del testo per poter essere esattamente interpretate, può passare senz'altro alla let- tura del testo riservandosi di tornare poi su questo resoconto '). But the body of the book is independent, so that those without sufficient preparation or who have any difficulty in understanding or judging some delicate discussions, which they require the performance of the text to be interpreted exactly, can certainly go 'the other-to-read text reserving the right to return later on this account'). 1) E per questo che siamo rimasti incerti dapprima se non fosse stato utile sopprimere addi- rittura la prefazione, limitandoci a poche parole, come si fa oggi comunemente. 1) That's why we were unsure at first if it was not useful to suppress the Paleo-the preface, limiting ourselves to a few words, as commonly done today. Ma ci convincemmo per l'opposizione accanita che incontrarono certe idee, mai ben definite, che anche a costo di non riuscire brevi quanto avremmo voluto, era necessario accennare come questa opposizione rispetto a certe nostre definizioni o ipotosi non abbia alcun fondamento; imperocché non vi è campo della matematica noi qnnlo i pregiudizi siano radicati maggiormente come in quello dei principi di essa, But we were convinced that they met fierce opposition to certain ideas, never clearly defined, even at the cost of failing shorter than we wanted, it was necessary to mention how this opposition than some of our definitions or ipotosi has no foundation; Inasmuch as there is the field of mathematics we qnnlo prejudices are rooted more like that of the principles of it,

Page vii Page vii

VII Le cose pensate o hanno o non hanno necessariamente un'immagine in un campo esistente effettivamente fuori del pensiero; ad es. VII The things you think or have or do not necessarily have an image in a field which actually exists outside of thought, for example. il punto della geometria appartiene alle cose della prima categoria, perché vi sono oggetti esterni che ci forniscono o risvegliano in noi direttamente l'idea del punto, e senza di cui non si ha il punto geometrico pro- priamente detto 1). point geometry belongs to things in the first category, because there are external objects that we provide directly or awaken in us the idea of ​​the point, and without which no one has the geometric point priamente said pro-1). Il numero, che è nella sua prima formazione il risultato della fun- zione del numerare oggetti, anche puramente astratti 2), appartiene invece alle seconda categoria, perché non vi è bisogno di alcun oggetto fuori del pensiero che debba rappresentarlo, vale a dire che ne sia T immagine, per avere la determinazione matematica di esso 3). The number, which is in its first formation the result of the function of the number objects, even purely abstract 2), belongs rather to the second category, because there is no need of anything outside of thought that it should represent, ie it is T image, to have the mathematical determination of it 3). Le cose della seconda categoria si chiamano forme, e le scienze che si occupano delle forme scienze formali. The second category of things called forms, and the sciences that deal with forms of formal sciences. Tali sono la logica e la matematica pure. These are logic and mathematics as well. In queste scienze la verità scaturisce dall'armo- nia dei diversi atti del pensiero. In these sciences the truth comes dall'armo-nia of the various acts of thought. Le scienze di oggetti esistenti effettivamente fuori del pensiero si chiamano sperimentali. The science of objects actually exist outside of thought are called experimental. La verità in queste scienze riposa invece suir armonia del pensiero coir oggetto fuori di esso, e quindi siamo costretti a ritenere in esse come impossibile tutto ciò che è in con- traddizione colle leggi del pensiero stesso e dell' oggetto, o per meglio dire della rappresentazione mentale di esso. The truths in these sciences rests instead Suir harmony of thought coir object out of it, and then we are forced to believe in them as impossible everything that is in contradiction with the laws of thought itself and of the 'object, or rather the mental representation of it. Le scienze formali hanno il loro fondamento sui principi, sulle operazioni mentali, e su definizioni o ipotesi : la dimostrazione si basa in esse sulla combinazione dei diversi atti del pensiero senza entrare e specialmente della geometria; e ove sia più facile, sia per la oscurità in cui cadono inconsape- volmente anche autori illustri, sia per critiche poco attente e coscienziose di travisare i concetti altrui. The formal sciences have their basis on the principles, mental operations, and definitions or assumptions: the proof is based on a combination of these various acts of thought without going and especially geometry, and where it is easier, both for the dark they fall inconsape-ably also distinguished authors, is critical for very careful and conscientious to misrepresent the concepts of others. Questa prefazione serve a far conoscere in riassunto gli scopi, il metodo ei risultati prin- cipali dell'opera, e facilitare la lettura del testo a coloro che hanno bisogno di esaminare soltanto lo svolgimento di esso relativamente ad una data idea, perché non tutte le idee fondamentali sono dipendenti in modo che 1* esclusione di una fra esse conduca a rigettare anche le altre. This preface serves to raise awareness in summary the aims, method and main results cipali work, and to facilitate the reading of the text to those who need only to examine the performance of it with respect to a given idea, because not all fundamental ideas are employees so that 1 * exclusion of one of them leads to reject the other. Certo è che tutte hanno la loro ragione d'essere nel loro insieme, e che quindi il libro va giudicato nel suo complesso e nell'unione dei diversi suoi scopi. It is certain that all have their reason for being together, and that therefore the book should be judged as a whole and in the union of several of its purposes. Parrà a prima vista che si cominci troppo tardi la trattazione della geometria; ma ciò non è che apparente, perché in fondo della prefazione non si ha alcun bisogno per comprendere il testo, e nella introduzione sono svolte le parti semplici e le conseguenze dell'assioma II e dell'ipotesi I della parte I. It may seem at first glance that it's too late to begin the discussion of the geometry, but this is only apparent, because in the end of the preface does not have any need to understand the text, and the introduction of simple parts were held and the consequences of the axiom The hypothesis of Part II and I. Che se poi si concedono le proprietà dell' introduzione, lo studio della geome- tria si può cominciare addirittura dalla parte I, come quello degli spazi a quattro eaw dimen- sioni dalla parte II. Because if you allow the properties of 'introduction, the study of geometry you can even begin the part I like the spaces in four dimensions by aw Part II. 1) Intr. 1) Intro. pag. page. 47 e parte I. 47, Part I. pag. page. 209-210. 209-210. 2) Intr. 2) Intr. pag. page. 26-27. 26-27. 3) Con ciò non intendiamo dire che le cose della seconda categoria non si pensino in seguito al- 1* osservazione di oggetti fuori del pensiero; l'importante o di vedere se la cosa pensata possa es- sere definita o data matematicamente senza F aiuto necessario dell'osservazione sensibile, vale a dire se possa essere indipendente da questa, come avviene precisamente del numero, ma non del punto. 3) This is not to say that things do not think the second category-1 * following the observation of objects out of thought and the important thought of seeing if it can be es-defined mathematically or date without help F necessary observation sensitive, ie whether it can be independent of that, as is precisely the number, but not of the point. Come pure non intendiamo dire che il punto non sia un prodotto del nostro spirto, ma lo è necessariamente combinato colla sensibilità esterna. How well does not mean that the point is not a product of our spirit, but not necessarily combined with the external sensitivity.

Page viii Page viii

vnr in altri campi. VNR in other fields. Siccome nelle scienze sperimentali vi deve essere armonia tra l'oggetto ed il pensiero, così esse si fondano su quelle verità che si intuiscono colla percezione di quel!' As in the experimental sciences, there must be harmony between the object and thought, so they are based on truths that are perceived with the perception of that! ' oggetto, ma che non possono essere dedotte le une dalle altre Queste verità si chiamano as- siomi, e le verità dedotte dagli assiomi teoremi. object, but that can not be deduced from each other These truths are called axioms, and the truths deduced from the axioms theorems. Vi sono poi nella scienza geometrica assiomi che si intuiscono per l'osservazione degli oggetti esterni e si estendono a quelli che siamo indotti a ritenere realmente esistenti fuori di questo campo; ve ne sono invece altri che riguar- dano soltanto gli oggetti che immaginiamo esistano fuori di questo campo, i quali pur essendo uguali ai primi, hanno solamente nn'esi- stenza astratta ; dimodoché la geometria come noi la consideriamo, si può chiamare una scienza mista. There are also geometric axioms in science that are perceived by the observation of external objects, and extend to those who are led to believe that actually exist outside this range, there are others concerning him only the objects that we imagine exists outside This field, which despite being the same as the first, you only have nn'esi-tance abstract geometry as that way that we consider, you can call it a science mixed. Questi ultimi assiomi vengono ac- cettati come verità fondamentali quantunque non siano comprovati dalla nostra esperienza, senza però che contraddicano alle leggi del campo di essa, e perciò essi non hanno 1' evidenza dei primi, e sono propriamente postulati o ipotesi. These axioms are ac-cettati fundamental truths as though they are proven by our experience, but without contradicting the laws of the field it, and therefore they do not have an 'out of the first, and are really postulates or assumptions. È chiaro poi che fra gli assiomi di una special scienza sperimen- tale non bisogna annoverare quei principi che appartengono alla lo- gica pura, e sono necessità dell' intendimento umano e patrimonio di tutte le scienze. It is also clear that among the axioms of a special experimental science that should not include those principles which belong to the pure-logical, and have need of 'human understanding and wealth of all the sciences. Le scienze formali sono per noi esatte, quelle sperimentali tanto più lo sono quanto più semplici e intuitivi sono gli assiomi propria- mente detti, sui quali esse si appoggiano, e quanto più presto esse pos- sono sostituire i loro oggetti mediante forme astratte e svolgersi col metodo deduttivo. The formal sciences are exact for us, the more experimental ones are as simple and intuitive axioms are self-mind said, on which they rest, and how soon they may have to replace their objects using abstract forms and take place with the deductive method. La scienza sperimentale più esatta è la geometria, perché gli oggetti fuori del pensiero, che servono alla determinazione degli assiomi, vengono sostituiti nella nostra mente da forme astratte, e quindi le verità degli oggetti si dimostrano colla combinazione delle forme già ottenute indipendentemente da ciò che succede di fuori. Experimental science is more accurate geometry, because the objects out of thought, used as the basis of the axioms are replaced by abstract forms in our minds, and thus prove the truth of the objects with the combination of the forms already obtained independently from what happens outside. È per questo che non senza qualche ragione la geometria (come per motivi analoghi la meccanica razionale) va considerata fra le mate- matiche pure; sebbene essa sia nella sua radice una scienza sperimen- tale '). This is not without reason that the geometry (for similar reasons as rational mechanics) should be considered among the mate-matic as well, although it has its roots in an experimental science that '). Si entra tosto nel campo pratico quando si cerca una costruzione empirica di queste verità, operando cogli oggetti primitivi in modo analogo a quello usato con le forme astratte, a cui hanno dato ori- gine. It soon comes in handy when searching for a construction of these empirical truths, working Seize primitive objects in a manner similar to that used with abstract forms, which have given origin. Queste operazioni nel di fuori si potranno eseguire soltanto 1) Ormai sull'origine empirica della geometria si può dire che i geometri sono tutti concordi nell'ammetterla. These operations will be run out of 1) empirical origins of geometry now can be said that the surveyors are all agreed nell'ammetterla. Gauss nella sua lettera a Bessel (Gòttingen 27 f. 1829 - Briefwechsel zwi- schen Gauss und Bessel) esprime appunto la convinzione che la geometria non si possa fon- dare a priori, e così pure in un'altra lettera a Bessel (9 ap. 1830) ripete lo stesso concetto. Gauss in his letter to Bessel (Gottingen, 27 f., 1829 - Briefwechsel Zwi und Bessel Gauss-Schengen) precisely expresses the belief that the geometry-fon can not give a priori, and so also in another letter to Bessel (9 ap . 1830) repeats the same concept. Così Grassmann - Ausdehnungslehre. So Grassmann - Ausdehnungslehre. Bini. Bini. Leipzig, 1844) si esprime nel medesimo senso; ma per essi la geometria è sempre a tre dimensioni (vedi app.). Leipzig, 1844) is expressed in the same sense, but for them it is always three-dimensional geometry (see app.).

Page ix Page ix

tt con oggetti di un campo ristretto, cioè del campo delle attuali nostre osservazioni esterne; ma l'impossibilità pratica di fare altrettanto con altri oggetti o di questo medesimo campo o fuori di esso non infirma per nulla le verità già acquisite in un campo astrattamente più ampio. tt with objects in a narrow range, ie the current field of our external observations, but the practical impossibility to do the same with other items of this same field or off it does not affect at all the truths already acquired in a field more abstractly wide. Noi distinguiamo anzi nettamente la geometria dalle sue prati- che applicazioni, e troviamo appunto assiomi che non sono necessari per lo svolgimento scientifico della geometria, mentre lo sono per le sue pratiche applicazioni. Indeed we distinguish clearly the geometry of its practical applications that, and we find precisely axioms that are not necessary for carrying out scientific geometry, while they are for its practical applications. La geometria teoretica pertanto si distingue dalle altre scienze sperimentali esterne in questo: che essa ha bisogno dell'osservazione esterna per fissare i suoi assiomi propriamente detti, ma se ne rende tosto indipendente considerando non già i corpi stessi bensì il luogo che essi occupano nello spazio intuitivo vuoto, diventando subito dopo una scienza puramente deduttiva ') E la meccanica teoretica stessa non può libe- rarsi a stretto rigore dai corpi, perché ad es. The theoretical geometry thus differs from the other experimental sciences outside, in that it needs to secure its external observation axioms as such, but if it makes it tough not considering independent bodies themselves but the place they occupy in space Intuitive empty, immediately after becoming a purely deductive science ') and theoretical mechanics itself can not strictly speaking liberal-ting from the bodies, because eg. il principio del movi- mento riguarda i corpi stessi e non il luogo da essi occupato. the principle of move-ment about the bodies themselves and not the place occupied by them. In ogni modo la geometria teorica non ha bisogno nei suoi fondamenti dell'aiuto necessario di nessun'altra scienza sperimentale, ad es. In any case, the geometry does not need its theoretical foundations of aid required of any other experimental science, eg. della meccanica e della fisica (come meglio diremo in seguito), mentre in- vece queste scienze hanno bisogno della geometria. mechanics and physics (as best as we say later), while in-stead of these sciences need geometry. Quand'è che un'ipotesi matematica è possibile? When is a mathematical hypothesis is that possible? Nel campo mate- matico è possibile la definizione, il postulato o l'ipotesi ben deter- minata, i cui termini non si contraddicono fra loro e non con- traddicono ai principi, alle operazioni logiche e alle ipotesi già stabilite, e alle verità che da esse derivano. In the field of mate-matic can be defined, the postulate or hypothesis clearly deter-mined, whose terms do not contradict one another-and not contradict the principles, assumptions and logic operations already established, and the truth thereunder. Ben determinata vuoi dire che corrisponde ad un solo concetto, senza cioè che vi sia dubbio sul suo signficato. Well-determined mean that corresponds to one concept, namely that there is no doubt about its meaning does. Una nuova for- ma, o una proprietà di una data forma stabilita per mezzo di un'i- potesi, non deve essere unicamente dipendente dalle verità già pre- messe, perché in questo caso o è conseguenza immediata di quelle verità, o non è tale, ed allora deve essere dedotta dalle premesse. But a new form, or a property of a given form determined by the institu-hypothesis should not be solely dependent on the truth already pre-made, because in this case or is an immediate consequence of those truths, or is not that, and then it must be inferred from the premises. Un'ipotesi è matematicamente falsa soltanto quando stabilisce una proprietà che è o può essere dimostrata in contraddizione con le ve- rità precedenti, o con quelle che da queste si possono dedurre La possibilità di un1 ipotesi non dipende dalla sua fecondità, che ci da il valore matematico dell'ipotesi stessa. One hypothesis is mathematically false only when establishing a property that is or can be demonstrated in contradiction with the authorities there earlier, or those that can be deduced from these opportunities UN1 The hypothesis does not depend on its fecundity, which gives us the mathematical value of the hypothesis itself. Un'ipotesi può essere possibile, ma essere anche tale da non condurre ad alcun risultato o ria restringere il campo delle nostre ricerche. A hypothesis may be possible, but also be such as not lead to any result, or wretched narrow the field of research. Questa è un'altra questione, certo molto importante, perché l'ipotesi deve lasciare li- 1) Parie I, pag. This is another question, of course very important, because the hypothesis has to leave them-1) The parietal, p. 209-210. 209-210.

Page x Page x

bero campo alla deduzione e al bisogno che ha il nostro spirito di non porsi alcun limite ingiustificato nella ricerca del vero matema- tico; e perché ogni ipotesi deve servire a scoprire nuove verità oa meglio collegare verità già conosciute. shaft area and the need to deduct that our spirit not to ask any unreasonably limit the search for the true mathematician, and because each case must serve to connect better to discover new truths or truths already known. Ma il poco valore di un'ipo- tesi non è un argomento efficace contro la possibilità di essa. But the little value of hypo-thesis is not an effective argument against the possibility of it. Ogni nuova forma stabilita o data per mezzo di un'ipotesi possi- bile deve essere sottoposta agli stessi principi e alle stesse operazioni mentali, necessario alla ricerca del vero. Every new form prescribed or given through a hypothesis as possible should be subjected to the same principles and under the same mental operations, need to search for the truth. Questa è evidentemente una necessità logica. This is clearly a logical necessity. Ma le leggi delle operazioni matematiche, a cui è assoggettata, dipendono dalla definizione o costruzione di essa, se que- sta è ben determinata; e non è a 'priori escluso il caso che queste leggi siano diverse da quelle che valgono per le forme prima consi- derate 1). But the laws of math, which is subject, depending on the definition or construction of it, if this is is well-determined, and is not to 'priori excluded the case that these laws are different from those that apply to the forms before ered con-1). Non è dunque permesso a priori di assoggettare in tal caso alle stesse leggi le operazioni coi nuovi enti, Un'ipotesi A. It is therefore not possible to subject a priori in this case the same read operations with new institutions, hypothesis A. è indipendente da un'altra ipotesi B quando A o la sua contraria (non-4) non si deduce da B. Another hypothesis is independent of A or B when its opposite (non-4) can not be deduced from B. Un' ipotesi indipendente dalle precedenti, e in sé non contraddito- ria, non conduce necessariamente a contraddizioni. A 'independent of the previous hypotheses, and in itself does not contraddito-ria, does not necessarily lead to contradictions. Invero, occupandosi la matematica delle fornir, essa dovrà considerare almeno una prima forma e distinguerla dalle altre mediante alcune sue proprietà. Indeed, dealing with the mathematics of the furnish, it must consider at least a first shape and distinguished from others by some of its properties. Se una di queste proprietà A è indipendente dalle altre B,C,D ecc. If one of these properties A is independent from the other B, C, D, etc.. ed è ben determinala, ciò significa che A o la sua contraria non è con- seguenza di B,CfD ecc. and is well determinala, this means that A or its opposite is not with accordingly of B, etc. CFD. Se A conducesse necessariamente ad una con- traddizione significherebbe che da Z?,C\D ecc. If A led to a contradiction necessarily mean that Z?, C \ D and so on. si dedurrebbe la pro- prietà contraria non A. we deduce the pro-property contrary not A. Certo che l'indipendenza o l'arbitrarietà di un'ipotesi è sempre subordinata, come si disse, a quelle già stabilite. Sure, the independence or the arbitrariness of a hypothesis is always subject, as you said, to those already established. Si può dunque dire che stabiliti i caratteri delle forme matematiche la possibilità mate- matica è regolata dal principio di contraddizione,, cioè A è A e non è non A . We can therefore say that the character set of mathematical forms can mate-matic is governed by the principle of contradiction, that A is not A and not A. E la possibilità diventa per la matematica realtà, sebbene astratta, perché le forme del pensiero matematico sono vere quanto le forme della sensibilità che hanno una realtà concreta. And the possibility becomes reality for mathematics, although abstract, because the forms of mathematical thinking are true because the forms of sensibility that have a practical reality. Nes- suno infatti può dubitare dell'esistenza dei nostro intelletto e delle sue funzioni logiche senza contraddirsi. Nes Suno-fact may doubt the existence of our intellect and logical functions without contradicting itself. Se si prova l'indipendenza dell'ipotesi dalle premesse, allora è di- mostrata anche la sua possibilità, e se si prova prima la possibilità, il che nella matematica è strettamente necessario, può non esserne provata l'indipendenza. If you test the independence hypothesis by the premises, then it is-also shown his ability, and if you try the first option, which in mathematics is necessary, can not be proven independence. Se un' ipotesi anche dopo una lunga serie di ricerche non ha condot- 1) Cosi ad es. If a 'case even after a long series of investigations has not condot-1) Thus, for example. la somma dei numeri transfiniti di G. the sum of the numbers of transfinite G. Cantor (intr. pag. 102) non soddisfa alla legge commutativa, come quella dei numeri finiti. Cantor (Intr. p. 102) does not satisfy the commutative law, like the finite numbers.

Page xi Page xi

io ad alcuna contraddizione, si ha T induzione della possibilità ma non la certezza che essa non possa condurre con ulteriori sviluppi a qualche contraddizione, non essendo escluso che da una falsità si possa dedurre una o più verità. no contradiction to me, there is induction of T can not be sure that it can not lead to any contradiction with further developments, it is not impossible that it can be inferred from a false one or more of the truth. E in matematica non basta la sola induzione della verità, per quanto fondata; sebbene il sentimento sia pur necessario anche nelle matematiche discipline, siccome da esso spe- cialmente dipende il progresso della scienza, perché da una pura combinazione di segni o di oggetti senza un* idea direttiva nulla si può ricavare. And math is not just the only induction of the truth, as established, although the feeling is also necessary even in the mathematical disciplines, spe-cially since it depends on the progress of science, because from a pure combination of signs or objects without a * directive idea nothing can be gained. La dimostrazione della possibilità delle ipotesi non si può dunque trascurare, come pur vien fatto specialmente ove si fa uso del conven- zionalismo nello studio dei fondamenti, o la si dimostra indirettamente ricorrendo ad esempi tratti da teorie che si vogliono studiare più tardi; metodo codesto che non lascia sempre soddisfatti. The demonstration of the possibility of the hypothesis can not therefore be neglected, as is done though, especially if use is made of conventional nationalism in the study of the fundamentals, or is indirectly demonstrated using examples drawn from theories that you want to study later; method codesto that does not always leave satisfied. Se manca una dimo- strazione che giustifichi l'ipotesi, basta poterla giustificare coir espe- rienza diretta, come avviene ad es. If there is no demonstration that justifies the hypothesis, just being able to justify coir direct experi-ence, as happens, for example. per gli assioni geometrici; appunto per l'armonia che come abbiamo detto esiste fra la percezione degli og- getti e le leggi logiche del pensiero stesso. axions for geometric, precisely because of the harmony that exists as we have said from the perception of ob-jets and the logical laws of thought itself. Ma veramente non si deve essere contenti finché non si è data una dimostrazione per via pura- mente logica, e per riuscirvi occorre sopra tutto partire da assiomi semplici, oppure da assiomi dei quali si esaminino le parti semplici; e quando non la si può dare, è bene fare dei tentativi, che ad altri possono servire in ulteriori ricerche. But really you should not be happy until you are given a demonstration by purely logical, and above all must succeed from simple axioms, or axioms from which we examine the simple parts, and when you can not give , it is good to experiment, to which others may serve in further research. Rimane invero ancora da trattare la questione generale se e quando un gruppo di assiomi, postulati o convenzioni, si può ritenere astrat- tamente possibile. Indeed remains still to treat the general question of whether and when a group of axioms, postulates or conventions, it can be considered abstract-tion possible. Riteniamo che bisogna ricorrere appunto alle ope- razioni e agli assiomi logici, come noi abbiamo fatto per le nostre operazioni e ipotesi dell' introduzione. We believe that we must use precisely the trans-actions and the logical axioms, as we did for our operations and assumptions of 'introduction. Però è anche vero che se da un' ipotesi falsa si possono ricavare delle verità, gli esempi dati su questo proposito sono così semplici e la falsità del resto così evidente da non poter dubitare che qualora un'ipotesi matematica sia tutta o in parte falsa essa non conduca ben presto a qualche contraddizione ; eccetto che non si abbia tanta cecità da voler evitare l'effetto delle contraddi- zioni cori al ere ipotesi false, come pure è accaduto in passato. But it's also true that if a 'false assumptions can be drawn of the truth, the examples in this regard are so simple and so obvious falsity of the rest can not doubt that if a mathematical hypothesis is false in whole or in part it not soon lead to some contradictions, except that you do not have such blindness to want to avoid the effect of contradic-tion to the choirs ere false assumptions, as has also happened in the past. Né bi- sogna confondere una tale questione con quelle ipotesi che essendo pure in tutto o in parte false, nel corso della deduzione vengono so- stituite dalla mente del ricercatore con ipotesi esatte o tali da evitare le falsità delle prime. Neither bi-dreams that confuse one issue with the hypothesis that it is also false in whole or in part, during the so-stituite are deducted from the mind of the researcher to avoid these assumptions correct or falsity of the first. Quando è invece che un'ipotesi è geometricamente possibile* Abbiamo detto che le* ipotesi di una scienza sperimentale non solo non devono contraddire ai principi e alle operazioni logiche, ma eziandio allo proprietà dell'oggetto speciale della scienza stessa. When is it a hypothesis that is geometrically possible * We have said that the * idea of ​​a science experiment not only be contrary to the principles and logic operations, but even the special properties of the object of science itself. Per For

Page xii Page xii

xii i caratteri che distinguono la geometria, un'ipotesi astratta è geo- metricamente possibile quando essa non contraddice agli assiomi ne- cessari allo svolgimento teorico della geometria, che prendiamo dal- l'esperienza, ossia alle proprietà deir intuizione spaziale nel campo limitato di essa, corrispondente a quello delle nostre osservazioni esterne. xii characters that distinguish the geometry, an abstract hypothesis is geo-metrically possible when it does not contradict to the axioms I-essary to carry out theoretical geometry, we take from the experience-ie properties deir spatial intuition in the limited field of it, corresponding to that of our external observations. Le ipotesi astratte possibili che allargano il campo della geometria possono servire alla ricerca del vero nel campo concreto più ristretto, senza che per questo le suddette ipotesi suppongano necessariamente la realtà concreta delle forme da esse definite. The assumptions that abstract possible widen the field of geometry can be used to search for truth in the concrete field narrower, without this underlying assumptions necessarily suppose the concrete reality of the forms defined by them. In questo la geome- tria, per quanto abbiamo detto, si distingue dalle scienze oggetto co- stante delle quali sono i fatti del mondo esteriore, e in cui, come ad es. In this, the geometry, as we said, is distinguished from the sciences because of the subject co-what are the facts of the external world, and where, for example. nella fìsica, le ipotesi devono aver di mira soltanto la spiega- zione e il concatenamento dei fenomeni naturali, senza per questo che esse debbano sempre corrispondere a fatti reali; le quali ipo- tesi poi possono anche essere modificate o sostituite con altre. in physics, the hypothesis must have targeted only explains-tion and concatenation of natural phenomena, without which they must always correspond to real facts, hypotheses which can then be modified or replaced by others. 11 nostro spazio generale è geometricamente possibile, e quindi esso ha una realtà astratta, senza intendere con ciò che il mondo esteriore in se sia una rappresentazione completa di questo spazio. 11 Our overall space is geometrically possible, and therefore it has an abstract reality, not intended that the external world itself is a complete representation of this space. Così, coll'i- potesi delle diverse unità rettilinee, che è conseguenza di quelle da noi fatte sull'infinito e sull'infinitesimo attuale, o in altre parole delF indipendenza della geometria dall'assioma V d'Archimede, non abbiamo bisogno di credere alla realtà concreta dell'infinito e dell1'infinitesimo attuale. Thus, hypothesis-coll'i straight from the various units, which is a result of those we made on the infinite and sull'infinitesimo current, or in other words delf independent of the geometry of Archimedes' axiom V, we do not need to believe the concrete reality of the infinite and dell1'infinitesimo current. Anche se fosse dimostrato ad es. Even if it were shown eg. che real- mente non esiste in concreto il nostro spazio generale, non per questo geometricamente saremmo obbligati a rinunciare a questa ipo- tesi *). that does not exist in real-mind should our overall space, not for this geometrically we would be obliged to abandon this hypothesis *). Se non possiamo intuire ad es. If we can not imagine such. le figure a quattro dimensioni come intuiamo quelle a tre, ciò non significa che l'ipotesi delle quat- tro dimensioni ne in senso astratto, né in concreto contraddica alle ipotesi e quindi alle proprietà geometriche dello spazio intuitivo a tre dimensioni 2). Figures in four dimensions as we sense the three, this does not mean that the hypothesis of the four dimensions it in an abstract sense, nor in practice contradicts the assumptions and hence the geometric properties of space in three dimensions intuitive 2). Sono da escludere invece quelle ipotesi del campo corrispon- dente a quello delle nostre osservazioni esterne le quali coritrad- 1) Quali geometri noi non abbiamo dunque nulla di comune cogli spiritisti e coli'abilità dei medium. They are to be excluded rather than assumptions of the field corresponding to that of our external observations which coritrad-1) What surveyors we have nothing in common with so coli'abilità spiritualists and mediums. Quando persone anche illustri assicurano che certi fenomeni spiritistici avvengono, dubitiamo della loro verità di fatto per il modo misterioso con cui sono condotte le osservazioni, coni'è ad es. When famous people also ensure that certain spiritualistic phenomena occur, we doubt of their truth in fact the mysterious way in which the observations are conducted, eg coni'è. dei nodi e del tavolo descritti dal prof. nodes and the table described by prof. Zòllner (Wiss. Abh. Leipzig 1872), e che il prof. Zollner (Wiss. Abh. Leipzig 1872), and prof. Zòllner stesso ebbe la cortesia di farci vedere a Lipsia. Zollner had the same courtesy to us to see in Leipzig. Però se tìsicamente l'ipotesi della quarta dimensione o dello spazio generale potesse servire a gettare nuova luce sui fenomeni naturali e sulle loro cause sconosciute allora l'ipotesi sarebbe scientificamente giustificata, e il fisico troverebbe nel nostro librcf le proprietà geometriche fonda- mentali di cui avrebbe bisogno. But if physically the hypothesis of the fourth dimension of space or general could help to shed new light on natural phenomena and their cause is unknown then the assumption would be scientifically justified, and would in our physical librcf fundamental geometric properties of which would need. Ma anche qui è bene rilevarlo, il valore dell'ipotesi geometrica è indipendente da quello che può avere l'ipotesi fisica. But even here it is good to detect it, the value is independent of the geometrical hypothesis which can have the physical hypothesis. 2) Vedi più sotto e l'appendice. 2) See below and Appendix.

Page xiii Page xiii

XIII dicono air intuizione spaziale, come ad es. XIII say air spatial intuition, eg. quella che il cerchio non sia una linea chiusa o che il cerchio abbia assintoti reali 1). that the circle is not closed or a line that the circle has real asymptotes 1). Se si fosse bene stabilito quando un'ipotesi è matematicamente o geometricamente possibile, si sarebbero evitate tante dispute inutili sulla possibilità di quasi tutte le nuove ipotesi che di mano in mano hanno arricchito il patrimonio della scienza. If it was well established when a hypothesis is mathematically or geometrically possible, would avoid many unnecessary disputes about the possibility of almost all new cases of hand to hand, which have enriched the heritage of science. La matematica pura non respinge che ciò che è falso, e quindi per combattere un* ipotesi matematica bisogna dimostrare che è falsa, ma la dimostrazione deve essere logico-matematica non filosofica nello stretto senso della pa- rola; e per dimostrare che è falsa occorre dimostrare che essa conduce necessariamente ad una contraddizione, quando però è un'ipotesi sem- plice; che se fosse composta alcune parti di essa potrebbero essere anche vere e feconde. The pure mathematics, which does not reject what is false, and then to fight a * must show that mathematical hypothesis is false, but the proof has to be logical-mathematical philosophy in the strict sense considering the term, and must demonstrate that it is false show that it necessarily leads to a contradiction, but when a hypothesis is sim-ple, that if he made some parts of it may also be true and fruitful. Se il problema matematico sui fondamenti della ma- tematica e della geometria si spinge fino alla soglia del problema filo- sofico intorno all'origine delle idee .matematiche e geometriche, però non la oltrepassa. If the math problem on the foundations of mathematics and geometry pushes up the threshold issue of philosophical ideas about the origin. Mathematics and geometry, but not beyond. Questo è certo un gran bene per la nostra scienza, perché altrimenti essa sarebbe in balìa nei suoi principi delle molteplici opinioni filosofiche che si disputano la verità 2). This is certainly a great asset to our science, because otherwise it would be at the mercy of the many principles in his philosophical views that are held the truth 2). Però, per timore di cadere nell'indeterminato non è neppure conveniente il ridurre la ma- tematica e la geometria nei loro fondamenti a un puro convenzionalismo di segni, ma bensì esse vogliono essere trattate con metodo filosofico, vale a dire rendendo più chiara che è possibile la natura delle cose di cui si occupano, senza negare per questo l'importanza di altri me- todi sotto punti di vista diversi, ma più ristretti. But, for fear of falling is not indeterminate even reduce the cost-but thematic and geometry in their foundations in a pure conventionality of signs, but rather they want to be treated with philosophical method, namely by making it clear that it is possible the nature of things they are dealing with, without denying the importance of this for me-other methods under different points of view, but narrower. Che di una data ipotesi o convenzione si possa far senza, ad es. That of a given hypothesis or agreement can be made to without, eg. di quella dei numeri immaginari, è possibile, ma oltre che ciò avrebbe per conseguenza una restrizione del campo matematico senza alcuna giustificazione, questo fatto non dimostrebbe nulla contro l'ipotesi e le sue conseguenze nel campo stesso indipendente da questa ipotesi. that of imaginary numbers, it is possible, but beyond that this would mean a restriction of mathematics without any justification, this did not dimostrebbe nothing against the idea and its consequences in the field itself independent of this hypothesis. 1) Vedi l'appendice. 1) See Appendix. 2) Chi vuoi avere un'idea del problema fìlosofico intorno ai concetti fondamentali della matema- tica e della geometria può leggere ad es. 2) Who do you have an idea of ​​the philosophical problem about the fundamental concepts of mathematics and geometry-policy can be read eg. l'opuscolo di F. the pamphlet F. Ma sci: Sulla natura logica delle cono- scenze matematiche (Roma 1885), sebbene egli sia kantiano in quanto ei sostiene la verità assoluta di tutti i postulati euclidei, e neghi la possibilità di una geometria a più di tre dimensioni. But skiing: On the logical nature of mathematical knowledge (Rome 1885), although he supports and Kant as the absolute truth of all the postulates of Euclid, and denies the possibility of a geometry to more than three dimensions. Non sembra però che Kant sia stato sempre contrario a questa geometria, che anzi egli credeva all'esistenza di vari spazi, se si deve giudicare da quanto egli dice nei suoi Gedanken der wahren Schàtzung der lebedingen Kraft. It does not seem that Kant was always opposed to this geometry, which indeed he believed in the existence of various spaces, if we are to judge by what he says in his Gedanken der Wahren Schàtzung lebedingen der Kraft. Kant's Werke, voi V pag. Kant's Werke, ye V p. 25. 25. Veggasi B. B. compare p Erdmann. Erdmann. Die Axio- me der Geometrie ; Leipzig, 1871), cosi pure B. Die-me Axio der Geometrie, Leipzig, 1871), so does B. Baumann : Die Lehren von Raum, Zeit und Mathe- matik in der neuren Phil. Baumann: Die Lehren von Raum und Zeit in der Mathe-matik neuren Phil. nach ihrem ganzem Einfluss dargestellt und beurtheilt; Berlin, 1868-1869. nach ihrem ganzem Einfluss dargestellt und beurtheilt; Berlin, 1868-1869. Nel primo volume e in molta parte del secondo è data un esposizione estesa e critica dal punto di vista fìlosofico dell'autore, delle idee dei principali filosofi da Suarez fino ad Hume intorno ai concetti fondamentali delle matematiche. In the first volume and in much of the latter is given an extended exposure and criticism from the philosophical point of view of the author, the ideas of major philosophers from Hume Suarez until around the fundamental concepts of mathematics. Del resto si può dire che non vi sia valente filosofo che non siasi occupato con molto interesse delle idee matematiche, e non abbia spesso ricorso ai risultati matematici a sostegno delle proprie considerazioni. After all you can say that there is not any clever philosopher who dealt with a lot of interest in mathematical ideas, and has often resorted to mathematical results in support of its considerations.

Page xiv Page xiv

XIV Può darsi che ipotesi feconde possano condurre a contraddizioni, come avvenne nel calcolo differenziale e integrale, ma allora fa d* uopo os- servare se ciò dipenda dal principio dell'ipotesi, nel qual caso biso gna respingerlo, o se dipenda invece dal fatto che esso non sia stato ben definito, e quindi non sia stato ben circoscritto il campo della sua validità. XIV It may be that fruitful hypotheses can lead to contradictions, as was the differential and integral calculus, but then it MUST os-d * preserve if this depends on the principle of the hypothesis, in which case Biso GNA reject, or rather depends on whether it has not been well defined, and therefore has not been well-circumscribed the scope of its validity. È per questo che ad evitare tali gravi inconvenienti bisogna considerare separatamente le parti semplici di cui è costituita l'ipotesi, e occorre inoltre che esse siano giustificate (come meglio diremo poi) dai principi e dalle operazioni logiche o almeno da fatti sperimentali. That is why to avoid such serious incidents must consider separately the simple parts which make up the hypothesis, and it is also necessary that they are justified (as best as we shall say) by the principles and logic operations or at least by experimental data. Se ci si vuoi chiamare razionalisti o idealisti per le idee qui esposte, accettiamo il titolo per distinguerci da coloro che ingiusti- ficatamente vorrebbero negare allo spirito matematico e geometrico la massima libertà logica possibile, domandandosi per es. If you want to call the rationalist or idealistic ideas presented here, we accept the title to distinguish ourselves from those who would deny unjust-ficatamente spirit mathematical and geometric maximum freedom possible logic, wondering for example. ad ogni nuovo risultato o ad ogni nuova ipotesi se abbia o no una rappresenta- zione sensibile, per es. each new result, or any new hypothesis whether or not a representation sensitive, for example. nella geometria una pura rappresentazione sensibile esterna. geometry in a pure external sensible representation. Ma lo accettiamo nel senso che non si attribuisca ad esso alcun significato filosofico propriamente detto *). But we accept it in the sense that it attaches to it no philosophical meaning itself *). Quaìi matematici noi ci appoggiamo ai fatti mentali o della sen- sibilità che non possono essere contestati da alcuno, e la nostra guida è il principio di contraddizione. Quaìi mathematicians we rest the mental facts or sen-sibility which can not be disputed by some, and our guide is the principle of contradiction. Ma dobbiamo essere naturalmente av- versi a quei sistemi filosofici, i quali conducano appunto a contrad- dizioni oa restrizioni non necessarie nel campo matematico o geome- trico 2). But of course we must be av-verse to those philosophical systems, which lead in fact to contradict the conditions or restrictions are not needed in the mathematical or geometrical tricho-2). Il matematico può essere un filosofo nel senso che da una 1) Nel libro di Du Bois Reymond Allgemeine Funktionentheorie; Tùbingen, 1882,sono discussi i sistemi matematici dell'idealista e dell'empirista puro (Wundt Logik Voi. II ; Stuttgart, 1885 osserva che in senso nlosofìeo è meglio dire realista e nominalista). The mathematician may be a philosopher in the sense that a 1) In the book of Du Bois Reymond Allgemeine Funktionentheorie, Tubingen, 1882, discussed the idealist and empiricist pure mathematical systems (iii. Wundt's Logik, Stuttgart, 1885 notes in the sense that it is better to say nlosofìeo realist and nominalist). Ma tutti e due sostengono i loro sistemi con argomentazioni nlosofìche, che non possiamo accettare (1. e. ad es. pag. 86, 110- 111 e 114-116). But both say their systems with nlosofìche arguments, we can not accept (1. And. Eg. P. 86, 110 - 111 and 114-116). Il sistema dell'idealista come avremo occasione di vedere non è scevro da errori e da indeterminatezze. The idealist as we shall see is not free from errors and imprecisions. 2) Posta così la possibilità geometrica non possiamo essere indifferenti, come sostiene l'insigne F. 2) Located so the geometrical possibility can not be indifferent, as argued by the distinguished F. Klein (Vergleichenden Betrachtnngen ùber neuere geom. Forschungen; Erlangen, 1872. opp. trad. italiana di G. Fano negli Annali di Matematica, 1890) dinanzi al problema, se ad es. Klein (Vergleichenden Betrachtnngen iiber neuere geom. Forschungen, Erlangen, 1872. Opp. Trad. Italian by G. Fano in the Annals of Mathematics, 1890) before the problem if, for example. il po- stulato delle parallele Euclideo sia o no vero in senso assoluto rispetto alla nostra intuizione, co- me sostengono i Kantiani. the bit-parallel Euclidean stulato of whether or not true in an absolute sense compared to our intuition, much as the Kantians argue. Se esso fosse realmente vero, ipiani di Lobatscheswsky e di Rie- man non avrebbero più ragione di essere; e rimarrebbe soltanto vera la geometria della pseudo- sfera o della sfera o della stella nello spazio Euclideo o di altre loro rappresentazioni geometri- che in questo spazio. If it were really true, of ipiani Lobatscheswsky and Rie-man would no longer have reason to be, and remain the only true geometry of the pseudo-sphere or sphere or star in Euclidean space or their other geometric representations in this space. Quali geometri dobbiamo essere contrari all'opinione di Kant, perché l'os- servazione, o l'intuizione attuale, non ci aiuta che approssimativamente a decidere la questione nella parte di spazio che corrisponde al campo delle osservazioni esterne. What surveyors must be contrary to the opinion of Kant, because the obser-vation, or intuition present, that does not help us to decide about the question in the space that corresponds to the field of external observations. Se noi crediamo di intuire tutto lo spazio ciò si spiega perché noi ci trasportiamo coli'immaginazione in ogni punto di esso, e vi applichiamo l'intuizione che si esercita in un campo ristretto. If we think we perceive all the space this is because we carry coli'immaginazione at every point of it, and we apply the insight that is exercised in a narrow field. Matematicamente la questione suddetta non ci riguarda, ma geometricamente sì. Mathematically, the question that does not concern us, yes, but geometrically. Del resto, poiché rimane indeciso quale sia il postulato vero delle parallele, aspettiamo che si svolga la geometria secondo i concetti di Kant e si dimostri intuitivamente a priori la necessità dell'assioma suddetto, v. Moreover, it remains uncertain what the true postulate of parallels, expect to take place according to the geometry concepts of Kant and a priori intuitively demonstrates the necessity of the axiom that, see. Helmotz (1 c.)s,ostier Helmholtz (1 c.) S, Ostier

Page xv Page xv

XV nuova esposizione dei suoi principi la filosofia può trarre grande giova- mento, ma il suo aiuto a questa scienza è sempre indiretto; mentre d'al- tra parte il filosofo, come tale, non può combattere le ipotesi matemati- che o geometriche, ma da esse deve cercare di trarre il maggior pro- fitto, quando sono ben determinate. XV new exhibition of his philosophy can make great principles it should be-ing, but his help with this science is always indirect, while in-between part of the philosopher, as such, can not fight the hypothesis that mathematical or geometrical but they must try to get the most pro-rent, when they are well determined. Con questo idealismo noi abbiamo almeno il vantaggio sull' empiri- sta che facciamo uso di tutte le ipotesi possibili nella ricerca della veri- tà, e che quindi possiamo giungere più presto e meglio di lui a nuove verità nel campo stesso in cui egli vuoi rinchiudersi. With this idealism at least we have the advantage on 'empirical-is that we use all possible hypotheses in search of real-ta, and so we may come sooner and better than him new truths in the very field where he wants to shut himself . Noi pretendiamo inoltre maggior rigore, perché per noi nulla è trascurabile in senso assoluto, neppure l'infinitesimo aggiunto che sia al finito; e se qualche cosa è trascurabile in confronto di altre, lo deve essere per una ragione matematica, non per pratica approsimazione. We also expect more rigor, because for us, nothing is insignificant in an absolute sense, even the infinitesimal is added to the finite, and if something is negligible in comparison to others, it must be for a mathematical reason not to practice approximated. L'empirista non può accusarci di non tener conto dello scopo pratico della scienza, e che le nostre ipotesi geometriche non abbiano radice nell'esperienza, 0 non siano giustificate dai fatti mentali *). The empiricist can not accuse us of not taking account of the practical purpose of science, and that our geometric assumptions do not have roots in the experience, 0 are not justified by the facts mental *). Noi riconosciamo ben volentieri l'aiuto che presta l'osservazione empirica alla matematica in generale, e come essa sia necessaria per sta- bilire gli assioni geometrici; ma non possiamo disconoscere altresì che il materiale greggio che ci forniscono le sensazioni viene* elaborato dal nostro intelletto, e che l'elemento soggettivo nelle matematiche pure, nella geometria e nella meccanica razionale ha il soppravvento sull'elemento obiettivo; e che d'altronde tutti possediamo le prime forme ideali geometriche prima ancora di cominciare a studiare geo- metria, senza bisogno di supporre che esse siano gli oggetti stessi reali con tutte le loro inesatezze. We gladly acknowledge the help that lends empirical observation to mathematics in general and how it is necessary for stable geometric bilire axions, but we can not also deny that the raw material that provide us with the feeling * is drawn from our intellect, and that the subjective element in pure mathematics, geometry and rational mechanics has the item soppravvento goal, and that, moreover, all possess the ideal geometric forms first before I even started to study geo-metry, without to suppose that they are the real objects themselves with all their inaccuracies. Non sono pochi i filosofi empiristi, 1 quali ritengono che le forme geometriche siano forme ideali, o almeno che non siano le sensazioni stesse che gli oggetti producono in noi 2), Esse sono un prodotto dell'intuizione combinata coli'astrazione. There are few empirical philosophers, such as 1 believe that the geometric shapes are ideal forms, or at least they are not the same feelings that objects produce in us 2), They are a product of intuition combined coli'astrazione. Allo Stuart Mili il Cayley osserva acutamente che se non avessimo ne contro i Kantiani che lo spazio può essere una forma dell'intuizione a priori, ma che non lo sono gli assiomi. At Stuart Mill, the Cayley observes acutely that if we did not have it against Kant that space can be a form of intuition a priori, but which are not axioms. Wundt (Logik, Voi. I) osserva che una tale opinione gli sembra contraddi- toria. Wundt (Logik, Vol I) notes that such a view seems to contradict the publishing. Quali geometri dobbiamo ammettere la facoltà che noi abbiamo di intuire lo spazio, e che nessuno può negare, ma la facoltà non è 1* intuizione medesima, e per lo svolgimento della stessa geometria dobbiamo ritenere che F intuizione spaziale sia appunto il risultato di questa facoltà combinata coll'esperienza (vedi pag. 258 e seg.)- 1) Vedi a questo proposito l'appendice ove esaminiamo l'opera del sig. What surveyors must admit that we have the ability to perceive space, and that no one can deny, but the faculty is not 1 * same intuition, and to conduct the same geometry we assume that F spatial intuition is precisely the result of this option combined with experience (see p. 258 et seq.) - 1) See in this regard the Appendix where we examine the work of Mr. Pascli Ueber neuere Geometrie; Leipzig, 3882 . Pascli Ueber neuere Geometrie, Leipzig, 3882. 2) Vedi ad es. 2) See, for example. Masci, Erdmann, Baumann, Wundt 1. Masci, Erdmann, Baumann, Wundt 1. e. and. Locke ad es. Locke, for example. che è un deciso empirista sostiene che l'idea di spazio puro è distinta dall'idea di rigidezza o solidità dei cor- pi, e questa dall'idea di spazio, e che le parti dello spazio sono immobili (Bau in ami, 1. e. pa- gina 377). which is a strong empirical support that the idea of ​​pure space is distinct from the idea of ​​stiffness or strength of the cor-pi, and this idea of ​​space, and that the parts of space are motionless (Bau in love, 1. and. pa-gina 377).

Page xvi Page xvi

XVI il concetto della linea retta non potremmo dire che la retta non esi- ste in natura 1). XVI the concept of a straight line we can not say that the line does not exist in nature ste-1). Ciò che vale per un* ipotesi matematicamente possibile deve valere anche per la dimostrazione sia nella matematica pura come nella geo- metria ; bisogna cioè che in ogni parte semplice di cui è composta, essa sia pienamente determinata dalle proprietà premesse, o da proprietà che siano di quelle immediata ed evidente conseguenza o forme di- verse delle proprietà suddette, e non vi sia nessuna contraddizione nella catena di quelle che la costituiscono. * What is a mathematically possible hypotheses must also apply the proof is in pure mathematics as in geo-metry, that is, must in every part of which is made easier, it is fully determined by the properties premises, or property that are those of immediate and obvious consequence or forms of-verse of the above properties, and there is no contradiction in the chain of those that constitute it. Le condizioni alle quali devono essere assoggettati gli assiomi geometrici e le ipotesi per trattare il problema scientifico che ci siamo proposto in tutta la sua generalità e semplicità, sia per quanto abbiamo detto come per ciò che diremo più sotto, sono le seguenti : I. The conditions which must be subject to the geometric axioms and assumptions for dealing with the scientific problem that we brought in all its generality and simplicity, both for what we said as for what we say below, are as follows: I. che siano separate dagli assiomi geometrici le verità che derivano dagli assiomi logici per mezzo di operazioni logiche; IL che gli assiomi propriamente detti esprimano le verità più semplici e intuitive, senza contenere altri concetti i quali deb- bano essere dati o dedotti più tardi; che dagli assiomi si dedu- cano tutte le altre proprietà senza introdurne tacitamente di nuove ; e finalmente che gli assiomi siano dati fin da principio in modo da lasciar campo ai diversi possibili sistemi geometrici; III. that they are separate from the axioms that derive geometrical truths by means of logical axioms for logic operations; IL that proper axioms express the truth more simple and intuitive, without containing other concepts which deb-urban data or be deducted later, that deductions from the axioms is cano all other property without tacitly introducing new, and finally that the axioms are given from the beginning so as to leave the field to the different possible geometric systems, III. che siano separati gli assiomi necessari per lo studio della geometria da quelli necessari soltanto per le pratiche applicazioni di essa; IV. which are separated axioms necessary for the study of the geometry than that necessary only for the practical applications of it; IV. che gli assiomi siano indipendenti, badando perciò an- che al loro ordine, ea maggior ragione che non si contraddicano fra loro; V. that the axioms are independent, so an-minding that their order, and all the more reason do not contradict each other; V. che il metodo di trattazione sia elementare e basato sul processo costruttivo dell' intuizione spaziale; VI. that the method of treatment is elementary and based on the constructive process of 'spatial intuition; VI. che gli assiomi, i teoremi e le dimostrazioni fin da prin- cipio non contengano alcun elemento intuitivo indeterminato, in modo cioè che facendo astrazione dall'intuizione, dal sistema geo- metrico rimanga un sistema di verità puramente astratte, nel quale gli assiomi occupino il posto di definizioni o ipotesi astratte ben determinate. that the axioms, theorems and proofs from principle does not contain any undetermined intuitive element, so that intuition which, abstracting from the geo-metric system remains a system of purely abstract truth, in which the axioms are to occupy the Instead of abstract definitions or hypotheses well determined. In primo luogo non bisogna confondere i dati dell'esperienza o dell'intuizione colle necessità o definizioni logiche (o queste con quelle). In the first place we must not confuse the data of experience or intuition hill necessity or logical definitions (or those with those). Per es. Eg. la definizione che si dadi figure uguali quando cioè l'una si può trasportare senza deformazione sull'altra, è ritenuta ordinaria- 1) Discorso tenuto all'associazione britannica delle scienze; Londra 1883. the definition that is identical figures nuts is when one party can carry without buckling on the other, is considered ordinary-1) Speech Association of British Science, London, 1883. trad. trad. francese nel Bulletin des sciences mathéniatiques Genn. French in the Bulletin des sciences mathéniatiques Genn. ; e Febb. ; And Feb.. 1884. , 1884.

Page xvii Page xvii

XVTI mente una definizione geometrica, mentre essa, come quella di due cose qualunque, deriva dall'assioma logico d'identità 1). XVTI mind a geometric definition, while it, like that of any two things, derives from the axiom logical identity 1). Così dicasi della proprietà che due grandezze uguali ad una terza sono uguali fra loro. The same applies of the property that two quantities equal to a third are equal to each other. È per questo che è data la condizione VI; con essa è fa- cile vedere quali sono i principi e le definizioni logiche e le pro- prietà che da esse necessariamente derivano, ed avere il rigore de- siderato; senza trascurare per ciò la parte essenziale che deve avere l'intuizione spaziale nella geometria. That is why it is given the condition VI; with it is do-chile see what are the principles and logical definitions and pro-property that they will necessarily arise, and have de-siderato rigor, not to mention for this part essential to have insight into the spatial geometry. Basta aprire un trattato qualunque di geometria elementare per convincersi che questa con- dizione non è punto osservata. Just open a treaty of any elementary geometry to be convinced that this condition is not observed point. Ad es. Eg. Euclide parla nelle sue prime definizioni di lunghezza, larghezza, di grandezza senza aver mai detto che cosa siano. Euclid speaks in his first definition of length, width, size, without ever saying what they are. Così la retta è per Euclide quella linea che giace ugualmente sui suoi punti, l'angolo di due rette che si incontrano è la loro inclinazione, quando non sono per diritto fra loro, ecc. Thus, the straight line is for Euclid that line which lies evenly on the points, the angle of two straight lines which meet is their inclination, when they are not right for each other, etc.. Parla nelle nozioni comuni dell'addizione e sottrazione delle grandezze senza dire che cosa si debba intendere cori queste operazioni. Talk in the common notions of addition and subtraction of magnitudes without saying that what is meant choirs these operations. Così si parla comunemente anche nei migliori trattati moderni, di spazio, di super- ficie e di linee senza aver dato di essi alcuna definizione o costru- zione matematica ben determinata, dimodoché facendo astrazione dal- T intuizione da tutto ciò non resta alcun oggetto determinato. Thus we speak commonly treated in even the best modern, space, surface and lines without giving them any definition or con-struction mathematics well determined, so that by abstracting from the T-insight from all this is no specific article . Si fa pure uso dell'assioma del movimento dei corpi senza che sia detto che cosa gli corrisponda in senso astratto, e che cosa corrisponda astrattamente al movimento senza deformazione, ecc. It also makes use of the axiom of motion of bodies without being told what corresponds in the abstract sense, and what corresponds to the abstract movement, distortion, etc.. Si dice che alcune nozioni, ad es. It is said that some concepts, eg. quella di spazio, non si potranno mai definire. the space, they can never define. Anche qui fa d'uopo distinguere. Even here it becomes necessary to distinguish. Lo spazio come intui- zione non si definisce, ma lo spazio come concetto si può definire geometricamente per es. Space as intu-tion is not defined, but the space can be defined geometrically as a concept, for example. come facciamo noi2). how do noi2). E se l'intuizione è neces- saria per l'essenza della geometria, non deve essere però elemento necessario, per quanto utile, nello svolgimento logico della geometria3). And if the intuition is neces-sary to the essence of geometry, however, should not be a necessary, although useful in performing logical geometria3). La differenza che abbiamo rilevata fra assiomi propriamente detti, po- stulati o ipotesi sparisce e deve sparire quando si faccia astrazione dal- l'intuizione. The difference we found between proper axioms, or assumptions stulati-bit disappears and must disappear when you face-abstraction from the intuition. Gli assiomi devono esprimere proprietà intuitive, appunto perché la condizione prima della geometria è l'intuizione spaziale, vale a dire essi devono dare l'immagine netta delle cose che definiscono 4). The axioms should express intuitive properties, precisely because the condition before the geometry is the spatial intuition, ie they must give clear picture of the things that define 4). A questo 1) Vedi più avanti. At this 1) See below. g) Vedi parte I libro III. g) See Part I of Book III. 3) I filosofi i quali negano che lo spazio sia un concetto e non un'intuizione hanno ragione in questo: che da considerazioni puramente astratte e tanto meno numeriche, si può mai ricavare l'intuizione spaziale. 3) The philosophers who deny that space is a concept and intuition are right in this: that by purely abstract and much less numbers, you can never get the intuition of space. 4) Monge (Séances des Écoles normales, t, I; Paris, 1795, e 2 ed. 1800) osserva ad es. 4) Monge (Séances des Ecoles normales, t, I, Paris, 1795, and 2 ed. 1800) notes for example. che la definizione della retta come quella linea i cui punti rimangono fìssi quando nn corpo ruota intorno a due dei suoi punti, oltre che nou è semplice ha appunto il difetto di non dare una im- magine intuitiva chiara della retta. that the definition of a straight line like the one whose points are fixed nn when the body rotates around two of its points, as well as nou is simple fact has the defect of not giving a clear im-intuitive image of the line.

Page xviii Page xviii

XVIII scopo anzi abbiamo fatto precedere ogni assioma da considerazioni empiriche, senza però, per la considerazione VI, che esse entrino quali elementi necessari nei loro enunciati e nelle loro conseguenze. XVIII purpose we did indeed precede any axiom from empirical considerations, but not for the consideration VI, that they enter as necessary elements in their statements and their consequences. Gli assiomi vogliono essere semplici, perche meglio si possa scorgere la loro necessità e indipendenza. The axioms want to be simple, because the best we can discern their needs and independence. Un assioma può essere anche composto di più parti per indicare tosto con esso le proprietà che distinguono un dato oggetto dagli altri, come il nostro ass li della linea retta; ma l'assioma deve essere esaminato nelle sue singole parti semplici. An axiom can also be composed of several parts at once with it to indicate the properties that distinguish a given object from another, as will our ass of a straight line, but the axiom must be examined in its simple parts. È chiaro che non si devono introdurre tacitamente proprietà sia pure evidenti, che o non dipendano dagli assiomi o la cui dimostra- zione richieda troppa preparazione per poterle considerare quale im- mediata conseguenza delle cose premesse. It is clear that the property must not be introduced tacitly albeit obvious, or that do not depend from the axioms or which shows-tion requires too much preparation for them to consider what im-mediate consequence of things premises. Così5 ad evitare petizioni di nrincipio bisogna far sì che gli assiomi ei teoremi non derivino da verità o concetti dei quali si dia più tardi la dimostrazione o la spie- gazione. Così5 avoid nrincipio petitions must ensure that the axioms and theorems are not derived from concepts such as truth or give you the latest demonstration or explanation. Ad es. Eg. nella prima proposizione del libro I degli Elementi Euclide per la costruzione del triangolo equilatero, dato che sia il lato, fa uso di due cerchi che si incontrano in due punti nel piano, mentre non ha dimostrato questa proprietà, né l'ha data come as- sioma. in the first proposition of Book I of Euclid's Elements for the construction of an equilateral triangle, since both the hand, makes use of two circles that meet at two points in the plane, but did not demonstrate this property, nor has the date as as - Sioma. Così non si può ritenere dimostrata la prop. So can not be considered proven prop. V del libro XI senza l'assioma che lo spazio intuitivo è a tre dimensioni, ecc. XI V of the book without the axiom that the input is three-dimensional space, etc.. L'indipendenza poi degli assiomi è necessaria per la semplicità della scienza. The independence of the axioms then it is necessary for the simplicity of science. Ed invero se si potesse dare come assioma anche una sola proprietà sia pure intuitiva ma dipendente dalle premesse, al- lora sarebbe lecito di considerare i teoremi evidenti come assiomi. And indeed if you could give even a single property as an axiom even intuitive, but dependent on assumptions, al-lora would be legitimate to consider the obvious theorems as axioms. Se due assiomi o parti di un assioma stabiliscono due proprietà di una data figura che siano invece deducibili Tuna dall'altra, si ha ragione di ritenere che astrattamente esistano figure per le quali valga una sola delle proprietà suddette. If two axioms or parts of an axiom set two properties of a given figure are deductible Tuna on the other hand, there is reason to believe that abstract figures exist for which the property is worth only one of these. Un tale difetto è nascosto ad es, nell'assioma con cui viene comunemente definito il piano, voglio dire 1' assioma : una retta che ha due punti comuni col piano giace in esso. Such a defect is hidden eg, nell'assioma which is commonly called the plan, I mean 1 'axiom: a line that has two common points with the plane lying in it. Per mezzo di questa proprietà il piano può essere costruito tutto o in parte congiungendo tutti i punti di una retta con un punto fuori di essa; la superfìcie piana è così piena- mente determinata, e le sue proprietà devono scaturire tutte dalla sua costruzione, quando gli elementi di questa costruzione siano ben definiti. By means of this property, the plan may be constructed wholly or in part by joining all points of a straight line with a point outside it, the flat surface is so fully determined, and its property shall produce all of its construction, when elements of this construction is well defined. L'assioma del piano ci dice invece che ogni altra retta, ali'infuori di quelle già considerate, avente con esso due punti comuni vi giace per intero, Ma questa è una proprietà che per le consi- derazioni precedenti deve essere dedotta dalla costruzione stessa. The axiom of the plan tells us that every other line, ali'infuori those already considered, with it having two common points it lies in full, but this is a property that the previous considerations must be deducted from the construction itself . Se ciò non è possibile, significa che gli assiomi sulla retta, o sulla coppia di rette che si incontrano, non la determinano sufficientemente in senso astratto. If this is not possible, means that the axioms on the line, or pair of straight lines that meet, do not sufficiently determine in the abstract.

Page xix Page xix

XIX Alla dimostrazione di questa proprietà nel sistema Euclideo siamo stati condotti dalla necessità di doverla dare per gli spazi a più di tre dimensioni, dei quali abbiamo soltanto la costruzione senza poter ricorrere per essi all'osservazione esterna l). In the nineteenth proof of this property in Euclidean system we have been led by the necessity of having to make space for more than three dimensions, only the construction of which we can not use them for the outside observation). L'indipendenza degli assiomi è certo utile, ma non bisogna disco- noscere .che è di una grande difficoltà il provarla. The independence of the axioms is certainly useful, but do not hard-noscere. Which is a great difficulty to try it. Noi stessi abbiamo dati degli assiomi che esprimono proprietà semplici (come gli assiomi IV e V), ma per tutte le figure che si trovano in date condizioni; mentre può farsi la domanda se occorra dare tali proprietà per tutte queste figure o per una parte soltanto. We ourselves have details of the axioms that express simple properties (like the axioms IV and V), but for all people who are in given conditions, while it may be the question of whether these properties should be given to all these figures, or for only part . In questo senso facciamo vedere come basti ammettere che la retta sia determinata da una sola coppia dei suoi punti. In this sense we see how it is sufficient to admit that the straight line is determined by a single pair of its points. Occorre inoltre esaminare se dato un sistema di assiomi mutandone l'ordine qualcuno di essi non sia conseguenza de- gli altri 2). It should also examine whether a given system of axioms altering their order any of them is not the consequence of the others 2). Qual'è il metodo più proprio alla geometria, e specialmente per trattare i suoi principi? What is the most proper method to geometry, and especially to treat its principles? Secondo la condizione V esso è quello che scaturisce dal pro- cesso costruttivo dell* intuizione spaziale, ossia il metodo geome- trco puro o sintetico. According to the condition V it is what arises from the pro-cess of construction * spatial intuition, ie the geometric method-trco pure or synthetic. E difatti, poiché prima ed essenziale con- dizione della geometria è l'intuizione spaziale, la quale ci fornisce i primi oggetti geometrici e le loro proprietà indimostrabili, il metodo più proprio è quello che tratta sempre le figure come figure, e la- vora direttamente cogli elementi di esse separandoli e unendoli in- 1) Questa osservazione sull'imperfezione dell'assioma del piano non è nuova. And indeed, since the first and essential condition of with-geometry is the spatial intuition, which gives us the first geometric objects and their properties unprovable, the method is precisely that which is always figures as figures, and vora- directly with the elements of them separating and uniting in-1) This observation imperfection of the axiom of the plan is not new. In una lettera a Bessel (Gòtt. 27 1., 1829) Gauss scrive: E strano che oltre alla lacuna conosciuta della geo- metria Euclidea, che si è cercato indarno di colmare, e non si colmerà mai, vi è un altro di fette, che per quanto so, nessuno ha intravveduto, e che non è facile togliere, sebbene ciò sia pos- sibile. In a letter to Bessel (Gòtt. 27 1., 1829) Gauss writes: It is strange that in addition to the known shortcoming of geo-Euclidean geometry, which has tried in vain to fill, and never will be filled, there is another wafer , which as far as I know, no one has intravveduto, and that it is not easy to remove, although this is pos-sible. Questo è la definizione del piano quale superficie nella quale la retta congiungente due punti qualunque vi giace per intero. This is the definition of the plane which surface in which the straight line joining any two points there lies in its entirety. Questa definizione contiene più di ciò che occorre alla de- terminazione della superficie, e involve tacitamente un teorema, che deve essere prima dimo- strato . This definition includes most of what it takes to de-termination of the surface, and tacitly devolves a theorem, which must first be demonstrated. Grassmann (1. e. pag. 32) riconosce che alla geometria manca una base scientifica, e fa ana- loghe considerazioni sull'assioma del piano. Grassmann (1. And. P. 32) recognizes that the geometry lacks a scientific basis, and is ana-loghe considerations on the axiom of the plan. A pag. A p. 34 dice poi giustamente: Quando un assioma può essere omesso senza introdurne uno nuovo, ciò deve esser fatto quand'anche fosse richiesta una completa trasformazione della scienza, perché da una tale omissione la scienza nella sua essenza guadagna in semplicità . 34 then justly says: When an axiom can be omitted without introducing a new one, this must be done even if it required a complete transformation of science, because such an omission in its essence science gains in simplicity. Genocchi (Dei principi della meccanica e della geometria, Mem. della Società italiana dei XL t. II, serie III ; 1869, pag. 178) osserva che la generazione del piano mediante le rette che con- giungono i punti di una retta con un punto fuori di essa contiene il postulato delle parallele di Euclide. Genocchi (Of the principles of mechanics and geometry, Mem of the Italian Society of XL t. II, Series III, 1869, p. 178) notes that the plan generation through-lines that come with the points of a straight line with a point outside of it contains the parallel postulate of Euclid. Se si dice che tutto il piaiio viene generato in questo modo, si esclude il sistema di Lobatschewsky, non però quello diRiemann; altrimenti non viene escluso neppure il piano di Lobatschewsky. If it is said that all the piaiio is generated in this way, we exclude the system Lobatschewsky, but not the one diRiemann; otherwise it is not excluded even the plan Lobatschewsky. 2) Cosi infatti succede ad es. 2) So it happens eg. definendo fin da principio la continuità della retta, per mezzo della quale si dimostrano non poche proprietà che sono assunte nei trattati elementari come as- siomi, mentre si fa pure uso della definizione del continuo (vedi rd es. de Paolis: Elementi di Geometria, post. XI), from the beginning by defining the continuity of the line, by which it does not show a few properties that are taken in the primary treated as axioms, but it also makes use of the definition of the continuum (see eg rd. de Paolis: Elements of Geometry, posts. XI),

Page xx Page xx

XX sieme, in guisa che ogni verità e ogni passo della dimostrazione siano accompagnati possibilmente dall'intuizione. XX together, in such a way that every truth and every step of the proof are possibly accompanied by intuition. La semplicità e l'eleganza delia geometria consistono appunto nella facilità delle sue costruzioni. The simplicity and elegance Delia geometry consists precisely in the ease of its construction. Il metodo sintetico per la condizione VI da luogo al metodo sintetico astratto come è svolto nella nostra introduzione. The synthetic method for the condition VI gives rise to the synthetic method as abstract as it is done in our introduction. Un metodo che suppone nota una parte delle proprietà geo- metriche per studiare i fondamenti della medesima, o una buona parte di teorie che non appartengono alla geometria stessa, è per lo meno un metodo artificioso e indiretto, che se potrà essere utile per verificare la esattezza di un sistema di assiomi, o per mettere in relazione queste con altre teorie, non potrà mai servire a risolvere nel rrfigUor modo la questione. A method that assumes a known part of the geo-metric properties to study the fundamentals of the same, or a good part of theories that do not belong to the same geometry, it is rather a method contrived and indirect, that may be useful to verify if the accuracy of a system of axioms, or to correlate them with other theories, can never serve to resolve the issue in rrfigUor way. Un tale metodo è ad es. Such a method is eg. generalmente quello numerico o analitico. generally to numerical or analytical. Una prova ne sia che le profonde memorie di illustri autori sulle ipotesi della geometria, trattate con questo me- todo, non hanno fatto progredire di molto la geometria elementare pro- priamente detta, in modo che mentre quella moderna ha acquistato in questo secolo tanta larghezza e copia di vedute feconde, soltanto la prima è rimasta si può dire stazionaria, e non ne ha ricavato quasi alcun vantaggio 1). A proof is that the deep memories of distinguished authors on the assumptions of the geometry, treated with this method-I do not have advanced very elementary geometry pro-priamente said, so that while the modern has bought in this century such wide and copies of fertile views, only the former can be said has remained stationary, and has made almost no benefit 1). Come si può ammettere ad es. How can you say eg. quale as- sioma fondamentale della geometria l'ipotesi che l'elemento lineare dello spazio sia la radice quadrata di una espressione differenziale quadratica e positiva delle coordinate; oppure che la curvatura dello spazio sia costante, o ancora che le linee descritte da un punto nel suo movimento siano funzioni di una variabile reale che ammettono la deri- vata; che fra le coordinate di due punti vi sia una ed una sola fun- zione che rimanga inalterata mediante un certo gruppo continuo di trasformazioni, o ancora che lo spazio sia una varietà a tre dimenzioni corrispondente al continuo numerico (.u, y, z), ed altre simili? which as-Sioma fundamental geometry of the hypothesis that the linear element of the space is the square root of a quadratic and positive differential expression of the coordinates, or that the curvature of the space is constant, or that the lines described by a point in his movement are functions of one real variable that admit deriving-vata, that between the coordinates of two points there is exactly one func-tion that remains unchanged through a continuous group of transformations, or even that space is a variety blow up to three corresponding to the continuous numeric (. u, y, z), and other similar? Ma dove 1) Non sì deve credere però che al materiale degli Elementi si debba innestare qua e là teorie sia pure semplici della geometria moderna, ad es. But where 1) Do not believe, however, must ensure that the material elements of the graft should be here and there even simple theories of modern geometry, eg. della geometria proiettiva; o che si debba cangiarne il contenuto, o si debba abbandonare il metodo intuitivo basato sul puro ragionamento. projective geometry, or that you should cangiarne the content, or to abandon the intuitive method based on pure reasoning. Ciò sigiiifica invece che bisogna cercare di conquistare anche nella geometria elementare sia coli'aiuto delle nuove teorie, sia per altra via quelle vedute generali che dominino su tutto l'e- dificio degli Elementi, e li presentino in una forma scientifica e nello stesso tempo armonica, in guisa da non aver più degli assiomi dati a caso senza che si conosca l'intima ragione scienti- fica della loro necessità e indipendenza, anche se in un trattato per uso delle scuole le discus- sioni critiche devono essere bandite. This sigiiifica instead must try to gain even in elementary geometry is coli'aiuto of the new theories, is another way those general views that dominate over the entire e-edifice of the Elements, and submit them in a scientific form and at the same time harmonic, so as to have no more of the axioms random data without having intimate knowledge of the scientific reason-tion of their needs and independence, even if a treaty for the use of schools the critical discussions should be banned. Non è dunque necessario in massima aggiungere nuove teorie agli Elementi) ma o il materiale della geometria greca che bisogna correggere e rior- dinare con vedute pia larghe e più rigorose. It is therefore not necessary to add up new theories to the Elements), but the Greek geometry or the material which must be corrected and reor-ordinating with wide views pious and more stringent. D'altronde questo materiale non solo serve agli scopi pratici più semplici di questa scienza, ma serve altresì di base ad ogni ramo della geometria; nel problema dei suoi fondamenti non bisogna quindi aver riguardo più ad alcune proprietà clie ad altre, imperocché in tal modo si subordina la sua soluzione alle une o alle altre, Besides this material not only serves the practical purposes of this simple science, but also serves as the base for each branch of geometry in the problem of its foundations should not therefore have more regard to some properties to other clie, Inasmuch thus it makes its answer to one or the other,

Page xxi Page xxi

XXI sono i fatti intuitivi e semplici che le spiegano e le giustificano ? XXI are intuitive and simple facts that explain and justify them? Non ammettono forse oltre la conoscenza dell'analisi, quella impli- cita di una buona parte della geometria? Well maybe not admit knowledge of the analysis, the impli-cites a good part of the geometry? Così secondo questo metodo la distanza di due punti è un numero; ma se la distanza è rappresentabile con un numero, il metodo analitico non ci dice che cosa sia la distanza, perché essa non è geometricamente un numero ; come la retta, il piano, gli spazi a tre ecc. Thus this method the distance between two points is a number, but if the distance is represented with a number, the analytical method does not tell us what is the distance, because it is geometrically not a number; as the straight line, the floor, spaces to three etc.. an dimen- sioni non sono geometricamente le equazioni o le forme analitiche ausiliarie che li rappresentano. n dimensions are not geometrically analytical equations or auxiliary forms that represent them. Il problema scientifico e il problema didattico sono distinti, perché ad es. The scientific problem and the problem of teaching are distinct, because eg. ragioni didattiche possono consigliare di dare qualche assioma di più per evitare specialmente nel principio complicate dimostrazioni, ma acciocché il primo aiuti il secondo occorre che i due problemi siano trattati collo stesso metodo. educational reasons may be advised to give some axiom more complicated to avoid demonstrations, especially in the beginning, but lest the latter should be the first aid that the two problems are treated with the same method. Ora è impossibile supporre che i giovani delle scuole secondarie superiori conoscano per lo meno una buona parte dell'analisi. Now it is impossible to suppose that the young people of secondary school know at least a good part of the analysis. Nei lavori nei quali usasi il metodo analitico e che hanno pure un'origine geometrica, è evidente la premura che si ha di far uso al più presto deir analisi ; e ve n' ha anche di quelli nei quali si scelgono gli assiomi allo scopo di potere applicare questa o quella parte anali- tica. In works in which usasi the analytical method, and that also have an origin geometric, it is evident that the care has to use as soon as deir analysis; and I n 'has also those in which the axioms are chosen in order to able to apply this or that part analytic. Pur riconoscendo la grande importanza di tali lavori, che mettono in relazione le questioni dei principi geometrici con teorie feconde dell'analisi, non possiamo però disconoscere che in tal maniera si rende schiava la trattazione del problema di uno speciale punto di vista, che a priori si vuoi far prevalere; mentre bisogna vedere qual'ò il metodo più proprio alla natura di esso. While recognizing the great significance of this work, linking the issues of geometric principles with theories fruitful analysis, but we can not deny that in this way makes you a slave to the treatment of the problem of a special point of view, that a priori we want to prevail, while we need to see the most qual'ò just the nature of it. Ora, esaminando la que- stione sotto il suo vero aspetta, il metodo puro è quello che deve essere preferito, perché un difetto del metodo analitico, e da tutti riconosciuto, è appunto quello che esso ci conduce molto sovente dalle premesse al risultato finale senza farci conoscere i diversi anelli della catena delle proprietà geometriche occórrenti nel passaggio dalla prima proprietà all'ultima, per quanto semplice edelegante possa es- sere la dimostrazione; mentre nei principi fa d'uopo sopra tutto ren- dersi ben conto di ogni particolare, cercando di avere una imma- gine geometrica ben chiama del modo con cui essa deriva dalle pre- cedenti. Now, examining the question in its true expected, the pure method is to be preferred, because a defect of the analytical method, and recognized by all, is precisely what it too often leads us to the final result from the premises without let us know about the various links in the chain of the geometric properties needed in the transition from the first property last, however simple edelegante-es can be demonstrated, while in the principles it becomes necessary above all ren-dersi well aware of every detail, looking to have a geometric origin imma-called well the way in which it arises from the pre-ceding. Un altro difetto è quello che talvolta esso richiede un grande apparato di simboli e di calcoli per giungere a proprietà geometriche semplicissime. Another defect is that sometimes it requires a great apparatus of symbols and calculations in order to achieve simple geometric properties. Newton stesso osservò che aritmeticamente è più sem- plice ciò che viene determinato da equazioni semplici ; geometricamente è invece più semplice ciò che si ottiene mediante semplice tracciamento di linee; e nella geometria deve essere prima e preferibile ciò che Newton observed that the same is more arithmetically sem-plice that is determined by simple equations; geometrically is more simple what is obtained by a simple line drawing; and the geometry must be preferable to first and what

Page xxii Page xxii

xxtt è più semplice secondo il concetto geometrico *) Dimodoché noi non adottiamo il metodo analitico solo perche con esso si segue il cam- mino inverso del metodo storico col quale si è svolta la geometria, né seguiamo questo metodo perché corrisponde allo spirito della geo- metria greca, ma perche il metodo greco corrisponde meglio alla na- tura del problema. xxtt is easiest according to the geometric concept *) So that we do not adopt the analytical method with it just because it follows the cam-mino reverse of the historical method by which the geometry was carried out, or we follow this method because it corresponds to the spirit of the geo- Greek geometry, but because the method corresponds better to the greek na-ture of the problem. L'analisi applicata alla geometria serve a darci degli indirizzi an- che nello studio dei principi, ma apri ori non si sa se tali indirizzi siano utilizzabili dal punto di vista puramen te geometrico. The analysis applied to the geometry used to give us an address-that in the study of principles, but open golds do not know if these addresses are used by you purely geometrical point of view. Il metodo analitico poi per la sua generalità, se non si tien conto dell* intuizione, ci conduce a ipotesi su Ilo spazio a tre dimensioni che sono contrarie all'esperienza. The analytical method then its generality, if one takes into account the * intuition leads to assumptions of Ilo three-dimensional space that are contrary to the experience. E difatti dal punto di vista anali- tico ogni varietà numerica a tre dimensioni ha la stessa ragione d'essere dello spazio intuitivo, ma geometricamente come si è detto, non è la stessa cosa. And in fact, from the standpoint of analytic each variety numerical three-dimensional has the same reason of being space intuitive, but geometrically as has been said, it is not the same thing. È per questo che il metodo analitico oltre che portare la questione dei fondamenti della geometria in un campo di- verso, ha fatto generare il sospetto, spesso giustificato, che siano geo- metricamente impossibili i suoi risultati intorno alla geometria non Euclidea, è più ancora alla geometria di n dimensioni. It is for this reason that the analytical method as well as bring the issue of the foundations of geometry in a field-hand, he did create the suspicion, often justified, that are geo-metrically impossible his results about the non-Euclidean geometry, is even more to the geometry of n dimensions. Di più è da osservare che primo distintivo delle figure che ci col- pisce è la loro diversità di luogo, e che il metodo costruttivo nasce e si svolge da questa diversità. More is to be noted that the first distinctive shapes that catches the eye with-is the diversity of place, and that the construction method was created and carried out from this diversity. ]) Arithm. ]) Arithm. Univ. Amsterdam 1761, t. Univ Amsterdam 1761, t. II De constructione lineari pag. The De constructione linear p. 237 e seg. 237 et seq. Egli sog- giunge: La semplicità delle figure dipende dalla semplicità della genesi delle idee; non è tale l'e- quazione, ma bensi la descrizione (sia geometrica che meccanica) mediante la quale la figura vie- ne generata e facilmente rappresentata . He subject-arrives: The simplicity of the figures depends on the simplicity of the genesis of ideas, such is not the e-equation, but the description but rather (both geometric and mechanical) through which the figure-way it generated and easily represented. Egli considera però il cerchio semplice quanto la retta, mentre il cerchio ha bisogno per lo meno del piano, come la sfera almeno dello spazio ordinario. He considers, however, the circle as simple as the straight line, while the circle is less need for the plan, at least as the sphere of ordinary space. La retta per essere definita astrattamente mediante le sue proprietà non ha bisogno di altre figure. The straight line to be defined by its properties abstractly does not need to other figures. Sebbene in altre considerazioni di Newton nello stato attuale della geometria non si possa più convenire, pure le idee di uno dei sommi inventori del calcolo differenziale e integrale rispetto al carattere fondamentale della geometria rimangono sempre vere in tutta la loro generalità. Although other considerations of Newton in the present state of geometry could not agree more, even the ideas of one of the chief inventors of differential and integral calculus with respect to the fundamental character of the geometry remain true in all their generality. E noi non veniamo meno a queste idee neppure nei nostri lavori di geometria a più dimensioni, poiché ad es. And we do not fail us, even with these ideas in our work with multi-dimensional geometry because, for example. il nostro teorema che tutte le curve razionali del piano d' ordine n possono dedursi dalla curva razionale normale dellp spazio an dimensioni, si basa sulla semplicità della costru- zione della curva normale stessa. our theorem that all rational curves of the Plan 'order n can be deduced from the curve dellp rational normal n-dimensional space, is based on simplicity of construc-tion of the normal curve itself. Quantunque Leibniz abbia data una grande preferenza all'analisi, pure ha riconosciuto i di- fetti del metodo analitico specialmente nella trattazione dei principi della geometria, quando tentò di sostituirlo colla sua analisi geometrica (vedi appendice). Although Leibniz has given a strong preference analysis, also recognized the-fects of the analytical method, especially in dealing with the principles of geometry, when he tried to replace it with his geometric analysis (see Appendix). E Gauss (Gòtt. Gelehrte Anzeigen, 1816, pag. 619) così si esprime: I mezzi logici perlaconca- tenazione e la rappresentazione delle verità nella geometria per s è non possono nulla produrre, e soltanto germogliano senza frutti quando la feconda e vivificatrice intuizione non domini da por tutto. And Gauss (Gòtt. Gelehrte Anzeigen, 1816, p. 619) puts it this way: The logic means perlaconca-tenazione and the representation of truth in it's geometry can not produce anything, no fruit and only germinate when the life-giving and fruitful insight no domains por everything. Il sig. Mr. W. W. Killing nella memoria: Erweiterung des Raumsbegriffs. Killing in the memory: Erweiterung des Raumsbegriffs. Braunsbergj 1884, ci fa sa- pere die Weiorstrass ha tenute parecchie lezioni nel Seminario matematico di Berlino sui principi della goomiMi'ia nel 187:2, e che sebbene egli sia partito dalla funzione della distanza, ha soste- nuto eh11 anzi tutto bisogna tentare una trattazione puramente geometrica . Braunsbergj 1884, lets us know pear-day Weiorstrass has taken several lessons in mathematics seminar in Berlin on the principles of goomiMi'ia in 187:2, and that although he was fired from the distance, has claimed and indeed all you need groped EH11 a purely geometric.

Page xxiii Page xxiii

XKIII Non è poi da dimenticare per la questione che qui trattiamo, che non ancora è detta l'ultima parola sui fondamenti dell'analisi, come dimostrano recenti lavori di eminenti matematici e la nostra intro- duzione: perché i principi dell'analisi non sono tutti logicamente ne- cessari, e non pochi di essi racchiudono dei veri assiomi geometrici quando l'analisi è applicata direttamente allo studio della geometria, ad es. XKIII It is not to forget the issue that we deal here, which has not yet said the last word on the foundations of the analysis, as demonstrated by recent works of eminent mathematicians and our introduction: why the principles of the analysis are not all logically-essary, and not a few of them contain real geometrical axioms when the analysis is directly applied to the study of geometry, eg. il principio di continuità nelle sue diverse forme analitiche, che non sempre trova la sua giustificazione nell'intuizione spaziale. the principle of continuity in its different analytical forms, which do not always find its justification in the intuition of space. Osservo ancora che lo spazio di n dimensioni sia geometricamente che analiticamente si deduce nella sua generazione da spazi di minori di- mensioni. I also note that the space of n dimensions is geometrically deduced analytically that in his generation space-to-child dimensions. La via più semplice è dunque quella di stabilire gli assiomi per gli spazi inferiori. The easiest way is therefore to establish the axioms for the spaces below. Gli assiomi che si danno addirittura per le figure, ad es. The axioms that are given even to the figures, eg. dello spazio an dimensioni, sono certo più complessi di quelli delle varietà ad un numero minore di dimensioni. n-dimensional space, are certainly more complex than those of varieties in fewer dimensions. In altre parole secondo la condizione li bisogna procedere dal semplice al composto. In other words, according to the condition they must proceed from the simple to the compound. Ma si dirà che noi introduciamo subito il concetto dello spazio generale. But we will say that once we introduce the concept of the overall space. In primo luogo esso è un concetto generale nel quale non entra ne la costruzione ne la misura delle sue dimensioni, e oltre a ciò di esso non ci serviamo che per maggiore libertà delle nostre co- struzioni, in modo che le considerazioni che facciamo nella prima parte sullo spazio generale valgono poi senz'altro in uno spazio di un numero dato qualunque di dimensioni. In the first place it is a general concept in which it does not enter the construction nor the extent of its size, and in addition to this it is not that we use for greater freedom of our co-operating instructions, so that the considerations we do in the first part on the space Generally speaking, then certainly in a space of a given number of any size. E da osservare ancora che tranne alcune proprietà, il testo rimarrebbe lo stesso anche senza la definizione di questo spazio. It should be noted again that except for some properties, the text would remain the same even without the definition of this space. Il metodo sintetico si svolge direttamente nello spazio generale che non ha un numero determinato di dimensioni, mentre rimane da ve- dere se sia possibile trattare la geometria analitica direttamente in un tale spazio. The synthetic method is carried out directly in the space which generally does not have a given number of dimensions, while there remains to be-ing whether it is possible to treat the analytic geometry directly into such a space. Così pure rimane a trattare la geometria analitica asso- luta secondo le nostre ipotesi sull'infinito e sull'infinitesimo. Likewise, it remains to treat the associated analytic geometry Luta according to our assumptions on the infinite and sull'infinitesimo. Da tutto ciò non si deve inferire che noi combattiamo in generale il metodo analitico. From all this you should not infer that we are fighting in general, the analytical method. Ttitt'altro; l'analisi rende certamente dei grandi ser- vigi alla geometria, come questa ne rende all'analisi. Ttitt'altro; certainly makes the analysis of large ser-supervisory geometry, as this makes the analysis. L'analista ricor- rendo alla geometria mette in esercizio una facoltà, che nell'analisi in se non trova applicazione, vale a dire l'intuizione spaziale, colla quale a colpo d'occhio si assicura di molte proprietà degli oggetti che gli stanno dinanzi; mentre il geometra facendo uso di un ben inteso formalismo analitico riesce spesso oggidì con maggior sicurezza al risultato finale. The analyst appli-am to the geometry puts into operation a possibility that the analysis itself does not apply, ie the spatial intuition, with which at a glance assures you of many properties of objects that are before , while the surveyor using a well-understood analytical formalism can often nowadays with greater certainty the final result. Però, acciocché un risultato analitico abbia un effettivo significato geometrico bisogna che si riferisca ad un ente che si possa costruire, e in ogni caso la geometria non può contentarsi di sapere ad es. However, so that an analytical result has a real geometric meaning must refer to an entity that can be built, and in any case, the geometry can not be content to know eg. che esiste una data superficie, ma vuole conoscere anche le leggi della costruzione della superficie stessa. that there is a given area, but also want to know the laws of construction of the surface itself.

Page xxiv Page xxiv

Si sostiene giustamente che nelle ricerche scientifiche sia geome- triche che analitiche occorre usare tutti i metodi che possono con- durre a nuovi risultati 1). He rightly claims that in scientific research and analytical and geometric-trical must use all methods that can produce new results with a-1). Ma è pur d' uopo riconoscere che special- mente fuori d'Italia vi è oggidì una forte tendenza a trascurare il metodo geometrico puro, quel metodo col quale in questo secolo stesso, Poncelet, Steiner, Staudt, Chasles, Ore mona, e tanti altri, arricchirono la geometria di tante feconde teorie ; e non sappiamo davvero quanta utilità possa avere questa tendenza. But while it 's necessary to recognize that the mind-especially outside of Italy at the present day there is a strong tendency to overlook the pure geometric method, the method by which this same century, Poncelet, Steiner, Staudt, Chasles, mona hours, and many others, enriched the geometry of many fruitful theories, and do not really know how much utilities can have this tendency. E poiché i due metodi anche nella scoperta della verità hanno virtù e bellezze pro- prie, che forse non sempre possono conservarsi in un metodo misto, così noi pure, per le ragioni anzidetto, riteniamo più che giustificati, anche nelle ricerche superiori della geometria, i tentativi diretti a trattare ogni questione geometrica col metodo sintetico. And since the two methods also in the discovery of truth and beauty are under pro-Prie, who perhaps can not always be kept in a mixed method, so we, too, for the reasons aforesaid, we feel more than justified, even in research beyond the geometry, direct attempts to deal with any matter geometrical synthetic method. AH' appunto che si fa a questo metodo di non essere ben sicuro in alcune ri- cerche, si può rispondere che questo non è un difetto inerente al metodo, ma uri difetto dipendente dalla mancanza dello svolgimento necessario di esso. AH 'is precisely that this method was not quite sure in some re-quests, you can say that this is not an inherent defect of the method, but uri-dependent defect in the absence of the need to conduct it. D'altronde mi pare che in generale massime rigide non si possano adottare, ma che debbano esser lasciate libere, come nell'arte, tutte le manifestazioni del pensiero scientifico a se- conda delle attitudini individuali. Besides, I think in general you can take maximum rigid, but that should be left free, as in art, all forms of scientific thought in sec-ond of individual attitudes. E inoltre fa d'uopo non dimenti- care che la matematica ha pure la sua filosofia, e che in questa ha non piccola importanza il modo con cui si arriva alla verità. And also do not forget-it becomes necessary care that mathematics also has its philosophy, and that this was no small importance in the way you get to the truth. Rispetto alT ordine degli assiomi e delle definizioni è opportuno sia dal punto di vista scientifico come da quello didattico che si in- troducano di mano in mano se ne presenta il bisogno, eccetto che per non ripetere una definizione generale, che si adopera per molte figure, non si creda talvolta di derogare a questa regola. Compared alt order of axioms and definitions should be from the scientific point of view as from the teaching that in-troducano from hand to hand it presents the need, except for not repeating a general definition, which is used for many figures , you would not believe sometimes exceptions to this rule. Ma non si saprebbe giustificare in alcun modo il metodo di Euclide di riunire la maggior parte delle definizioni in principio del testo, senza che sia provata o data prima, o subito dopo, l'esistenza delle figure a cui quelle definizioni si riferiscono. But you would be able to justify in any way, the method of Euclid to bring together most of the definitions in the beginning of the text, without any proven or given before or soon after, the existence of the figures to which those definitions apply. Per le condizioni a cui abbiamo assoggettati gli assiomi geome- trici, e specialmente per le condizioni I e VI, dobbiamo vedere quali sono i principi e le operazioni logiche comuni sui quali si fonda la ma- tematica pura o la teoria delle forme matematiche astratte e concréte, ]) II grande matematico italiano Lag l'auge disse: Fintantoché l'algebra e la geometria sono stato separate i loro progressi furono lenti e le loro applicazioni limitate; ma allorquando queste due scienze si sono unite, esse si aiutarono vicendevolmente e progredirono insieme rapida- mente verso la perfezione (Gè no ee hi; 1. e.)- Klein (1. e pag. li, opp. trad. Le, pag. 337) e Segre Su alcuni indirizzi delle ricerche geometriclie- Rivista di matematica, febb. For conditions subject to which we geometrical axioms-ric, and especially for conditions I and VI, we must look at the principles and logic operations on which the common-but the theme or the pure theory of abstract mathematical forms and concrete,]) The great Italian mathematician Lag the vogue said: As long as algebra and geometry have been separated their progress was slow and limited their applications, but when these two sciences have been united, they helped each other and progressed together rapidly to perfection (no Ge ee hi, 1. e.) - Klein (1. and p. them, opp. trad. Le, p. 337) and Segre On some of the research addresses geometriclie-Journal of Mathematics , Feb.. e marzo lS9I,ecc. and March lS9I, etc..

Page xxv Page xxv

xtv è quindi anche la geometria, ficco dunque la ragione dell'introduzione. XTV and therefore also the geometry, shove therefore the reason of the introduction. La matematica pura si presenta così come una scienza di concetti e non di puri segni assoggettati a regole convenzionali, per quanto pos- sibili. Pure mathematics is presented as a science of concepts and not of mere signs subject to conventional rules, as far as pos-sible. Noi partiamo dai concetti di unità e di pluralità, dagli assiomi lo- gici, da cui deduciamo alcune importanti conseguenze. We start from the concepts of unity and plurality, the lo-cal axioms, from which we deduce some important consequences. Dal concetto pure primitivo del prima e del poi deriviamo il concetto di serie o successione e di ordine di più oggetti dati o pensati. As well as the primitive concept of before and then we derive the concept of a series or succession and order of multiple data objects or thought. DalT operazione del porre e del togliere e del considerare insieme, o dell' unire, deri- viamo il concetto di gruppo e quello di gruppo ordinato. Dalt operation of placing and removing and considered together, or of 'merge, resulting from ve the concept of group and the group ordered. E dal con- cetto di gruppo abbiamo poi il concetto astratto di fuori. And with the concept of group, then we have the abstract concept outside. Vi sono serie limitate e illimitate, e dal principio a del n. There are unlimited and limited editions, and the principle of n. 37 si deriva il concetto di serie limitata o illimitata, che contiene come parti altre serie illimitate. 37 is derived the concept of limited or unlimited, which contains as parts other series limitless. La serie più semplice è quella li- mitata di la specie o naturale, che ha un primo ed ultimo oggetto e non contiene alcuna serie illimitata; poi si ha la serie illimitata di la specie, le cui serie limitate sono tutte di la specie. The series is easiest them-bounded of the species or natural, which has a first and last object and contains no unlimited series, and then an unlimited series of the species, whose limited series are all of the species. Diamo i prin- cipi che regolano le operazioni dell'unire e del togliere, e rilevia- mo i contrassegni delle forme matematiche astratte e concrete. Let the principles that govern the operations of uniting and remove, and mo-rilevia marks of abstract and concrete mathematical forms. Un principio fondamentale è quello della corrispondenza univoca e del medesimo ordine fra le serie o gruppi di più elementi, col quale deduciamo diversi teoremi per le serie o gruppi ordinati in generale, e particolarmente per le serie limitate e illimitate di la specie. A fundamental principle is that of the same order and one correspondence between sets or groups of items, with which we deduce several theorems for ordered sets or groups in general, and particularly for limited and unlimited number of the species. Mentre fino a questo punto abbiamo fatto uso soltanto del concetto di unità e di pluralità, dai gruppi ordinati discende il concetto di nu- mero nella sua prima formazione, e dalla corrispondenza fra gli ele- menti del gruppo che si numerano e le unità del numero si dedu- cono i teoremi fondamentali sui numeri che corrispondono ai gruppi naturali, fra i quali anche quello che mutando V ordine degli ele- menti di un gruppo naturale il numero da esso rappresentato rimane inalterato. While up to this point we have used only the concept of unity and plurality, sorted by groups follows the concept of num-ber in his early training, and correspondence between the elements of the group are numbered and the number of units deduction is the fundamental theorems on cone numbers that correspond to natural groups, among them some that changing V order of the elements of a natural group that it represents the number remains unchanged. La corrispondenza suddetta ci da modo di stabilire natural- mente il concetto di numero maggiore e minore, e le prime opera- zioni coi numeri naturali, e le leggi rispettive. The correspondence that enables us to establish the concept of natural mind-major and minor number, and the first operations with natural numbers, and the respective laws. Noi consideriamo dun- que dapprima il numero degli oggetti di un gruppo, da cui deriviamo poi le proprietà del numero come segno. We consider this first-dun, the number of objects in a group, from which we derive the properties, then the number as a sign. Prendendo a guida il continuo intuitivo rettilineo che esaminiamo nelle sue diverse parti, definito 1' elemento fondamentale, e gli ele- menti distinti in senso relativo e assoluto, trattiamo del sistema di elementi, ad una dimensione, del sistema omogeneo e identico nella posizione delle sue parti. Taking the continuous-guided intuitively straight that we examine in its different parts, called a 'fundamental element, and distinct elements in relative and absolute, we treat the system of elements, one dimension of the homogeneous system and in the same position its parts. Dall'esame delle conseguenze del principio d'identità si ricava che An examination of the consequences of the identity principle shows that

Page xxvi Page xxvi

xivi la corrispondenza d'identità fra due forme sì appoggia sull'identità di due altre forme ; da qui la necessità, per utilizare questa corrispon- denza, di partire da una prima forma fondamentale, per le parti della quale ammettiamo senz' altro l'identità in conformità al principio di questo nome dato al n. xivi correspondence between two forms of identity so rests on the identity of two other forms, hence the need to use this correspondence, from the first fundamental form, the parts of which certainly admit 'the other' identity in accordance with the principle of the name given to the n. 8. 8. La nostra forma fondamentale è un sistema ad una dimensione, identico nella posizione delle sue parti, continuo e determinato dal minor numero di elementi rispetto alle altre forme. Our basic form is a system to a dimension, in the identical position of its parts, continuous and determined by the lower number of elements than the other forms. Indipendentemente da queste due ultime proprietà, che stabiliamo più tardi, costruiamo sulla forma fondamentale la scala di un dato segmento come unità, e definito il campo di essa, troviamo le condizioni di uguaglianza di due scale. Apart from these two last properties, we establish later, we build on the basic form of the scale of a given segment as a unit, and defined the scope of it, we find the conditions for equality of two scales. Introduciamo poi il concetto di segmenti finiti, infiniti e infinite- simi (attuali) limitati da due elementi, e stabiliamo le ipotesi semplici dell'esistenza e della costruzione compatibili colla definizione del si- stema omogeneo (ed anche di quello identico nella posizione delle sue parti) secondo le quali si determinano le relazioni fra i segmenti sud- detti. Then we introduce the concept of finite segments, endless and infinite-similar (current) limited by two factors, and lay down the simple hypothesis of the existence and construction compatible with the definition of the sys-homogeneous (and also of the same position in its parts) under which we determine the relationships between the segments aforesaid. Da queste ipotesi si deduce appunto il concetto di più specie di unità di misura, dell'unità fondamentale alla quale si riferiscono gli infinitesimi e gli infiniti, e dell'unità assoluta che è un segmento limitato qualunque della forma fondamentale, e che chiamiamo pure finito assoluto. From these assumptions it follows precisely the concept of more kinds of units, which relate to the fundamental unity of the infinitesimal and the infinite, and absolute unity which is a limited segment of any fundamental form, and we call it well done absolute. Dimostriamo con pieno rigore che l'infinitesimo di qualunque ordine è trascurabile rispetto ad un infinitesimo di ordine inferiore, sebbene rispetto ali' unità assoluta o in senso assoluto esso non sia trascurabile. We show that with the full rigor of any order infinitesimal is negligible compared to an infinitesimal of lower order, although compared wings' absolute units or in an absolute sense it is not negligible. Dai segmenti infiniti e infinitesimi deduciamo nuovi numeri interi infiniti, i quali tanto nella somma come nella moltiplicazione sono sog- getti alle leggi ordinarie, e quindi si distinguono dai numeri transfi- niti di G. From the infinite and infinitesimal segments deduce new infinite integers, which both in amount as in the multiplication are subjects to the ordinary laws, and are distinguished by numbers transfi-ned by G. Cantor, i quali non si possono applicare alla costruzione dei segmenti infiniti della nostra forma fondamentale 1). Cantor, which can not be applied to the construction of infinitely many segments of our fundamental form 1). 1) Quando era già stampata gran parte della nostra introduzione fu pubblicata la chiara esposizione della teoria delle grandezze del prof. 1) When was already printed much of our introduction was published in the clear exposition of the theory of magnitudes of prof. Bettazzi (Pisa 1890), nella quale l'autore stu- dia certe classi ad una dimensione di 2a specie che si decompongono in n sotto classi principali di la specie (essendo n un numero intero finito), le quali considerate isolatamente sono continue nel senso ordinario. Bettazzi (Pisa 1890), in which the author study give certain classes to a dimension of second species which decompose into n sub-classes of the main species (n is an integer finished), which considered in isolation are continuous in the sense ordinary. Sebbene Bettazzi non dimostri direttamente la possibilità di queste classi, e così i principi come il metodo di dimostrazione siano diversi dai nostri, pure in questa parte ci siamo incontrati in alcune idee. Although Bettazzi not directly demonstrate the ability of these classes, and so the principles as the method of proof are different from ours, even in this part we met some ideas. Egli si arresta alla suddetta classe di 2a specie, mentre la classe cui da luogo la nostra forma fondamentale è una delle classi che Bettazzi chiama assolute, e non studia, la quale per i principi spe'ciali a cui soddisfa da luogo anche ad una misura. He stops to the said class of second species, while the class to which from place our basic form is one of the classes that Bettazzi called absolute, and does not study, which for the principles to which satisfies spe'ciali from place also to a measure . I nostri numeri infiniti e infinitesimi sono in fondo numeri complessi speciali con infinite uni- tà, tali però che il prodotto di due di esse non si esprime linearmente mediante le altre, e perciò per questi numeri vale il teorema che se il prodotto di due di essi è nullo deve esser tale anche uno dei fattori, come vale pei numeri complessi ordinavi e pei quaternioni di Hamilton. Our numbers are infinite and infinitesimal numbers at the bottom of each complex with endless special-ta, however, such that the product of two of them can not be expressed linearly by the other, and therefore for these numbers is the theorem that if the product of two it is void must also be such a factor, as is pei pei quaternions and complex numbers ordinavi Hamilton.

Page xxvii Page xxvii

XXVlt Non disconosciamo la tendenza che vi è oggidì contro l'infinito e T in- finitesimo attuale, e specialmente contro quest' ultimo ; ma le ra- gioni addotte contro queste forme come erano proposte in passato non sono applicabili alle nostre, delle quali del resto abbiamo dimostrato logicamente la possibilità, come non sono applicabili alle forme del- l'infinito e infinitesimo attnale di Stolz e di duBois Reymond. XXVlt not disclaim that there is a tendency nowadays against the infinite, and T-finitesimo present, and especially against this' last, but the ra-regions were raised against these forms as proposed in the past are not applicable to our own, of which the Moreover we have shown to be logically possible, as they are not applicable to the forms of the infinite and infinitesimal-attnale of Stolz and duBois Reymond. Rispetto alla rappresentazione il segmento limitato infinito o infinite- simo della forma fondamentale possiamo rappresentarcelo tale quale un segmento rettilineo sensibile, come si vedrà meglio dalle appli- cazioni che ne faremo alla geometria 1). Compared to the representation of the infinite or limited segment of the infinite-th fundamental form we can represent this as a sensible straight line segment, as discussed by the appli-cations to the geometry that we 1). Sosteniamo l'infinitesimo attuale perché ne abbiamo dimostrato non solo la possibilità ma anche l'utilità nel campo geometrico; che anzi per quanto possa essere per sé interessante una tale teoria non T avremmo forse qui trattata senza le applicazioni geometriche che ne abbiamo fatte. We support the infinitesimal today because we have demonstrated not only the possibility but also the usefulness in geometry, that even though it may be interesting in itself such a theory T is not treated here have we no geometric applications that we've done. La trattazione poi analitica della geometria indipen- dentemente dall'assioma d' Archi mede, pare a noi, dovrebbe riuscire interessante anche per l'analisi 2j. The discussion then analytic geometry independently from the axiom of 'Archi beacons, it seems to us, should get interesting for the analysis 2j. Stabiliamo poi le ipotesi della continuità relativa ad un' unità (o continuità ordinaria) e poi all'unità assoluta (continuità assoluta). Then we establish the assumptions of continuity on a 'drive (or continuity ordinary) and then absolute unity (absolute continuity). Dalla continuità assoluta si ricava la prima rispetto ad ogni unità, ma non inversamente. From the absolute continuity we get the first compared to each unit, but not inversely. Sia nel campo di un'unità relativa, sia rispetto al- l'unità assoluta si dimostra che ogni segmento limitato della forma è divisibile in n(o?i) parti uguali, che (AB) + (BC) = (BC)+(Cff')9 ove (GB") è identico ad (AB) e del medesimo verso di (AB); che il seg- mento (AB) percorso in un verso è uguale allo stesso segmento percorso nel verso opposto, oltre altre proprietà relative agli elementi limiti di un gruppo di elementi sulla forma fondamentale. E per ciò che anche indipendentemente dagli infiniti e infinitesimi la nostra definizione del continuo ordinario è preferibile alle altre che ammettono gli stessi principi, ma ammettono ad es, anche la legge commutativa della somma, oppure la proprietà (AB)=(BA). Applicando i principi della nostra definizione alla retta, essi esprimono delle proprietà semplici e intui- tive di questa. Definita la corrispondenza di proporzionalità fra i segmenti della forma fondamentale, deriviamo da essa le principali proprietà dei rap- porti fra segmenti, e in ispecie della loro uguaglianza. Data la definizione delle forme a più dimensioni e del loro campo, 1) Vedi note pag. 85-87 e 166. Rimandiamo il lettore alle nostre osservazioni sulle dimostra- zioni contro l'infinitesimo attuale in fine dell'appendice; s'intende che il testo ne è indipendente. 2) Vedi nota pag. 123-124 e le osservazioni sulla geometria proiettiva assoluta. Both in the field on a unit, both with respect to the absolute unity-it shows that each segment of the limited form is divided into n (or? I) equal parts, which (AB) + (BC) = (BC) + (Cff ') 9 where (GB ") is identical to (AB) and the same direction of (AB); that the segment (AB) path in one direction is equal to the same segment path in the opposite direction, as well as other properties limits on the elements of a group of elements on the basic form. And for that matter even with infinite and infinitesimal, our definition of continuous ordinary is preferable to the other principles that recognize the same, but admit to such, even the commutative law of addition , or the (AB) = (BA). Applying the principles of our definition to the straight line, they express the properties simple and intuitive-tions of this. Defined the correspondence of proportionality between the segments of the fundamental form, we derive from it the main properties of rela-tions between segments, and especially of their equality. Given the definition of multi-dimensional shapes and their field, 1) See note p. 85-87 and 166. We refer the reader to our comments on the show-tions against infinitesimal current at the end of the Appendix, the text means that it is independent. 2) See note p. 123-124 and the comments on the absolute projective geometry.

Page xxviii Page xxviii

XXVllt senza dar qui il concetto di continuità in generale, ci occupiamo della grandezza estensiva ed intensiva della forma fondamentale. XXVllt not give here the concept of continuity in general, we deal with the extensive and intensive magnitude of the fundamental form. Sia di questi sviluppi come del capitolo relativo ai numeri reali, assoluti e rela- tivi, non ci serviamo nella discussione dei principi della geometria. Both of these developments as the chapter on real numbers, absolute and relative-tives, we are not in the discussion of the principles of geometry. Le considerazioni del continuo numerico relativo e assoluto ci permet- tono però di spiegare le ragioni della scelta della nostra forma fon- damentale. The considerations of the numerical constant relative and absolute, however, they allow us to explain the reasons for the choice of our form fon-damental. Non risulta dalle ipotesi premesse che questa sia deter- minata da due piuttosto che da più di due elementi distinti. Not clear from the premise that this case is deter-mined by two rather than over two distinct elements. Da tutto ciò è manifesto che noi procediamo generalmente nella costruzione dei concetti matematici dal semplice ài composto 1). From all this it is manifest that we generally proceed in the construction of mathematical concepts from simple hast compound 1). Sentiamo farci l'obiezione rispetto ai concetti dei numeri razionali e irrazionali che noi partiamo da ipotesi, mentre l'analisi si può svolgere col convenzionalismo basandosi sui soli numeri interi. Let us hear the objection with respect to the concepts of rational numbers and irrational that we start from the case, while the analysis is based on conventionalism can play with just integers. Anzitutto nel- l'introduzione non abbiamo inteso di trattare i soli principi dell'analisi ma della matematica pura in generale, che comprende anche la scienza dell'estensione astratta 2); inoltre il concetto di questi numeri entra per noi in seconda linea, essendo scopo principale dell'introduzione di servire di base alla parte geometrica. First in the introduction we have not intended to treat only of the principles of pure mathematics, but in general, which also includes the extension of abstract science, 2), in addition the concept of these numbers comes to us in the second line, being main objective of serving the basic geometric part. D'altronde, vi sono illustri analisti i quali ritengono, e noi siamo del loro avviso, che anche Tana- lisi debba essere svolta nei suoi fondamenti con metodo fiiosofico nel senso da noi sopra spiegato 3), anziché con metodo artificioso. Moreover, there are prominent analysts who believe, and we are of their opinion, that Tana-analysis should be performed in its foundations with fiiosofico method in the sense we have explained above 3), rather than artificial method. Ad ogni modo non vediamo alcuna differenza sostanziale fra le ipotesi o postulati astratti e le definizioni o convenzioni di segni necessario allo svolgimento della scienza 4). However we see no substantial difference between the hypotheses or postulates abstract definitions or conventions of signs necessary for the performance of science 4). Questa introduzione oltre che fornirci i criterì fondamentali di cui abbiamo bisogno nella parte geometrica si può considerare come un tutto a sé; ed è per questo che abbiamo svolto alcune parti di essa che non applichiamo alla geometria. This introduction not only provide the basic criteria that we need in the geometric part can be considered as a whole in itself, and that is why we have performed some part of it that does not apply to geometry. 1) Vedi ad es. 1) See, for example. note pag. notes p. 1 e pag. 1 and p. 15. 15. 2) Ausdehnungslehre secondo H. 2) Ausdehnungslehre according to H. Grassmann. Grassmann. 3)Du Bois Raymond sostiene che se nelle operazioni coi segni non si bada più al loro significato, nella discussione dei concetti fondamentali della matematica non si deve però di- menticare la loro origine (1. e. pag. 50 e seg ). 3) Du Bois Raymond argues that if the operations with the signs do not mind as to their meaning, in the discussion of the fundamental concepts of mathematics, however, must not-forgetting their origin (1. And. P. 50 et seq.) Vedi intr. See intr. nota pag. of p. 67. 67. 4) Ad es. 4) Eg. la proprietà fondamentale (a -f- ) -f- 1 in a .+. the fundamental property (a-f-)-f-1 in a. +. (b + 1) della somma dei numeri è chia- mata da Grassmann Erklarung (che equivale a un postulato) e non Bezeichnung (indicazione), e difatti v. (B + 1) the sum of the numbers you call will be Grassmann Erklärung (equivalent to a postulate) and not Bezeichnung (indication), and in fact see. H elmo tz la chiama assioma di Grassmann (Phil. Aufsàtze-E. Zeller-Zàhlen u. Messen pag. 24). H tz helmet called the axiom of Grassmann (Phil. Aufsàtze-E. Zeller-Zahlen u. Messen p. 24). Da altri è data come definizione, ma evidentemente senza questa definizione o conven- zione non è possibile svolgere le proprietà della somma. On the other is given as a definition, but evidently without this definition or Convention is not possible to carry out the properties of the sum. Ad es. Eg. Il sig. Mr. Peano (Arithmetices Prin- cipia; Torino 1889) da come assioma: se ae sono numeri interi uguali, a + 1, 6 -f-1 sono pure nu- meri uguali. Peano (Arithmetices Prin-cipia; Turin 1889) by axiom as: if a and are integers equal to + 1, 6-f-1 are also nu-mers equal. E poi come definizione: se p, q, p', q' sono numeri interi qualunque ed è ^ ^7 si ha xx - . And then as a definition: if p, q, p ', q' are integers, and whatever you xx ^ ^ 7 -. Questa proposizione è evidentemente della stessa natura della prima. This proposition is evidently of the same nature as the first.

Page xxix Page xxix

XXIX Dopo che si è spiegato per mezzo dell* esperienza che cosa si deve intendere per spazio intuitivo vuoto e per punto, che è l'elemento fondamentale delle geometria, coll'ass. XXIX After he explained by means of * experience what is meant by empty space and intuitive point, which is the basic element of geometry, coll'ass. I si stabilisce esservi punti di- stinti ed uguali. The points will be down-faded and equal. Data la definizione di figure segue la definizione di spazio generale, cioè : Lo spazio generale è dato da un sistema di punti tale che data o costruita una sua figura qualunque vi è almeno un altro punto fuori di essa, le cui proprietà non dimostrabili derivano in parte dall1 osservazione esterna e in parte da principi astratti che non contraddicono alle prime; e le figure, finché il punto conserva il suo primo significato, sono sempre accompagnate dall' intuizione spaziale 1). Given the definition of the figures follows the definition of overall space, ie: The overall space is given by a system of points such that date or a built his figure there is any at least one other point outside it, whose properties do not derive demonstrable in dall1 the external observation and partly from abstract principles that do not contradict the first, and the figures, until the item retains its original meaning, are always accompanied by 'spatial intuition 1). La geometria è la scienza dello spazio generale, e perciò anche delle figure in esso contenute. Geometry is the science of the overall space, and therefore also of the figures contained therein. Le considerazioni però che facciamo, tranne alcune, valgono anche indipendentemente da questo spazio, seb- bene noi lavoriamo sempre in esso 2). The considerations, however, we do, but some apply equally regardless of this space, although we always work well in it 2). 11 concetto di fuori trova am- pia giustificazione nel primo capitolo dell'introduzione. 11 out of the concept of justification is am-ple in the first chapter of the introduction. Le parti semplici della prima parte dell'ass. The simple parts of the first part of the ass. II sulla retta sono già state discusse nelT introduzione ; e poiché scopo principale di questi studi è anche quello di risparmiare più assiomi che è possibile, così non abbiamo bisogno di ammettere la determinazione della retta che per una sola coppia dei suoi punti, completando poi questo assioma colla parte 2a, la quale stabilisce che ogni punto fuori di una retta e un punto qualunque di essa determinano un'altra retta. II on the right have already been discussed nelT introduction, and since the main purpose of these studies is also to save more axioms that can be, so we do not need to allow the determination of fees for a single pair of its points, and finish this Glue the second axiom, which states that every point outside a straight line and any point of it lay a straight line. Così facendo pos- siamo svolgere le proprietà comuni generali di tutti i sistemi geome- trici possibili conosciuti. In so doing can we carry out the general properties common to all systems known geometric-ric possible. Gli altri tre assiomi sono proprietà semplici che riguardano l'iden- tità di due rette aventi un punto comune, la differenza dei due lati di un triangolo quando il terzo lato diventa indefinitamente piccolo, e T identità di due coppie di rette aventi un punto comune. The other three axioms are simple properties that relate to the identity of two straight lines having a common point, the difference of the two sides of a triangle when the third side becomes indefinitely small, and T identity of two pairs of straight lines having a common point . La coppia di rette è una figura rettilinea, determinata dai segmenti rettilinei, aventi per estremi i punti delle rette date, ei punti delle rette così ottenute, e così via. The pair of lines is a rectilinear figure, determined by straight line segments, which have as extreme points of the given straight lines, and points of the straight lines thus obtained, and so on. La coppia rettilinea non è l'angolo di due raggi o di due rette. The torque is not rectilinear the angle between two rays or two straight lines. Secondo le ipotesi sull'infinito e sull'infinitesimo attuale dell'in- troduzione diamo alcune ipotesi le quali ci permettono di stabilire una geometria assoluta, indipendente cioè dall'assioma V d'Archimede, 1) II concetto di un tale spazio è implicito nella prima pagina del nostro lavoro pubblicato nel Voi. XIX dei Math. According to the infinity and hypotheses sull'infinitesimo Current In-introduction we give some assumptions which allow us to establish an absolute geometry, ie independent of V by the axiom of Archimedes, 1) The concept of such a space is implicit in first page of our paper published in Vol XIX of Math. Annalen, e non è da confondere con quello dello spazio an dimensioni in esso contenuto. Annalen, and not to be confused with that of n-dimensional space contained therein. 2) Vedi oss. 2) See oss. Ili, del n. Ill, of n. 1 e oss. 1 and oss. IX del n. IX of n. 4 della parte I, 4 of Part I,

Page xxx Page xxx

XXX e di far scaturire da essa due sistemi generali nei quali sono com- presi i sistemi particolari di Euclide e di Riemann. XXX and to bring forth from it in two general systems which are includ-ing the particular systems of Euclid and Riemann. Nel sistema della retta chiusa assoluta, che noi adottiamo, abbiamo precisamente il sistema di Euclide e quello di Riemann, in modo che le ipo- tesi precedenti servono a mettere in relazione questi due sistemi in un solo sistema generale applicando il concetto delle diverse unità di misura. In the system of the straight line closed absolute, that we use, we have precisely Euclid's system and that of Riemann, so that the hypo-thesis prior serve to correlate these two systems in a single system by applying the general concept of the different units of measure. L'unità che ci da il sistema Riemanniano è appunto infinita rispetto a quella che ci da il sistema di Euclide. The unity that gives us the system is indeed infinite Riemannian than that of Euclid's system. La facilità con cui dal piano Euclideo si passa al piano completo o Riemanniano, senza mai uscire dal piano, e la facilità con cui dal piano all'infinito dello spazio a tre dimensioni Euclideo, che è un piano completo, si dimostrano molte fra le proprietà fondamentali di questo spazio, e così analoga- mente per gli altri spazi di date dimensioni, ci pare degna di nota. The ease with which the plan is passed to the Euclidean or Riemannian complete plan, without ever leaving the floor, and the ease with which the plane of the infinite three-dimensional Euclidean space, which is a comprehensive plan, will show many of the properties Fundamental to this space, mind-and so similar to other spaces given size, it seems worthy of note. Si potrà obiettarci che mentre sosteniamo dover essere il numero degli assiomi il minore possibile, facciamo uso di ipotesi astratte. You may need to be obiettarci that while we support the number of axioms as small as possible, we make use of abstract hypotheses. E l'obiezione sotto un certo punto di vista ha il suo valore, ma anche a ciò si trova nel nostro libro una risposta. And the objection from a certain point of view has its value, but also to what is in our book answers. Intanto, come dimostriamo nelle note indi- cate con numeri romani, le ipotesi suddette non introducono alcun assioma oltre ai già dati nel campo finito, quando si voglia rimanere in questo solo campo, tranne il postulato delle parallele; perché in quelle note trattiamo appunto la geometria coli'aiuto del testo indi- pendentemente da quelle ipotesi, per far rilevare altresì quale im- portanza esse abbiano nello svolgimento e nel coordinamento delle proprietà fondamentali dello stesso campo finito. Meanwhile, as we show in the notes indi-cate with Roman numerals, these assumptions do not introduce any axiom in addition to data already in the finite field, when you want to stay in this field only, except the parallel postulate, because in those notes precisely treat the geometry coli'aiuto text independently from those assumptions, which also pointed to importance they have in the conduct and coordination of the fundamental properties of the same finite field. Di più, come ab- biamo detto, volendo trattare il problema scientifico in tutta la sua generalità, abbiamo date queste ipotesi per stabilire una geometria in- dipendente dall'assioma V d'A re hi in e de, e per trattare e coordi- nare meglio fra loro i diversi sistemi geometrici conosciuti. Moreover, as we have said, wanting to address the scientific problem in its full generality, we have given these assumptions to determine a geometry-dependent axiom of V and A King in de hi, and to treat and co- Nare each other better known the various geometric systems. Prima ancora di dare le ipotesi suddette, dalla corrispondenza d'identità fra due forme, in^cui la retta rappresenta la forma fon- damentale, deduciamo i teoremi per l'uguaglianza delle figure, per la quale abbiamo bisogno dell'ass. Before giving the assumptions above, the correspondence between two forms of identity, in which the straight line ^ is fon-damental form, we deduce the theorems for the equality of figures, for which we need the ass. V, benché dalle nostre osserva- zioni in proposito non risulti una prova sicura della sua indipendenza dai precedenti. V, although from our observations in this regard is not a definite sign of his independence from the previous. Alla fine dei capitolo I del 1 libro trattiamo dei sistemi continui di figure invariabili nello spazio generale, e specialmente dei sistemi continui di segmenti invariabili sulla retta, senza ricorrere al movi- mento senza deformazione, del quale ci occupiamo al capitolo succes- sivo come principio di cui si ha bisogno soltanto per eseguire pra- ticamente le costruzioni geometriche. At the end of Chapter 1 of the book deal with figures of continuous systems invariant in space generally, and especially of continuous segments of the invariant straight line, without resorting to the move-ment, without deflection, which we deal with the chapter following that in principle that you only need to perform geometric constructions prac-tically. Pei sistemi continui di figure in- variabili ijoo occorre tener conto astrattamente di tutte le proprie^ Pei continuous systems of figures in-ijoo variables necessary to take account of all its abstractly ^

Page xxxi Page xxxi

XXXI delle linee intuitive, vale a dire che in ogni punto esse hanno una tangente; il che semplifica di molto la nostra esposizione. XXXI lines intuitive, that is to say that at any point they have a tangent which greatly simplifies our exposure. Nel libro II della parte I studiamo da principio le prime proprietà dei fasci di raggi, e dei settori angolari ed angoli di essi *). In Book II of Part I we study at first the ownership of the first ray beams, and the angular sectors and corners of them *). Ci oc- cupiamo poi delle proprietà del parallelogrammo, e dimostriamo il teorema fondamentale che se da uri punto qualunque di uri lato de! We then oc-cupiamo properties of the parallelogram, and prove the fundamental theorem that if from any point of uri uri de side! triangolo si conduce una parallela ad un altro lato, essa incontra il rimanente, e in modo che i segmenti sul primo e sul terzo lato sono in corrispondenza di proporzionalità. conducting a triangle parallel to another side, it meets the remainder, and in such a way that the segments on the first and third side are in correspondence of proportionality. Definito il piano come la figura che si ottiene dal fascio considerando in esso quale elemento il punto anziché il raggio, il teorema precedente e quelli sul parallelogrammo permettono di dimostrare rigorosamente e facilmente le prime pro- prietà del piano ; fra le quali va notata quella che ogni fascio di raggi (Rr) ha un sistema limite assoluto all'infinito rispetto al suo centro, il quale, con tutto che abbia molte proprietà caratteristiche in comune colla retta, fra cui quella di essere determinato da due punti e continuo, non si può dire però che sia una retta. Described the plan as the figure obtained by the beam considering it as an element the point instead of the radius, the previous theorem and the parallelogram on the permit to demonstrate rigorously and easily the first pro-ownership plan, including the one that goes unnoticed each ray beam (Rr) has a system absolute limit to infinity respect to its center, which, with all that has many properties in common with the straight line, including the one to be determined by two points and continuous, it can not be But to say that it is a straight line. Esso ha le stesse proprietà rispetto a tutti i punti del campo finito del piano relativamente all'unità fondamentale Euclidea e all'unità infinita o Riemanniana, ma non rispetto all'unità assoluta. It has the same properties with respect to all points of the finite field of the plane relatively to the unit key and the unit infinite Euclidean or Riemannian, but not absolute relation to the unit. Da queste prime proprietà deriva l'identità dei fasci e la pro- prietà che un fascio è identico nella posizione delle sue parti, e per- ciò che ogni settore angolare (ab) in un verso è identico allo stesso settore percorso nel verso opposto. From these first property derives the identity of the beams and the pro-property that a beam is identical to the position of its parts, and for-that each angular sector (ab) in one direction is identical to the same sector in the opposite path. Da ciò risulta pure che il piano viene diviso da una sua retta in parti identiche; che ogni retta del piano è situata per metà in ognuna di queste parti. It follows also that the plan is divided by its share in the same line, each line of the plane is located half in each of these parts. Data la defini- zione di parte interna ed esterna di un triangolo si dimostrano i teo- remi relativi ai punti di intersezione di una retta coi lati del trian- golo. Given the definition of inside and outside of a triangle prove the theorems relating to the points of intersection of a right triangle with sides of the corner. Così senza assiomi speciali né espliciti né impliciti dimostriamo le proprietà relative alle intersezioni di una retta con una circonfe- renza e di due circonferenze fra loro. So no special axioms or explicit or implicit prove properties related to the intersections of a straight line and a circumference of two circles together. Definiamo i versi delle figure piane e del piano senza ricorrere ad oggetti esterni, o ad osservatori, e al concetto del movimento; il che introdurrebbe degli elementi empirici nelle nostre considerazioni. We define the lines of plane figures and the plan without resorting to external objects or observers, and the concept of movement, thereby introducing the elements in our empirical observations. Diamo le condizioni dell' identità di due figure nel piano, e distin- guiamo le figure identiche dello stesso verso (congruenti) da quelle di verso opposto (simmetriche); le proprietà principali dei sistemi piani continui di figure invariabili, e applichiamo poi questa teoria ì) Per le definizioni fin qui date di angolo veggasi l'appendice. Let the conditions of 'identity of two figures in the plane, and the distinction guiamo identical figures of the same direction (congruent) than in the opposite direction (symmetric), the properties of the systems have plans to continue invariable figures, and we apply this theory ì) for the definitions so far given the Appendix angle compare p. Ci pare degno di essere rilevato il criterio che noi segniamo nella definizione di angolo nelle diverse sue forme. There seems to be worthy of the criterion that we found we score in the definition of angle in its various forms. Vedi pag. See p. 281 e seg., 400 e seg., 478 e seg. 281 et seq., 400 et seq., 478 et seq. ecc. etc..

Page xxxii Page xxxii

XXXII alla deduzione delle proprietà principali del movimento di una figura del piano, come abbiamo fatto sulla retta. XXXII to the deduction of the main properties of the movement of a figure of the plan, as we did on the line. Nel capitolo II del libro II prendendo come unità di misura una unità infinita rispetto all'unità fondamentale Euclidea, o finita ri- spetto ali' intera retta, si ha il piano completo. In Chapter II of Book II, taking as a unit of measurement units from infinite Euclidean fundamental unit, or re-finished compared wings' entire line, you have the complete plan. Per la maggior parte delle sue proprietà valgono le stesse dimostrazioni già date pel piano Euclideo. For most of its properties are worth the same demonstrations already given PEL Euclidean plane. Nel capitolo III trattiamo specialmente del piano di Lo- batschewsky, mettendo a raffronto i tre sistemi fra loro. In Chapter III we treat especially of the plan-The batschewsky by comparing the three systems together. Del sistema di Lobatschewsky non ci occupiamo più oltre perché non ci è utile, come il sistema Riemanniano, nel coordinamen- to delle proprietà degli spazi geometrici Euclidei. System Lobatschewsky do not look further because there is useful, such as the Riemannian, in co-ordination to the geometric properties of Euclidean spaces. Nel libro III dopo aver definito la stella di 2a specie e lo spazio a tre dimensioni dimostriamo le loro prime proprietà, e dopo aver dimostrato come si possa considerare che lo spazio abbia un piano al- Tinfinito rispetto all'unità Euclidea, che è un piano completo, si de- ducono dalle sue proprietà quelle della stella, e da queste si passa alle proprietà delle altre semplici figure dello spazio stesso, incontrando ognora altre figure e altri sistemi più complicati che presentano sempre nuove proprietà. In the third book after defining the star of the second species and the three-dimensional space show their first property, and after demonstrating how one can consider that the space has a plan in relation to the unit Tinfinito-Euclidean, which is a plan complete, we de-duce from its properties as the star, and from these we pass to the other properties of the simple figures of space itself, encountering evermore, other figures and other more complicated systems that are always new properties. Lo spazio completo a tre dimensioni si deduce dallo spazio Eu- clideo con un' unità infinita. The space complete in three dimensions can be deduced from the space Eu-clideo with a 'infinite unity. Alla fine di questa prima parte è dato il terzo assioma pratico, il quale stabilisce a tre le dimensioni dello spazio intuitivo. At the end of this first part is practical given the third axiom, which provides three dimensions of space intuitively. Noi abbiamo seguito sempre le nostre costruzioni coir intuizione spaziale, ma poi- ché essa non è e non deve essere necessaria per la condizione VI allo svolgimento logico della geometria, così non abbiamo avuto bi- sogno di dar prima una tale proprietà, come non ci occorre neppure per il seguito. We have always followed our buildings coir spatial intuition, but-because it is not and should not be necessary for the condition VI to perform logic of geometry, so we did not dream of giving the first bi-such a property, as there even need to read. Arrivati a questo punto, e pei principi e le proprietà svolte nel capitolo I del libro I, che abbiamo trattati direttamente nello spazio generale (o anche volendo indipendentemente dalle dimensioni dello spazio), nessuna ragione giustificherebbe che ritenessimo possibile il solo spazio a tre dimensioni, perché è la forma corrispondente allo spazio intuitivo l), imperocché l'assioma pratico suddetto è necessario soltanto per le pratiche applicazioni, che abbiamo distinte nettamente dalla geometria teorica propriamente detta. At this point, and pei principles and properties carried out in Chapter I of Book I, we dealt with directly in the general space (or even if, regardless of the size of space), no reason can justify as we retain only the three-dimensional space, because it is the form corresponding to the input space), Inasmuch as the axiom that practice is only necessary for practical applications, we have clearly distinguished from the theoretical geometry itself. Col processo fin qui svolto segue dunque la costruzione della stella di 2a specie e dello spazio a quattro dimensioni S4 mediante uno spazio a tre dimensioni S3 e un punto SQ fuori di esso nello spazio generale. With the process already done so following the construction of the star of the second species and the four-dimensional space using an S4 S3 three-dimensional space and a point SQ out of it in the general space. 1) Vedi oss. 1) See oss. emp. emp. I del n. I n. 1, nota II e ass. 1, note II and ass. Ili pratico. Ill practical.

Page xxxiii Page xxxiii

XXXIII L'esistenza di un punto fuori di S9 non include ancora quella dello spazio Si, perché non si ha che il gruppo di punti (SZS0). XXXIII The existence of a point outside the S9 does not yet include the space is, why do not we have that the set of points (SZS0). Dalla costru- zione suddetta trattiamo collo stesso metodo le figure fondamentali dello spazio S4. From the construc-tion that we deal with the same method, the key figures of the space S4. Passiamo poi allo spazio di n dimensioni Sn, dove naturalmente trattandosi di un numero dato, comunque grande, ma finito di dimen- sioni, le dimostrazioni acquistano un carattere generale, e il metodo in esse è dirò così saltuario, perché ad es. We then go to the space of n dimensions Sn, where of course it is a given number, however large, but finite in dimensions, the demonstrations take on a general, and the method they say is so infrequent, because eg. le proprietà dello spazio completo Sn_! the spatial properties of complete Sn_! non possono essere trattate che alternativamente con quelle dello spazio Sn nel campo Euclideo; così pure molte dimo- strazioni bisogna darle col così detto metodo dell' induzione completa *) applicato contemporaneamente a più teoremi. can not be treated alternately with those of Sn in Euclidean space, and likewise many demon-tions with the need to give her so-called method of 'complete induction *) applied simultaneously to several theorems. In questa parte trat- tiamo dei sistemi generali continui di enti geometrici, sia nello spa- zio generale come in quello ad n dimensioni. In this part of the overall systems tiamo treat-continuous geometric entities, both in space as in the general uncle to n dimensions. Ma prima di trattare questa teoria, che si può anche chiamare geometria a più dimensioni rispetto ad altri enti geometrici già costruiti che non siano punti, occorre prima di tutto, per rimanere nel campo geometrico, stabilire le proprietà degli spazi in cui quegli enti sono stati dati o costruiti, allo stesso modo che la teoria delle curve piane di nmo ordine può i . But before we address this theory, which can also be called multi-dimensional geometry compared to other geometric entities that are not already constructed points, first of all, to remain in the field geometry, determine the properties of the spaces in which these entities were data or constructed, in the same way that the theory of plane curves of the nth order can. . . - . -. . . chiamarsi geometria a - - dimensioni. called geometry - dimensions. Dallo svolgimento di questa parte risulta chiaramente che il no- stro processo costruttivo della geometria a più di tre dimensioni è un processo nel quale l'intuizione è fusa colla pura astrazione; ma risulta pure che noi non intendiamo punto di intuire completamente le figure di n dimensioni o dello spazio generale, come intuiamo quelle di tre le quali corrispondono agli oggetti del campo della nostra osservazione. The conduct of this part is clear that the no-ter of geometry construction process more than three dimensions is a process in which intuition is fused with the pure abstraction, but it is well that we do not intend to point to grasp fully the figures of n size or the overall space, as we sense the three which correspond to objects in the field of our observation. Dal!' By! ' aggiunta, nella quale abbiamo indicato in che modo si possono stabilire i principi della geometria analitica ad n dimensioni, si vede che, come lo spazio ordinario viene rappresentato da una varietà nu- merica (x*y,z) che soddisfa ai nostri assiomi, lo spazio an dimensioni viene rappresentato da una varietà numerica (xl9x29...,xn) che soddisfa agli stessi assiomi. Additionally, where we have shown how one can establish the principles of analytic geometry to n dimensions, we see that, like the ordinary space is represented by America as a variety nu (x * y, z) that satisfies our axioms, n-dimensional space is represented by a numerical range (xl9x29. .., xn) which satisfies the same axioms. Ma come la prima varietà non è lo spazio ordi- nario, così la seconda varietà non è il nostro spazio an dimensioni. But as the first variety is not space ordi-nary, so the second variety is not our n-dimensional space. E noi abbiamo quindi ragione d'insistere nel far rilevare bene que- sto carattere fondamentale delle nostre ricerche, perché se rispetto al substrato di una verità geometrica, non ha importanza che essa sia enunciata in numeri o per mezzo degli enti geometrici corrispondenti, 1) Vedi intr. And then we have reason to insist on pointing out good I am-basic character of our research, because if compared to the substrate of a geometrical truth, no matter whether it is stated in numbers or by means of corresponding geometric entities, 1) See intr. pag. page. 18. 18.

Page xxxiv Page xxxiv

XXXIV nei fondamenti invece ha una capitale importanza l'esistenza, sia pure astratta, dell'oggetto geometrico l). XXXIV in the fundamentals instead has a paramount importance to the existence, albeit abstract, the geometric object). Qui abbiamo avuto specialmente di mira lo svolgimento dei prin- cipi della geometria a più dimensioni, e di dimostrare ogni proprietà di cui avevamo bisogno, fatta eccezione di due proprietà date alla fine, ma che furono dimostrate altrove, e nelle quali si ha già la cer- tezza che non è compreso alcun altro assioma. Here we were especially targeting the carrying out of principles of geometry in higher dimensions, and show all properties that we need, with the exception of two properties given at the end, but which were demonstrated elsewhere, and which has already certainty that is not including any other axiom. Se le proprietà sono in gran parte note, le dimostrazioni sono invece in grandissima parte nuove. If the properties are largely known, the demonstrations are in great part new. D'altronde un'esposizione matematica della geometria elemen- tare a più dimensioni secondo il nostro punto di vista, e che non fu mai fatta, rende più facile l'investigazione nelle parti superiori. Besides mathematical exposition of elementary geometry-ing to more dimensions to our point of view, and that was never made, makes investigation easier in the upper parts. Alla fine della parte II abbiamo fatto conoscere le operazioni del proiettare e del segare, e ne abbiamo dedotte alcune importanti con- seguenze, compatibilmente collo scopo e colla natura di quest' opera 2). At the end of Part II we made known to the operations of the project and saw, and we have deduced some important con-sequences, consistent with the purpose and with the nature of this' work 2). L'utilità di questo metodo per rispetto allo spazio ordinario consiste appunto in questo; che da enti generali od anche speciali si deducono classi di enti nel piano e nello spazio a tre dimensioni, o in uno spazio di dimensioni inferiori, e inversamente, dimostrando più facil- mente e coordinando sotto un punto di vista generale proprietà o enti nuovi o già noti. The usefulness of this method compared to the ordinary space consists precisely in this, that bodies are deduced general or even special classes of entities in the plane and in three-dimensional space, or in a smaller space, and inversely, demonstrating more easily and coordinated under a general point of view or entities owned or previously known. È questa la generalizzazione del principio spesso usato col quale mediante la geometria dello spazio ordinario si dimostrano più pro- prietà delle figure piane, o si ottengono nuove proprietà di que- ste figure; dirò anzi che esso acquista la sua vera ragione nello spazio an dimensioni, perche allora valgono dei teoremi gene- rali fra gli enti proiettati e gli enti ottenuti per proiezione. This is the generalization of the principle with which he often used by the geometry of ordinary space is proving to be more pro-properties of plane figures, or obtain new properties of this ste-figures, I will say that it actually achieves his real reason in the space of n dimensions , because then-general of the theorems are valid between the agencies and bodies thrown obtained by projection. L'esi- stenza delle figure e la verità delle loro proprietà, che si otten- gono con questo metodo, ad es. The existence of the figures and the truth of their property, which will repair spray with this method, eg. nel piano, si possono provare na- turalmente coi soli postulati del piano (s'intende senza trascurarne alcuno); ma ciò anzi conferma l'utilità del metodo 3). in the plane, you can try na-turalmente with just postulates of the plan (without neglecting any means), but this fact confirms the usefulness of the method 3). La geometria di n dimensioni è poi vantaggiosa anche sotto altri aspetti, perché molti enti del piano e dello spazio ordinario si lasciano rappresentare da 1) Si veda la discussione che noi facciamo nell'appendice a proposito delle definizioni di spazio e di geometria an dimensioni. The geometry of n dimensions is also advantageous in other ways, because many bodies of the plan and allow themselves to be ordinary space of 1) See discussion in Appendix we make about the definitions of space and geometry in n dimensions. 2) II lettore potrà utilmente quindi consultare i lavori che si sono svolti con questo procedi- mento a cominciare da quello da me pubblicato nei Math. 2) The reader may usefully consult the works then you are done with this proceeding, beginning with the one I published in Math. Annalen, voi. Annalen, vol. XIX, come quelli svolti prima e poi col metodo puramente analitico che trovano in questo libro la loro vera base geometrica. XIX, such as those made before and then with a purely analytical method in this book are true to their basic geometric. 3) Coi metodi della geom. 3) With the methods of the geom. descrittiva si possono costruire effettivamente queste figure nel piano e nello spazio ordinario. description can actually build these figures in the plane and in ordinary space. Vedi A. See A. Geom. Geom. descrittiva a quattro dimens. descriptive four dimens. R. R. Istituto Veneto, Apr. 1882. Venetian Institute, Apr. 1882. Su questo argomento abbiamo tenuto una conferenza nel Seminario matematico diretto dal prof. On this topic we have lectured in mathematics seminary directed by prof. Klein nell'estate del 1881. Klein in the summer of 1881.

Page xxxv Page xxxv

XXXV enti più semplici, ad es. XXXV bodies simpler, eg. da punti di uno spazio superiore, e quindi riesce spesso più agevole studiarne così le proprietà *). from points of an upper space, and then can often easier to study the properties so *). Certo è che non si può dire che un tale metodo sia applicabile in ogni ricerca geometrica. Certainly no one can say that this method is applicable in any geometric research. Ad es. Eg. esso si applica con maggior successo alla geometria proiettiva che alla geometria metrica. it applies most successfully to projective geometry that the metric geometry. Ogni metodo ha i suoi pregi ma anche i suoi difetti, e sopra tutto bisogna possederlo bene per saperne ricavare l'utile che esso può dare; basta natural- mente che esso sia veramente fecondo in una categoria almeno di ricerche importanti; come per certi metodi non è ancora avvenuto. Each method has its merits but also its shortcomings, and above all we must possess well get to know the profit that it can give, just naturally mind that it is very fruitful in at least one category of important research, as in some methods has not yet happened. E se qui non potevamo badare tanto alla novità delle proprietà quanto ai principi con cui devono essere svolte, non si deve credere che noi incoraggiamo ricerche le quali altro non sono che facili genera- lizzazioni e nulla d'importante contengono né per la geometria a tre né per quella ad n dimensioni. And if here we could not take care of both the new properties to the principles which must be carried out, we must not think that we encourage research which are nothing but generates easy-lizzazioni and contain nothing of importance nor the geometry of three nor for that to n dimensions. Così non bisogna neppure esagerare nel senso di voler servirsi delle n dimensioni in questioni ove è più pro- prio e più facile servirsi invece delle dimensioni ordinarie. So one must not exaggerate the sense of wanting to make use of the n dimensions in matters where it is most pro-PRIO and easier to use instead of ordinary dimensions. Dalla separazione della geometria teorica dalle sue pratiche ap- plicazioni, dal fatto che non tutti gli assiomi necessari per queste lo sono per quella; dal fatto ancora che la geometria non ha bisogno dei principi tolti dalla meccanica e dalla fisica; e infine da quanto abbiamo detto sull'uguaglianza delle figure, sulla distinzione di figure identi- che in congruenti e simmetriche in ogni spazio di un numero dato di dimensioni e sui sistemi continui di figure invariabili, chiaro appare che noi non facciamo uso del movimento dei corpi o dei "sistemi ri- gidi nella trattazione dei concetti fondamentali. Oggi, dopo i celebri lavori di Helmoltzil quale dichiara che non si può parlare di congruenza se non si possono muovere dei corpi rigidi o sistemi di punti senza deformazione 1* uno verso l'altro da alcuni si dichiara questo principio intuitivo indispensabile allo svol- gimento della geometria, e se ne fa uso esplicito nei trattati di geo- metria elementare, mentre non solo esso non è indispensabile, ma non può essere accettato senza venir meno al rigore necessario. Questo principio dipende invece dalle proprietà dell' ente geometrico partico- lare in cui si suppone avvenga il movimento ; applicato alla definizione dell'uguaglianza delle figure in uno spazio ad n dimensioni (n_l) restringe questo concetto alla sola congruenza, facendola dipendere dalle dimensioni dello spazio stesso; e restringe anche questa facendola 1) Vedi l'appendice. By the separation of the theoretical geometry from its practical applica-tions, by the fact that not all the axioms necessary for these are for that; still by the fact that the geometry does not need the principles removed from the mechanical and physical, and finally by what we have Equality said the figures, the distinction of figures identical in congruent and symmetrical in every area of ​​a given number of dimensions and shapes of invariant continuous systems, it appears clear that we do not make use of the motion of bodies or "systems re-Gidi in dealing with the fundamental concepts. Today, after the famous work Helmoltzil which declares that no one can speak of consistency if they can not move the rigid body or system of particles without deformation * 1 toward each other by some is states this intuitive principle essential to the CARRY-ment of the geometry, and it is used explicitly in the treaties of geo-metry elementary, not only while it is not essential, but can not be accepted without lack of rigor required. This principle depends instead properties of 'particular geometrical entity in which the movement is supposed to happen; applied to the definition of equality of figures in a space of n dimensions (n_l) restricts this concept to the one consistency, making it depend on the size of the space itself, and This also restricts making 1) See Appendix.

Page xxxvi Page xxxvi

XXXVI dipendere da tutti i contrassegni delle linee intuitive; esso suppone non solo l'esistenza nello spazio di figure identiche ad ogni altra figura data, ma eziandio dei sistemi continui di figure invariabili, mentre poi tutte queste proprietà si deducono dalla costruzione dello spazio. XXXVI depend on all the markings of lines intuitive, it presupposes not only the existence of figures in space identical to each other given figure, but even of figures invariant continuous systems, and then all of these properties are deduced from the construction of space. Per essere spiegato si deve appoggiare esso stesso al principio d'identità. To be told you should put itself to the principle of identity. Non può poi servire a definire astrattamente il continuo geometrico, ed è, come si disse, necessario per le sole pratiche applicazioni. It can then serve to define the abstract geometrical constant, and is, as you said, needed only for practical applications. Con tutto ciò non intendesi dire che nello stabilire gli assiomi geo- metrici non si debba empiricamente far uso del movimento, che è un idea primordiale; come anche non intendesi dire che il movimento non sia necessario alla formazione delle idee geometriche: questo è un problema psicologico che non ci riguarda; ma bensì intendesi che deve essere escluso come principio necessario nei fondamenti della geome- tria teorica *). With everything intendesi not to say that in establishing the axioms geo-metric should not be empirically make use of the movement, which is a primordial idea; as well as intendesi not to say that the movement is not necessary to the formation of geometric ideas: this is a problem psychology that does not concern us, but rather intendesi to be excluded as a necessary principle in the theoretical foundations of geometry *). Fin qui abbiamo parlato sempre del problema scientifico in tutta la sua generalità. So far we have always spoken of the scientific problem in its full generality. Ma la discussione sui concetti fondamentali della matematica non può non riguardare anche il lato didattico della que- stione, come già abbiamo accennato. But the discussion on the fundamental concepts of mathematics can not even relate to the educational side of the question, as we have already mentioned. Fu già osservato fin da principio che la geometria elementare da Euci i de fino ad oggi ha pochissimo progredito, in quanto che anche nei migliori trattati moderni non si sono tolti sistematicamente i di- fetti dei principi che si incontrano in Euclide, anche se in alcuni di essi si è portato qua e là qualche miglioramento; mentre non si può negare che altri stanno al di sotto degli Elementi del grande geome- tra greco, -sia per chiarezza come per precisione di concetti. It was noted at the outset that the elementary geometry of the de Euci to date has progressed very little, because even the best that modern treaties have not been systematically removed-fects of the principles that are found in Euclid, although in some of them has brought some improvements here and there, while there is no denying that others are below the geometric elements of the great between-greek,-both for clarity of concepts like precision. I pro- blemi scientifico e didattico vanno trattati con vedute diverse, ma la migliore soluzione del secondo dipende da quella del primo, im- perocché sebbene le esigenze didattiche debbano avere la loro de- bita influenza, esso vuoi essere risolto secondo un ordinamento scien- tifico prestabilito, come questo deve essere trattato in modo da aiu- tare più che sia possibile la soluzione del primo. The pro-scientific and educational problems should be treated with different views, but the best solution depends on the second than the first, im-For, although the educational needs should have their de-sorbed flu, you want it to be solved according to a scientific law typhoid predetermined, as this must be treated so as to AIU-ing much as possible the solution of the first. Noi parliamo special- mente dei trattati che servono per le scuole liceali, nelle quali la matematica va presentata ai giovani quale modello di rigore logico, più che come un insieme di verità utili praticamente, senza che per questo si perda di vista anche il suo scopo pratico. We speak of espe-cially treated for schools that serve high school, where math is presented to young people as a model of logical rigor, rather than as a set of practically useful truths, without thereby lose sight of its purpose well practice. Per raggiun- 1) Vedi a questo proposito i ^ y, 22 e 23 del libro I colle relative considerazioni dell'intro- duzione, i S 18, 19, 20 del libro II della parte I, ei paragrafi analoghi degli altri libri. To reach-1) See in this regard i ^ y, 22 and 23 of Book I of the intro-duction with the relative considerations, the S 18, 19, 20 of Book II of Part I, paragraphs and other similar books. E poiché in questo punto siamo in disaccordo con Helmoltz, come anche con Newton secondo il quale la geometria non è che una parte della meccanica (Phil. nat. Principia math. ed. 2 Cauibridge p. 273), trattandosi di così alte autorità, verso le quali non crediamo di mancare in alcun modo al rispetto e all'ammirazione che giustamente meritano esprimendo il nostro modo di vedere diverso, sen- tiamo però il dovere di dire altre ragioni in appoggio della nostra tesi; il che faremo nell'ap- pendice. And since at this point we disagree with Helmholtz, as well as with Newton's argument that the geometry is not that part of mechanics (Phil. nat. Principia math. Ed. 2 Cauibridge p. 273), being so high authority, to which we do not believe in any way lacking in respect and admiration they justly deserve expressing the way we see different sen-tiamo But the duty to tell other reasons in support of our thesis, which we in the AP- Appendix.

Page xxxvii Page xxxvii

xxxvii gere questo scopo, al rigore dei principi può essere sagrificato, se occorre, un maggiore sviluppo della materia. Gere xxxvii this purpose, the rigor of the principles may be sacrificed, if necessary, a further development of the subject. D'altronde siamo convinti che an- che nelle scuole universitarie i giovani devono esser posti in grado non solo di conoscere ma di possedere bene le idee fondamentali delle scienze che studiano e il maneggio del calcolo, coi quali sarà loro fa- cile poi, anche da sé o colla guida di buoni libri, risolvere problemi e dimostrare teoremi difficili. Moreover we believe that an in-school young university places should be able not only to know but have good ideas of fundamental sciences that study and handling of the calculation, with which they will then do-chile, also by themselves or with the help of good books, solve difficult problems and prove theorems. È allo scopo suddetto che abbiamo accompagnato i capitoli rela- tiva alla retta e al piano con note contrassegnate da numeri romani, e limitandoci al campo finito Euclideo, abbiamo fatto vedere come sia possibile attenersi ai principi che informano il nostro libro, cioè: 1. It is the purpose that we have accompanied the chapters relating to the line-tive and piano with notes marked with Roman numerals, and limiting ourselves to the Euclidean finite field, we showed how it is possible to follow the principles that inform our book, namely: 1. che la retta può essere assunta come elemento fondamentale di costruzione delle figure e di riferimento delle grandezze geo- metriche ; 2. that the line can be taken as a fundamental element of building shapes and reference quantities of geo-metric 2. che non si ha bisogno da principio deir assioma delle tre di- mensioni dello spazio intuitivo, né esplicitamente né tacitamente nel- l'esposizione logica, pur facendo uso sempre dell'intuizione e di con- siderazioni empiriche quando occorrano per venire in aiuto a consi- derazioni astratte; 3. that you do not need to be deir principle axiom of three dimensions of space-intuitive, either expressly or by implication in the logic-exposure, while still making use of intuition and con-empirical considerations when needed to come to the aid of con - abstract considerations; 3. che non si ha bisogno dell' assioma del movimento che quale mezzo pratico, e senza che per questo si complichino le dimostrazioni su ir uguaglianza delle figure; 4. that there is no need of 'axiom of the movement as a practical means, and without this will complicate the demonstration of ir equality of Figures 4. che tutte le proprietà fondamentali del piano e dello spazio a tre dimensioni si dimostrano col mezzo degli assiomi da noi dati e con quello delle rette parallele. that all the fundamental properties of plane and three-dimensional space is demonstrated by means of the axioms we have data and that of the parallel lines. A questo scopo il nostro assioma II nella nota IV per ragioni di- dattiche lo abbiamo sostituito coir assioma II', ed abbiamo svolta la geometria nel solo campo finito tanto coli' assioma II del testo, quanto coH'assioma II', finché nella nota XLIV e nelle seguenti non occorre più tener conto della distinzione di questi due assiomi. For this purpose our axiom II in the note for reasons of IV-dattiche we replaced coir axiom II ', and we have carried out only in the geometry finite field so coli' axiom II of the text, as coH'assioma II ', as long as in note XLIV and in the following no longer need to take into account the distinction of these two axioms. E poiché ci occorre il postulato delle parallele indipendentemente dal piano, a ciò provvediamo con una nuova definizione del paralle- lismo di due rette nella nota XVI. And since we need the parallel postulate regardless of the plan, what we provide a new definition of parallel-ism of two lines in the sixteenth note. I nostri assiomi esprimono proprietà date comunemente negli assiomi dei trattati di geometria elementare, tranne il IV e V a cui si sostituiscono proprietà molto più complicate. Our axioms express properties commonly given in the axioms of elementary geometry treated, except for the IV and V and their replacement property much more complicated. In queste note ci siamo limitati alla retta e al piano, sopra tutto perché data la costruzione dello spazio S3, si vede facilmente come si deve procedere nelle modificazioni. In this note we have limited ourselves to the line and the floor, above all because the construction of the space on S3, you can easily see how to proceed in the modifications. Si può in ogni caso senza uscire dal campo finito stesso far uso cori vantaggio delle espressioni di punto all'infinito di due rette, per indicare che sono parallele; come di retta all'infinito di due piani per indicare che sono paralleli. It may in any case the same end without leaving the field to use choirs advantage of expressions point at infinity of two straight lines, indicating that they are parallel, as the line at infinity of two floors to indicate that they are parallel.

Page xxxviii Page xxxviii

XXXVIII Speriamo di poter svolgere presto questi principi in apposito trat- tato di geometria elementare. XXXVIII We hope to play soon these principles in a special Treaty of elementary geometry. Potrà sembrare a prima vista che qualche parte del testo potesse essere tralasciata o abbreviata. It may seem at first glance that some part of the text could be omitted or abbreviated. Ciò può anche essere, ma oltre che teorie che non sembrano necessarie dapprima hanno in seguito la loro applicazione, dalla nostra discussione precedente sulle proprietà, e sulle dimostrazioni geometriche risulta che in questi argomenti nulla deve essere trascurato, e che la concisione quando trascina seco la indeterminatezza dei concetti è un grave difetto. This may be so, but in addition to theories that do not seem necessary at first to have followed their use, from our earlier discussion on the properties, and geometric proofs that nothing in these subjects should be neglected, and that the brevity when dragging with it the indeterminacy of concepts is a serious defect. In una sola reticenza possono essere nascoste tali proprietà la cui dimo- strazione richieda una radicale trasforma/ione dei principi mede- simi. In one such reticence may be hidden property whose demonstration requires radical changes / ion of principles simi-beacons. Finché nel dimostrare si fa uso dell'evidenza non si ha mai la certezza assoluta di non avere commesso qualche errore. As long as it makes use of evidence in proving you never have absolute certainty of not having done something wrong. Vi sono due mezzi per eliminare più che è possibile I1 errore. There are two ways that you can delete multiple I1 error. Tanto più sarà minuziosa la ricerca altrettanto sarà di minore importanza Terrore commesso, e si tratterà più di questioni di forma che di sostanza ; e quanto più si saranno meditati a più riprese i punti controversi, tanto maggiore sarà la sicurezza di averlo evitato. The more detailed research will be equally committed minor Terror, and it will be more than matters of form than of substance, and the more you will be pondered several times controversial points, the greater the conviction that it avoided. A questo scopo, specialmente nell'introduzione e nei due primi libri della prima parte, o laddove lo ritenemmo opportuno, abbiamo divise le proprietà nelle loro parti semplici più che ci è stato possi- bile, indicando nelle dimostrazioni con molta frequenza le proprietà sulle quali esse si appoggiano; indicazioni che vanno diminuendo a mano a mano che si va innanzi, perché è inutile ripetere una pro- prietà di cui si è fatto uso contìnuo. For this purpose, especially in the introduction and first two books in the first part, or where we thought it appropriate, we have divided the property in their most simple parts that we have been possible, giving demonstrations with great frequency on which the properties they support; particulars to be decreasing gradually before you go, because it is useless to repeat a pro-ownership of which has been used continuously. Così, anche i punti deboli, se ve ne sono, risaltano maggiormente, permettendo ad altri di correggerli e di raggiungere quella perfezione che tutti dobbiamo desiderare nel- l'interesse della scienza. Thus, even the weaknesses, if any, stand out more, allowing others to fix them and reach the perfection that we all desire in the interest of science. Ma bisogna anche guardarsi di non cadere nel pedantesco, dando troppa importanza a cose che non l'hanno, perdendo invece di vista le questioni di maggior conto. But we must also beware not to fall into pedantic, giving too much importance to things that have not, however losing sight of the issues more into account. Pure facendo uso delle figure intercalate nel testo, nella prima parte le abbiamo indicate alla fine delle dimostrazioni per mostrare appunto che si deve più badare al ragionamento logico che ali' in- tuizione; mentre nella seconda parte le abbiamo indicate fin da prin- cipio acciocché il lettore ne faccia subito uso, e metta così in eser- cizio per quanto è possibile la sua intuizione spaziale adoperandola anche laddove mancano le figure ; senza per questo venir meno al ri- gore delle dimostrazioni. Even using the figures interspersed in the text, in the first part we indicated at the end of the demonstrations to show more precisely that we must attend to logical reasoning wings' in-intuition, while the second part we have shown since principle lest The reader will immediately make use of, and put it in the financial year as far as possible its spatial intuition adoperandola even if the figures are lacking, without, however, fail to re-gore demonstrations. Certo che questo metodo minuzioso non è da consigliarsi nelle Of course this method is detailed by counsel in

Page xxxix Page xxxix

XXXIX ricerche superiori, perche condurrebbe a lungaggini inutili, essendo già il terreno in queste ricerche più facile e più sicuro alla deduzione. XXXIX research beyond, because they lead to unnecessary delays, it is already on the ground in this research easier and safer to deduct. La scienza si svolge ormai in due direzioni, l'altezza e la profon- dita; né si può dire anche nella seconda direzione se si possa giun- gere ad una fine, poiché col mettere i principi sotto nuovi aspetti o in- troducendone di nuovi sempre nuove questioni si presentano, la cui trattazione serve a meglio approfondire le origini della scienza. The science now takes place in two directions, the height and depth, nor can be said in the second direction if you can Giun-gere to an end, because by putting the principles in new ways or new-troducendone always new questions arise, the treatment of which serves to better address the root of science. Da principio non abbiamo avuto in mente di seriore questo libro per alcuna scuola; ma poiché uno degli scopi principali della scuola di ma- gistero di matematica annessa ad alcune delle nostre Facoltà di scienze almeno per ora è quello di preparare i futuri insegnanti delle scuole secondarie con conferenze intorno ai fondamenti delle materie d'inse- gnamento in queste scuole, crediamo che il nostro libro sia a ciò molto adatto, e possa quindi servire di guida nelle suddette conferenze. At first we did not have in mind seriore this book to any school, but as one of the main aims of the school, but math-gistero attached to some of our faculty of sciences at least for now is to prepare future teachers of secondary schools with lectures about the fundamentals of materials teach-teaching in these schools, we believe that our book is well suited to this and may therefore serve as a guide in those conferences. Questi insegnanti infatti non possono disinteressarsi del movimento scientifico intorno alle questioni relative ai fondamenti della scienza, che essi sono chiamati ad impartire, anche se naturalmente devono farlo in forma compatibile collo sviluppo intellettuale dei giovani, e colle esigenze degli altri insegnamenti. In fact, these teachers can not ignore the scientific movement around issues relating to the foundations of science, they are called to teach, though of course must do so in the form compatible with the development of young intellectual, and glues demands of other teachings. Essi possono poi contribuire moltissimo colla loro esperienza diretta alla soluzione del problema di- dattico. They can then contribute much by their direct experience to the solution of the problem-didactic. Ecco perché nel titolo del nostro libro abbiamo aggiunto Le- zioni per la scuola di magistero di matematica e tenemmo conto nel testo anche di questo scopo. That's why the title of our book we have added Le-tions for the school teaching of mathematics in the text, and we had also account for this purpose. Ed è anzi ad esso che si devono al- cuni maggiori sviluppi, che altrimenti potevano essere tralasciati. And indeed it is that you need to-CuNi major developments, which could otherwise have been overlooked. I giovani troveranno poi nell'appendice un'utile guida nello studio dei lavori di illustri maestri, che noi consigliamo ai nostri allievi della scuola di magistero. Young people will find useful guidance in Appendix, then in studying the works of famous masters, we advise our students of the school of teaching. Il nostro libro potrà essere gradito anche da quei filosofi ai quali piace di occuparsi di tali argomenti, sebbene nell'esposizione siste- matica di queste ricerche abbiamo escluso a priori, per le ragioni dette innanzi, ogni considerazione di indole filosofica propriamente detta. Our book can be enjoyed even by those philosophers who like to deal with these issues, although systematic exposition of these studies have excluded a priori, for the reasons given before, all considerations of a philosophical nature itself. Anche i più illustri matematici che si occuparono di tali questioni non andarono esenti da giuste critiche, pur avendo i loro lavori con- tribuito senza dubbio al progresso della scienza. Even the most distinguished mathematicians who dealt with these issues did not go free from just criticism, although their work with-no doubt contributed to the advancement of science. Mi parrebbe quindi di peccare di poca modestia ritenendomi superiore ad ogni critica, specialmente in un lavoro così vasto; sebbene d'altra parte ho la coscienza di averlo meditato a più riprese, specialmente nei punti più controversi. I think it would, therefore, guilty of little more modesty ritenendomi any criticism, especially in a work so vast, and though the other hand I have a conscience to have meditated on several occasions, especially in the most controversial. Ma badando ai risultati ottenuti ho la certezza, e senza di questa non avrei pubblicato questo libro, di aver seguita una delle vie più semplici; ed ho eziandio la convinzione che ogni menda But looking after the results I am sure, and without it I would not have published this book, that I followed one of the most simple, and I have the conviction that every fine eziandio

Page xl Page xl

XL che potesse essere scorta eventualmente potrà esser tolta seguendo le medesime idee fondamentali. XL, which could possibly be the basis will be removed following the same basic ideas. Debbo qui esprimere la mia alta riconoscenza verso SE il Mi- nistro della Pubblica Istruzione Pasquale Vi 11 ari ei membri della Giunta del Consiglio Superiore, che hanno voluto onorare quest* opera incoraggiandone la pubblicazione in conformità al R. I must here express my highest gratitude to HE the Mi-ister of Education There Pasquale 11 ari and members of the Board of the Supreme Council, who honor this by encouraging the publication * in accordance with R. Decreto 18 Mag- gio 1882. Decree-Thu May 18, 1882. Così pure debbo ricordare con gratitudine l'egregio dr Paolo Gazzaniga, professore al R. So I must also remember with gratitude the eminent Dr. Paolo Gazzaniga, a professor at R. Liceo e libero docente di analisi nella R. High school and university lecturer analysis in R. Università di Padova per la revisione di buona parte del ma- noscritto, delle bozze di stampa e per gli utili consigli da lui avuti rispetto alla chiarezza di alcune considerazioni, specialmente nel prin- cipio dell'introduzione. University of Padua for the revision of much of the manuscript-but, of proofs and for the helpful tips he had compared the clarity of some considerations, especially the principle of the introduction.

Table of Contents Table of Contents

Page xli Page xli

INDICE Prefazione...............pag. CONTENTS Preface ............... p. V-XL INTRODUZIONE Principi fondamentali delle forme matematiche astratte. V-XL INTRODUCTION Basic principles of abstract mathematical forms. CAPITOLO I. CHAPTER I. Nozioni e operazioni comimi. Comimi notions and operations. 1. 1. Unità e pluralità Prima e poi Concetti e segni delle cose Operazioni del porre e dell'astrarre o del togliere......... Unity and plurality, and then First Concepts and Operations of the signs of things to ask and dell'astrarre or off ......... pag. page. 1 2. 1 2. Operazione del paragonare Principi necessari....... Principles of operation necessary to compare ....... 3 3. 3 3. Condizione di determinazione di una cosa Operazioni a senso unico e opera- zioni inverse........... Condition for determining what operations a one-way and reverse operations ........... 5 4. 5 4. Gruppo di cose Concetto di fuori ......... Group Concept things out ......... C 5. C 5. Ordine di cose Successione o serie di cose........ Order of Succession things or series of things ........ 7 G. 7 G. Gruppo ordinato Operazione dell'unire....... Ordered group uniting Operation ....... 9 7. 9 7. Principi dell'operazione dell'unire.......... Principles of the operation of uniting .......... 10 8. 10 8. Operazione dello scomporre Gruppo nullo Estensione dell'operazione del togliere . Operation of the break away group of zero extension operation. ............. ............. 11 9. 11 9. Serie e gruppo ordinato limitati e illimitati Serie limitata di la specie Serie di serie............... Series and ordered group limited and unlimited series of limited series of the species range ............... 12 CAPITOLO II. 12 CHAPTER II. Prime proprietà delle forme matematiche astratte. Basic properties of abstract mathematical forms. % 1. 1%. Caratteri delle forme o grandezze matematiche astratte e concrete . Characters of the forms or mathematical magnitudes abstract and concrete. . . . . pag. page. 15 2. 15 2. Serie limitate e illimitate Serie limitate e illimitate di la specie ... Series limited and unlimited series of limited and unlimited species ... 1C 3. 1C 3. Legge associativa di un gruppo ordinato Come l'operazione dell'unire possa non essere un'operazione a senso unico........ Associative law of an ordered group as the task of uniting might be not an one-way ........ 19 4. 19 4. Corrispondenza univoca e del medesimo ordine fra più gruppi .... One correspondence between several of the same order and groups .... 20 CAPITOLO III. 20 CHAPTER III. Il numero nella sua prima formazione Numeri naturali. The number of natural numbers in its first formation. 1. 1. Primo concetto di numero ........... First the concept of number ........... pag. page. 26 2. 26 2. Operazione del numerare Gruppi e numeri naturali Addizione . Task Groups and number of natural numbers Addition. 27 3. 27 3. Concetto di numero maggiore o minore di un altro Altre proprietà dei numeri. Concept of greater or lesser number of another Other properties of numbers. 3G 4. 3G 4. Sottrazione Moltiplicazione Divisione Numero zero .... Subtraction Multiplication Division number zero .... 39 39

Page xlii Page xlii

XLIt CAPITOLO IV. XLIt CHAPTER IV. Dei sistemi di elementi e in particolare di quelli ad una dimensione. Systems of elements, and in particular those at one dimension. % U Considerazioni empiriehe sul continua intuitiva rettilinea.....pag. % U empiriehe Considerations on intuitive continuous straight ..... p. 45 2. 45 2. Elemento fondamentale Elementi e forme differenti di posizione e coincidenti in senso assoluto e relativo Leggi di determinazione oppure di esistenza o di costruzione delle forme........... An essential component elements and various forms of position and coincide in absolute and relative Read determination or existence or construction of the forms ........... 49 3. 49 3. Determinazione delle forme Corrispondenza d'identità delle forme Concetto di maggiore e di minore............ Determination of forms of identity matching concept forms of major and minor ............ 51 4. 51 4. Sistema ad una dimensione Segmenti del sistema, loro estremi Segmento in- divisibile Versi del sistema semplice ad una dimensione chiuso od aperto Prolungamenti di un segmento nel sistema ...:... System one-dimensional segments of the system, their extreme segment of the in-divisible Verses simple one-dimensional closed or open Extensions of a segment in the system ... ... 55 5. 55 5. Applicazione del linguaggio del movimento ai sistemi ad una dimensione. Application of the language of movement to the systems to a dimension. . . 60 CAPITOLO V. 60 CHAPTER V. Della forma fondamentale. The basic form. 1. 1. Definizione del sistema ad una dimensione omogeneo in un dato verso, e sue pri- me proprietà..............pag. Definition of the system to a homogeneous size in a given direction, and its pri-me properties .............. p. 62 2. 62 2. Prime proprietà del sistema identico nella posizione delle sue parti ... Basic properties of the system in the same position of its parts ... 65 3. 65 3. Ancora delle identità di due forme. Yet the identity of two forms. Forma fondamentale Necessità di essa Ipotesi I e II.............. Need basic form of it Assumptions I and II .............. 66 4. 66 4. Operazioni dell'unire e del togliere sulla forma fondamentale e loro nuovo signi- ficato Segmento nullo Altra indicazione di un segmento percorso nei suoi due versi Relazione fra tre elementi qualunque della forma ... Operations and unify the fundamental form and take on their new major significance Segment null Another indication of a path segment in its report two lines of three elements of any shape ... 68 5. 68 5. Segmenti multipli e summultipli di un segmento dato della forma fondamentale, e loro simboli Scala, unità, origine e campo di essa Condizioni per l'uguaglianza delle scale Uguaglianza relativa di due segmenti rispetto ad un' unità Segmenti trascurabili rispetto ad un altro segmento ... Summultipli multiple segments of a given segment of the basic form, scale and their symbols, units, source and scope of its conditions for the equality of the scales relative equality of two segments with respect to a 'unit segments insignificant compared to another segment .. . 74 CAPITOLO VI. 74 CHAPTER VI. Segmenti finiti, infiniti, infinitesimi, indefinitamente piccoli e indefinitamente grandi Numeri infiniti. Segments finite, infinite, infinitesimal, infinitely small and infinitely large numbers infinite. 1. 1. Ipotesi (II) sul!' Hypothesis (II) on! ' esistenza di elementi fuori del campo di una scala Segmenti fini- ti, infiniti e infinitesimi Segmenti finiti variabili Campo finito di una scala Ipotesi (IV) sulla determinazione dei segmenti infiniti Infiniti e infinitesimi di diversi ordini Loro proprietà Campi infiniti Elementi limiti ali' in- finito di diversi ordini............pag. existence of elements outside the field-scale segments for you, infinite and infinitesimal segments finite variables range over a wide Hypothesis (IV) on the determination of segments Infiniti infinite and infinitesimals of different orders They owned fields Elements infinite limits wings' in- finished by several orders ............ p. 84 2. 84 2. Numeri infiniti e infinitesimi di diversi ordini, loro proprietà e simboli . Infinite numbers and infinitesimals of different orders, their properties and symbols. 99 3. 99 3. Numeri transfiniti di Cantor Perché non possono applicarsi al confronto dei segmenti limitati della forma fondamentale ..*.... Why Cantor's transfinite numbers can not be applied to the comparison of limited segments of the basic form .. * .... 102 4. 102 4. Altra ipotesi (V) di costruzione dei segmenti della forma fondamentale Seg- menti e numeri infiniti d'ordine infinito Segmenti multipli e summultipli secondo un numero infinito Infinito, finito e unità assoluti Unità fonda- mentale................ Another hypothesis (V) segments of the construction of the fundamental form Seg-ments of infinite order and infinite numbers of multiple segments and summultipli according to an infinite number infinite, finite and absolute units Unit fundamental .......... ...... 106 5. 106 5. Legge associativa, commutativa della somma ; legge distributiva e commutativa della moltiplicazione dei numeri della classe (II) ...... Associative law, commutative sum, distributive and commutative law of multiplication of numbers in class (II) ...... 113 6. 113 6. Unità di diverse specie Nuovo carattere dell'unità di misura ... New units of different species character unit of measure ... 125 7. 125 7. Divisione dei segmenti finiti in parti finite Segmento finito sempre decrescente Suo limite Segmento indefinitamente piccolo rispetto ad una data unità Division of segments finished finished finished parts Segment Segment limit your ever-decreasing infinitely small with respect to a given unit

Page xliii Page xliii

XLIII Ipotesi sulla continuità relativa ad un'unità Elementi limiti di un gruppo di elementi rispetto ad un' unità nella forma fondamentale .... XLIII Hypothesis on the continuity relates to a unit Elements limits of a group of elements with respect to a 'fundamental units in the form .... pag- 125 8. p-125 8. Scomposizione di un segmento finito in n parti uguali Legge commutativa della somma di due o più segmenti consecutivi II segmento (AB) è identico allo stesso segmento percorso nel verso opposto rispetto all'unità finita Ele- menti limiti del gruppo di elementi ottenuto colla divisione successiva di un segmento in n parti uguali Altre proprietà degli elementi limiti dei gruppi rispetto ad un'unità............ Decomposition of a finite segment into n equal parts Law commutative the sum of two or more consecutive segments II segment (AB) is identical to the same segment path in the opposite direction with respect to unity over Ele-ments limits of the group of elements obtained with the next division of a segment into n equal parts Other properties of the elements limits of the groups with respect to a unit ............ 134 9. 134 9. Ipotesi (VII) sui campi infinitesimi dei segmenti Infinitesimo e zero assoluto Scomposizione dei segmenti in un dato numero infinito di segmenti infinitesimi Indefinitamente piccolo in senso assoluto Segmenti finiti assoluti variabili sempre crescenti o decrescenti Ipotesi (Vili) sul continuo assoluto Discreto assoluto Elementi limiti assoluti di un gruppo di elementi sulla forma fon- damentale ............... Hypothesis (VII) on the fields of infinitesimal infinitesimal segments and zero absolute breakdown of segments in a given infinite number of infinitesimal segments Indefinitely small in an absolute sense Segments finite absolute variables increasing or decreasing hypothesis (VIII) on the continuous Discreet absolute absolute absolute limits of elements a group of elements on the form fon-damental ............... 146 10. 146 10. Divisione assoluta di un segmento in n parti uguali Determinazione delle scale rispetto ad un segmento dato come unità fondamentale Divisione di un segmento in 7] parti uguali Legge commutativa della somma di due o più segmenti consecutivi 11 segmento (AB) è identico al segmento opposto (BA) Elementi limiti del gruppo di elementi ottenuti colla divisione successiva di un segmento in t] parti uguali Altre proprietà degli elementi limiti asso- luti di un segmento dato Simboli che rappresentano le parti e gli elementi di un segmento Segmenti commensurabili di la e 2a specie, e segmenti incom- mensurabili .......... Absolute division of a segment into n equal parts Determination of the stairs with respect to a given segment as the fundamental unit Division of a segment in 7] Law commutative equal parts of the sum of two or more consecutive segments 11 segment (AB) is identical to the opposite segment ( BA) limits of the elements of data obtained with the next division of a segment in t] equal parts Other properties of the elements limits ace-ners of a given segment symbols that represent the parts and elements of a segment of the commensurable segments and the second species , and incompatible segments mensurabili .......... 152 11. 152 11. Corrispondenza di proporzionalità fra i segmenti di una o più forme fondamentali 167 12. Correspondence of proportionality between the segments of one or more basic forms 167 12. Estensione delle scale Campi finito, infiniti e infinitesimi intorno ad un ele- mento della forma fondamentale aperta o chiusa rispetto ad un'unità . Extension Fields of stairs ended, infinite and infinitesimal ele-ment around a fundamental form of open or closed with respect to a unit. . . 173 13. 173 13. Ancora dell'uguaglianza assoluta e relativa di due forme..... Yet absolute and relative equality of two forms ..... 175 CAPITOLO VII. 175 CHAPTER VII. Forme a più dimensioni Campo di tutte le forme Grandezza estensiva eà intensiva di una forma e in particolare della forma fondamentale. Forms to more than one size range of all forms extensive and intensive size of a shape and in particular of the fundamental form. 1. 1. Definizione delle forme a più dimensioni e loro campo.....pag. Definition of multi-dimensional shapes and their field ..... p. 177 2. 177 2. Grandezza estensiva e intensiva delle forme e della forma fondamentale . Its extensive and intensive forms and basic form. . . 177 CAPITOLO Vili (*). 177 CHAPTER VIII (*). Numeri reali, relativi e assoluti, positivi e negativi. Real numbers, relative and absolute, positive and negative. % 1. 1%. Verso positivo e negativo della forma fondamentale Segmenti positivi e nega- tivi Criterio di confronto fra gli uni e gli altri Convenzione dei segni -4- e 181 2. With positive and negative segments of the fundamental form positive and negative criteria of comparison among each other and the Convention of signs -4 -, and 181 2. Numeri negativi e positivi Operazioni fondamentali dei numeri positivi e nega- tivi interi............... Positive and negative numbers Basics of positive numbers and negative integers ............... 183 3. 183 3. Numeri frazionar! Numbers frazionar! e loro operazioni fondamentali . and their fundamental operations. ..... ..... 189 4. 189 4. Numeri reali, razionali e irrazionali, assoluti e relativi. Real numbers, rational and irrational, absolute and relative. . . 196 CAPITOLO IX. 196 CHAPTER IX. Ultime considerazioni sulla forma fondamentale. Recent considerations on the fundamental form. % 1. 1%. Ipotesi riassuntiva della forma fondamentale Sua determinazione Forme fondamentali possibili............ Summary of key assumptions as determining your basic shapes possible ............ 202 2. 202 2. Considerazioni sulla scelta della forma fondamentale...... Considerations on the choice of the fundamental form ...... 203 (*) Di questo capitolo, come di altre parti dell'introduzione, non si fa uso nei fondamenti della geometria. 203 (*) In this chapter, as in other parts of the introduction, is not used in the foundations of geometry.

Page xliv Page xliv

ÌLIV PARTE PRIMA. ÌLIV PART ONE. La retta, il piano e lo spazio a tre dimensioni nello spazio generale. The straight line, the plan and three-dimensional space in general space. LIBRO I. BOOK I. La retta e le figure rettilinee in generale. The straight and rectilinear figures in general. CAPITOLO I. CHAPTER I. La retta e le figure rettilinee in generale Assiomi e ipotesi. The straight and rectilinear figures in general axioms and assumptions. % 1. 1%. Punto Assioma I Figura Spazio generale Geometria Sistemi di punti ad una dimensione............pag. The Point Axiom Figure Space Geometry Systems General points to a dimension ............ p. 209 2. 209 2. Assioma II Proprietà della retta.......... Axiom II Properties of the line .......... 213 3. 213 3. Lunghezza di un segmento rettilineo o distanza di due punti in un segmento ret- tilineo Segmento e distanza di due punti sopra la retta aperta o chiusa Punti opposti della retta chiusa Raggi della retta..... Length of a line segment or the distance of two points in a segment ret-tilineo segment and distance of two points above the line open or closed points of the line opposite of closed-ray line ..... 219 4. 219 4. Ass. Ili Identità di due rette Figure rettilinee Triangolo ... Ass Ill Identity of two straight lines Figures Triangle ... 220 5. 220 5. Punto limite di un gruppo di punti in generale Proprietà delle distanze di un punto dai punti di una retta .......... Limit point of a group of points in general properties of the distances of a point from the points of a line .......... 222 6. 222 6. Gruppi di punti che a due a due possono non determinare la retta ... Groups of points that two by two can not determine the straight line ... 224 7. 224 7. Segmento rettilineo limite di una serie di segmenti rettilinei Linea semplice Distanza di un punto dai punti di una linea semplice..... Straight segment limit of a series of straight line segments simple Distance of a point from the points of a simple line ..... * 227 8. * 227 8. Ogni coppia di punti sulla retta aperta determina la retta Soltanto due punti opposti possono non determinare la retta chiusa......* 233 9. Each pair of points on the line open determines the straight line, only two opposite points can not determine the straight closed ...... 233 * 9. Corrispondenza d'identità fra due figure Coppia di rette Assioma V Teo- remi sulle figure rettilinee uguali......... Correspondence identity between two figures Pair of Axiom V Teo straight and rowing on the same rectilinear figures ......... 234 10. 234 10. Ipotesi I e II sulla retta assoluta.......... Assumptions I and II on the absolute right .......... 244 11. 244 11. Triangolo con un lato infinitesimo Campo finito, infiniti e infinitesimi intorno ad un punto rispetto ad un'unità Campo finito assoluto Ipotesi III e IV 24G 12. Triangle with one side finished Field infinitesimal, infinite and infinitesimal around a point with respect to an absolute range over 24G 12 Hypothesis III and IV. Rette che uniscono un punto del campo finito con punti all'infinito . Straight lines connecting a point in the finite field with points at infinity. 255 13. 255 13. Raggi e rette parallele............ Rays and parallel lines ............ 257 14. 257 14. I due sistemi generali di geometria Sistemi di Euclide, di Lobatschewsky e di Riemann Ipotesi V............ The two mainstream systems geometry of Euclid, and the Riemann Hypothesis Lobatschewsky V. ........... 258 15. 258 15. Primo assioma pratico o postulato di Euclide Indirizzo delle ulteriori ricerche e l'unità fondamentale............ First axiom Euclid's postulate of practical or of further research and address the fundamental unit ............ 262 16. 262 16. Retta completa.............. Straight complete .............. 263 17. 263 17. Ipotesi VI Punti e figure opposte......... Hypothesis VI, and Points opposing figures ......... 265 18. 265 18. Rette i cui punti determinano segmenti retti con un punto. Whose points determine straight line segments with a period. L'ipotesi IV vale per ogni punto (dello spazio generale)........ The fourth hypothesis is true for every point (of the overall space) ........ 267 19. 267 19. Rette e raggi paralleli assoluti e relativi Campo limite assoluto intorno ad un punto del campo finito Euclideo.......... Straight and parallel rays absolute and relative absolute limit range around a point of the finite field Euclidean .......... 268 20. 268 20. Raggi e segmenti paralleli dello stesso verso o di verso opposto ... Rays and segments parallel to the same or the opposite ... 270 21. 270 21. Figure uguali in senso assoluto e relativo........ Figures equal in absolute and relative ........ 272 22. 272 22. Segmenti congruenti e simmetrici sulla retta Sistemi continui di figure qua- lunque invariabili (nello spazio generale) Sistemi continui di segmenti invariabili sulla retta............ Segments congruent and symmetrical figures on the right side of Continuous systems lunque-invariant (in general space) systems continue to invariable segments on the right ............ 274 23. 274 23. Assioma II pratico Movimento reale sulla retta...... Axiom II practical real movement on the right ...... 279 279

Page xlv Page xlv

XLV LlRRO II. XLV LlRRO II. Il Piano. The Plan. CAPITOLO I. CHAPTER I. // fascio di raggi e il piano Euclideo. / / Beam and the Euclidean plane. 1. 1. Settori angolari ed angoli di un fascio di raggi....... Angular sectors and corners of a beam of rays ....... pag. page. 281 2. 281 2. Il fascio (Rry, ) Settore angolare e angolo di due raggi Prime proprietà di essi Unità angolare............ The beam (rry,) Sector angle and angle of two beams Basic properties of these angular units ............ 283 3. 283 3. Settori angolari e angoli di un triangolo e di due triangoli uguali ... Angular sectors and corners of a triangle and two equal triangles ... 288 4. 288 4. Altre proprietà del fascio (Br)........... Other properties of the beam (Br) ........... 291 5. 291 5. Il parallelogrammo.............. The parallelogram .............. 294 6. 294 6. Teorema fondamentale sul triangolo.......... The fundamental theorem on the triangle .......... 296 7. 296 7. Definizione del piano e sue prime proprietà Fasci intorno ai punti di esso. Definition of the plan and its first property beams around the points of it. 299 8. 299 8. L'identità del piano (Rr) intorno ai suoi punti del campo finito ea quelli all'in- finito Proprietà delle perpendicolari nel piano...... The identity of the plan (Rr) around its points of finite field and those wholesale-end properties in the plane perpendicular ...... 305 9. 305 9. Considerazioni sul sistema dei punti limiti assoluti all'infinito dei raggi di un fa- scio (Rr) rispetto al centro R........... Considerations on the points system limits the absolute infinity of the rays of a do-scio (Rr) of the center R. .......... 311 . 311. 10. 10. Parti in cui il piano viene diviso da una sua retta Parte interna ed esterna di un triangolo.............. Parts where the plane is divided by a straight party's internal and external triangle .............. 316 11. 316 11. Angoli formati da due rette parallele con una trasversale comune Parti di una striscia piana rispetto ad una retta.......... Angles formed by two parallel lines with a common transverse Parts of a flat strip with respect to a straight line .......... = 322 12. = 322 12. Segmenti e distanze di un punto dai punti di una retta Distanza di due rette parallele................ Segments, and distances of a point from the points of a straight line distance of two parallel lines ................ 326 13. 326 13. Altre proprietà dei triangoli........... Other properties of triangles ........... 329 14. 329 14. Figure simmetriche rispetto ad una retta......... Figures symmetrical with respect to a straight line ......... 335 15. 335 15. Circonferenza e cerchio Archi di circonferenza Corrispondenza fra gli archi, gli angoli ei segmenti della retta all'infinito....... Circumference and Arcs of circle circumference Correspondence between arcs, angles and segments of the line at infinity ....... 336 16. 336 16. Punti comuui a due circonferenze nel piano Soluzione di problemi con la retta e il cerchio............... Comuui points to two circles in the plane solution of problems with the line and the circle ............... 343 17. 343 17. Versi degli angoli, dei triangoli e dei fasci del piano Versi del piano . Verses of angles, triangles, and beams of the floor plan of Verses. . . 347 18. 347 18. Figure congruenti e simmetriche nel piano........ Congruent and symmetrical figures in the plane ........ 351 19. 351 19. Sistemi continui ad una dimensione di figure invariabili nel piano ... Continuous systems to a dimension of figures invariable in the plane ... 354 20. 354 20. Movimento reale delle figure nel piano......... Real movement of the figures in the plane ......... 358 CAPITOLO II. 358 CHAPTER II. Il piano completo (o di Riemann). The comprehensive plan (or Riemann). 1. 1. Determinazione del piano completo Ipotesi VII....... Determination of the complete plan Hypothesis VII ....... pag. page. 361 2. 361 2. Elementi polari e perpendicolari. Elements and polar angles. ... ... *....... * ....... 363 3. 363 3. Identità del piano intorno ai suoi punti.......- 365 4. Identity of the plane around to his point ....... - 365 4. Parti del piano completo rispetto ad una sua retta Parte interna ed esterna di un triangolo.............. Parts of the comprehensive plan with respect to a straight inner and outer part of a triangle .............. 366 o. 366 or. Segmenti e distanze normali Proprietà dei triangoli rettangoli ... Segments, and distances normal properties of right triangles ... 368 6. 368 6. Figure simmetriche rispetto ad una retta nel piano completo .... Figures symmetrical with respect to a straight line in the comprehensive plan .... 371 7. 371 7. La circonferenza Punti comuni a due circonferenze..... The circumference points common to two circumferences ..... = 371 8. = 371 8. Altre proprietà dei triangoli del piano completo....... Other properties of triangles of the comprehensive plan ....... 372 9. 372 9. I versi degli angoli, dei triangoli e dei fasci del piano Versi del piano Fi- gure congruenti e simmetriche Sistemi continui di figure invariabili. The verses of the angles, triangles, and floor beams of the Verses of the plan fi-gures congruent and symmetrical figures invariant continuous systems. . . 374 10. 374 10. Piani limiti assoluti di un punto......... Plans absolute limits of a point ......... . . 375 375

Page xlvi Page xlvi

XLVI CAPITOLO III. XLVI CHAPTER III. Altre considerazioni sui sistemi di Euclide, di Lobatschewsky e dì Riernann. Other considerations on the systems of Euclid, and say Lobatschewsky Riernann. 1. 1. Assioma delle parallele nel sistema di Lobatschewsky Perpendicolare ad una reità che la incontra e passa per un punto fuori della retta nei tre sistemi di geometria, indipendentemente dalle proprietà del fascio di raggi e del piano. Axiom of parallel lines in the system of Lobatschewsky Perpendicular to a guilt that meets and passes through a point outside of the straight line in the three systems of geometry, regardless of the properties of the beam of rays and the plan. pag. page. 376 2. 376 2. Osservazioni sul piano di Lobatschewsky Altre proprietà che contraddistin- guono il sistema di Euclide supponendo date le proprietà comuni ai tre piani. Comments on the Lobatschewsky Other properties that contraddistin-guono Euclid's system dates assuming the properties common to all three floors. La somma degli angoli del triangolo nel sistema di Lobatschewsky . The sum of the angles of the triangle in the system Lobatschewsky. . . 380 LIBRO III. 380 BOOK III. Lo spazio a tre dimensioni. The space in three dimensions. CAPITOLO I. CHAPTER I. Lo spazio Euclideo a tre dimensioni. The Euclidean space in three dimensions. % 1. 1%. Costruzione della stella e dello spazio a tre dimensioni Prime loro proprietà pag. Construction of the star and space in three dimensions Prime their properties page. 385 2. 385 2. Intersezioni di rette e piani dello spazio......... Intersections of lines and planes of space ......... 387 3. 387 3. Piano all'infinito Rette e piani paralleli........ Plan Fees and infinite parallel planes ........ 388 4. 388 4. Identità dello spazio intorno ai suoi punti del campo finito Parti in cui lo spazio viene diviso da un suo piano......... Identity of the space around its points of the finite field Parts in which the space is divided by one of its plane ......... 391 5. 391 5. Rette e piani perpendicolari........... Perpendicular lines and planes ........... 393 6. 393 6. Distanza di un punto da un piano, di due piani paralleli, di una retta ed un piano paralleli, di due rette............ Distance of a point from a plane, two parallel planes, a line and a plane parallel to two straight ............ 396 7. 396 7. Angoli di raggi, rette, semipiani e piani......... Angles of rays, lines, half-planes and plans ......... 400 8. 400 8. Identità dello spazio intorno ai suoi punti all'infinito e alle sue rette . Identity of the space around its points at infinity and its fees. . . 405 9. 405 9. Angoloide Triedro............. Angoloide trihedron ............. 406 10. 406 10. Triedri uguali.............. Triedri equal .............. 408 11. 408 11. Tetraedro............... Tetrahedron ............... 409 12. 409 12. Versi delle stelle, dei diedri, triedri e tetraedri. Verses of the stars, the dihedral, triedri and tetrahedra. Versi dello spazio . Verses of space. . . 412 13. 412 13. Versi delle figure identiche Figure congruenti e simmetriche .... Verses of identical figures congruent and symmetrical figures .... 417 14. 417 14. Cono e cilindro.............. Cone and cylinder .............. 420 15. 420 15. Superfìcie sferica e sfera............ Spherical surface and ball ............ 423 16. 423 16. Intersezioni di due e tre sfere........... Intersections of two and three spheres ........... 426 17. 426 17. Sistemi continui di figure invariabili.........' Continuous systems of figures invariant ......... ' 427 18. 427 18. Movimento reale delle figure nello spazio......... Real movement of figures in space ......... 431 CAPITOLO II. 431 CHAPTER II. Spazio completo a tre dimensioni. Full three-dimensional space. * 1. * 1. Stella e spazio completi Prime loro proprietà. Prime Star and space complete their properties. Intersezione di rette e di piani...........- .... Intersection of straight lines and planes ........... - .... pag. page. 435 2. 435 2. Figure polari............... Polar figures ............... 436 3. 436 3. Identità dello spazio intorno ai suoi punti e alle sue rette Parti in cui esso viene diviso da un suo piano........... Identity of the space around its points and its straight parts where it is split by his plan ........... 438 4. 438 4. Rette e piani perpendicolari........... Perpendicular lines and planes ........... 439 5. 439 5. Distanza di un punto da un piano; di una retta da un piano e di due piani . Distance of a point from a plane, a line from one floor and two floors. 442 6. 442 6. Angoli fra raggi, rette, semipiani e piani......... Angles between rays, lines, half-planes and plans ......... 444 7. 444 7. Triedri................ Triedri ................ 445 445

Page xlvii Page xlvii

XLVIt 8. XLVIt 8. Distanze di due rette............. Distances between two lines ............. pag. page. 446 9. 446 9. Tetraedro............... Tetrahedron ............... 448 10. 448 10. Versi dello spazio, dei suoi diedri, triedri e tetraedri Figure congruenti e sim- metriche............... Verses of the space, its corners, and tetrahedra triedri congruent and symmetrical figures ............... 449 11. 449 11. Cono, cilindro e sfera ............. Cone, cylinder and sphere ............. 450 12. 450 12. Sistemi continui di figure invariabili e movimento reale nello spazio completo Spazi a tre dimensioni limiti assoluti di un punto...... Invariant continuous systems of figures and real movement in space complete three-dimensional space the absolute limits of a point ...... 454 13. 454 13. Assioma III pratico............. Axiom III practical ............. id. id. PARTE SECONDA. PART TWO. Lo spazio a quattro ean dimensioni nello spazio generale. Ean space to four dimensions in the overall space. LIBRO I. BOOK I. Lo spazio a quattro dimensioni. The four-dimensional space. CAPITOLO I. CHAPTER I. Lo spazio Eit:liclco a quattro dimensioni. The Eit space: liclco in four dimensions. 1. 1. Costruzione della stella di 2a specie e dello spazio a quattro dimensioni Prime loro proprietà............ Construction of the star of the second species and the space of four dimensions Prime their properties ............ . . pag. page. 457 2. 457 2. Intersezioni di rette, piani e spazi a tre dimensioni Fascio di spazi . Intersections of lines, planes and space in three dimensions of space beam. . . 460 3. 460 3. Spazio all'infinito Rette, piani e spazi paralleli dello spazio Si Loro co- struzione con elementi del campo finito........ Fees infinite space, parallel planes and spaces is the space They co-construction of the finite field with elements ........ 463 4. 463 4. Identità dello spazio S^ intorno ai suoi punti del campo finito Parti in cui S4 viene diviso da un suo spazio a tre dimensioni....... Identity of the space S ^ around its points of the finite field Parts where S4 is divided by one of its three-dimensional space ....... 466 5. 466 5. Rette, .piani e spazi perpendicolari.......... Straight lines. Perpendicular planes and spaces .......... 468 6. 468 6. Distanze................ Distances ................ 475 7. 475 7. Angoli......-......... Corners ...... - ......... 478 8. 478 8. Identità dello spazio Sa intorno ai suoi punti all'infinito, alle sue rette e ai suoi piani................ Identity of the space around his Sa points at infinity, with its straight lines and its plans ................ 484 9. 484 9. Triedri di 2a specie............. Triedri of the second species ............. id. id. 10. 10. Triedri uguali di 2a specie............ Triedri second species of the same ............ 487 11. 487 11. Angoloide di m spigoli Quadriedro......... Angoloide of m edges Quadriedro ......... 488 12. 488 12. Pentaedro............... Pentaedro ............... 490 13. 490 13. Versi della stella di 2a specie, dei triedri di 2a specie e dei quadriedri Versi dello spazio e dei pentaedri........... Verses of the star of the second species of the second species and triedri quadriedri Verses space and pentaedri ........... 493 14. 493 14. Versi delle figure identiche Figure congruenti e simmetriche .... Verses of identical figures congruent and symmetrical figures .... 497 15. 497 15. Cono e cilindro aventi per vertice una retta Coni e Cilindri di la e di 2a spe- cie aventi per vertice un punto.......... Cone and cylinder with a line to apex cones and cylinders and the second species with per vertex point .......... 499 CAPITOLO II. 499 CHAPTER II. Spazio completo a quattro dimensioni. Complete space of four dimensions. % 1. 1%. Proprietà principali dello spazio completo........ Main properties of the complete space ........ 503 503

Page xlviii Page xlviii

XLV1II LIBRO IL Lo spazio Euclideo an dimensioni. THE BOOK XLV1II n-dimensional Euclidean space. CAPITOLO I. CHAPTER I. Lo spazio Euclideo an dimensioni. The n-dimensional Euclidean space. 1. 1. Definizione e costruzione della stella di (n 2)wa specie e dello spazio an di- mensioni ............... Definition and construction of the star (No. 2) wa species and an of-space dimensions ............... pag. page. 509 2. 509 2. Intersezione di spazi nello spazio an dimensioni....... Intersection of spaces in the n-dimensional space ....... 510 3. 510 3. Spazi duali in Su Piramide fondamentale in Su...... On dual spaces in Pyramid on fundamental ...... 512 4. 512 4. Numero delle dimensioni dei sistemi di spazi di date dimensioni nello spazio Su 513 5. Number of dimensions of space systems date dimensions in space on 513 5. Alcune proprietà dello spazio completo an 1 dimensioni..... Some properties of space Full size n 1 ..... 514 6. 514 6. Spazio all'infinito dello spazio Euclideo Sn Spazi paralleli .... Infinite space of the Euclidean space Sn parallel spaces .... 519 7. 519 7. Identità dello spazio Sn intorno ai suoi punti del campo finito Parti in cui esso viene diviso da un suo spazio an 1 dimensioni..... Identity of the space Sn near their points of finite field parts where it is separated by a space dimension n 1 ..... 521 8. 521 8. Spazi perpendicolari............. Perpendicular spaces ............. id. id. 9. 9. Distanze Angoli Identità dello spazio intorno ai suoi spazi Sm- 524 10. Distances Angles Identity of space around its spaces Sm-524 10. Angoloide ennispigolo o enniedro Piramide fondamentale in Sn . Angoloide ennispigolo or enniedro Pyramid fundamental Sn. . . . . id. id. 11. 11. Triedri, quadriedri eco. Triedri, quadriedri echo. Enniedri di specie differenti...... Enniedri of different species ...... 528 12. 528 12. Versi degli enniedri e delle piramidi fondamentali nello spazio 8n - id. Verses of the pyramids and enniedri fundamental space 8n - id. 13. 13. Versi delle figure identiche Figure congruenti e simmetriche .... Verses of identical figures congruent and symmetrical figures .... 531 14. 531 14. Superficie sferica an 1 dimensioni.......... Spherical surface size n 1 .......... 532 15. 532 15. Linee e superficie o sistemi continui nello spazio generale, e di dato ordine nello spazio Sn,............... Lines and surface or continuous systems in general space, and ordered in space Sn, ............... 533 16. 533 16. Superficie coniche in uno spazio an dimensioni, che hanno per vertice un punto 541 17. Conical surfaces in an n-dimensional space, they have to summit a point 541 17. Coni e cilindri aventi per vertice uno spazio S,n....... Cones and cylinders which have a vertex space S, n ....... 543 8 18 Altre proprietà della sfera S2 n-\.......... 543 8 18 Other properties of the n-sphere S2 \ .......... 544 19. 544 19. Intersezioni di due, tre ecc. Intersections of two, three etc.. n sfere an 1 dimensioni in Sn . No ball size n 1 Sn. . . . . . . 546 20 Sistemi continui di figure invariabili in Su........ 20 546 systems in continuous invariant figures on ........ 547 8 21. 547 8 21. Applicazione del linguaggio del movimento ai sistemi di figure invariabili . Applying the language of movement to the systems of figures invariant. 549 CAPITOLO IL Operazioni del proiettare e del segare in Sn. 549 CHAPTER THE operations of the project and saw in Sn. Applicazione di esse allo studio delle configurazioni di un numero finito di spazi in ogni spazio Sr (r ^ n\ 1. Operazioni del proiettare e del segare Figure ornologiche complete . . pag. 550 8 2. Applicazioni al piano e allo spazio #3......... 558 3. Configurazioni generali di un numero finito di punti o di spazi.... 560 Aggiunta Primi principi di geometria analitica an dimensioni Osservazioni sulla geometria proiettiva assoluta........... 562 APPENDICE Studio storico e critico dei principi della geometria Sulle definizioni di spazio e di geometria di n dimensioni Sul movimento senza deformazione Sulle de- finizioni di angolo di due raggi o di due rette aventi un punto comune Os- servazioni su alcune dimostrazioni contro l'infinitesimo attuale ... 566 Indice dei nomi................ 627 Errata Corrige................ 629 Applying them to the study of configurations of a finite number of spaces in each space Sr (r ^ n \ 1. Transactions of the project and saw figures ornologiche complete .. p. 550 8 2. Applications to the plane and space # 3. ........ 558 3. General Configuration of a finite number of points or spaces .... 560 Addition First principles of analytic geometry in n-dimensional projective geometry, Remarks on absolute .......... . 562 APPENDIX Historical and Critical Study of the principles of geometry On the definitions of space and geometry of n dimensions, distortion On The movement de-finishes of two beams or angle of two straight lines having a common point Os-vations on some demonstrations against the 'infinitesimal current ... 566 Index of Names 627 Errata ................ ................ 629

Body of Text Body of Text

Page 1 Page 1

INTRODUZIONE PRINCIPII FONDAMENTALI DELLE FORME MATEMATICHE ASTRATTE CAPITOLO I. INTRODUCTION BASIC PRINCIPLES OF MATHEMATICS ABSTRACT FORMS CHAPTER I. Nozioni e operazioni comuni. Understanding and joint operations. 1- Unità e pluralità, Prima, e poi Concetti e segni delle cose. 1 - Unity and plurality, first, and then signs of things and concepts. Operazioni del porre e dell'astrarre o del togliere. Operations and dell'astrarre or put off. 1. 1. Penso l). I l). 2. 2. Penso una cosa o più cose 2). I think one thing or several things 2). Es. Il mio io è una cosa ; gli atti del pensiero, un giudizio, un raziocinio, gli animali e le piante sono più cose. Eg My ego is one thing; acts of thought, judgment, sound judgment, animals and plants are more things. 3. 3. Penso prima una cosa, poi una cosa. I think the first thing, then one thing. Def. Def. La cosa pensata prima nomino prima cosa, la cosa pensata poi (dopo) nomino seconda cosa. The first thing thought I mention one thing, the thing thought then (after) the second thing I mention. 4. 4. Def. Def. Ciò che corrisponde nel pensiero ad una cosa si chiama idea, con* cetto o rappresentazione mentale della cosa 3). What is the thought of a thing called idea, concept or mental representation * of the thing 3). 5. 5. Ind. Una o più cose o concetti si indicheranno con segni, ad es. Ind. One or more things or concepts with signs indicate, for example. con let- tere dell'alfabeto. with let-ters of the alphabet. Def. Def. Dico che questi segni rappresentano quelle cose, e che queste cose corrispondono ai loro segni e sono rappresentate dai loro segni 4). I say that these signs represent those things, and that these things are at their signs and are represented by their marks, 4). i ) Con ciò esprimo la facoltà e Patto del pensare. i) That the right to express and think of the Covenant. 2) Vedi oss. 2) See oss. n. No. 8. 8. Quando si pensa si pensa qualche cosa. When you think you think anything. Penso nessuna cosa, significa: non penso. I think anything, it means: I do not think. 3) Noi non intendiamo di definire o di sottosegnare ogni espressione nuova della quale facciamo uso nel discorso e tanto meno di definire ogni espressione mediante quelle che la precedono, ma sol- tanto sottosegniamo o definiamo i concetti e le operazioni che servono a stabilire i principi sulle forme matematiche astratte. 3) We do not intend to define or sottosegnare each new expression which we use in speech, much less to define each expression by those that precede it, but only so-sottosegniamo or define the concepts and operations that are required to establish the principles on abstract mathematical forms. Dichiariamo inoltre una volta per sempre che ai vocaboli usati di mano in mano nelle definizioni e nel discorso ne sostituiremo altri che esprimano i medesimi concetti senza bisogno di avvertenza speciale, evitando però gli equivoci, e senza introdurre di nascosto concetti che devono essere spiegati e definiti. We further declare once and for all to words used that hand to hand in the definitions and discourse it will replace others who express the same concepts without the need for a special warning, avoiding misunderstandings, and without introducing hidden concepts that must be explained and defined . Osserviamo anche che le definizioni nominali, i concetti e le operazioni che mano mano spie- gheremo o definiremo hanno valore soltanto nei casi in cui le consideriamo; che se poi anche in altri casi si usano per analogia le stesse denominazioni, ciò non significa che per i nuovi enti debbano valere le stesse leggi e si debbano trovare nelle stesse condizioni degli enti prima definiti. We also observe that the nominal definitions, concepts and operations that hand hand define or explain gheremo have value only in cases in which we consider, that if then also in other cases by analogy using the same name, this does not mean that new entities should apply the same laws and should be found under the same conditions previously defined entities. E finché questi nuovi enti non vengano considerati non occorre nemmeno tenerli presenti. And as long as these new institutions are not considered to be not even be aware of them. 4) È chiaro che questa def. 4) It is clear that this final. o indipendente dall'ordine in cui si possono considerare i segni che rappresentano una cosa. or independent of the order in which you can consider the signs that represent something.

Page 2 Page 2

Osa. Osa. Se A e B rappresentano un concetto, o come diremo anche un solo con- cetto, s'intende che A e B non rappresentano più concetti (2). If A and B represent a concept, or as we say only a concept, means that A and B are no longer concepts (2). 6. 6. Def. Def. Se penso una cosa dico che la cosa è data o posta dal pensiero ; se penso ad una cosa dico che la cosa è data o posta al pensiero. If I say something that it is given or raised by the thought, if I think one thing to say that it is given or placed at the thought. Es. La costruzione di un giudizio è una cosa posta dal pensiero; Carlo uomo è una cosa data al pensiero (vedi n. 18). Eg, the construction of a judgment is something posed by thought; Charles man is a thing given to thought (see n. 18). 7. 7. Def. Def. I. I. Se date o poste prima più cose (3), ad es. If dates or several things, first set (3), eg. A, B, C, D; io penso poi (3) alle cose A, B, Cy dico che astraggo o faccio astrazione da D, o anche che tolgo D dalle cose date. A, B, C, D, I think then (3) things to A, B, Cy, or do I say that astraggo abstraction from D, or D from the things that I remove dates. A, , C, si dicono cose rimanenti. A, C, you say things remaining. Def. Def. II. II. Pensare tutte le cose date, oppure ogni (ciascuna) cosa data si- gnifica non fare astrazione da alcuna di esse. Think about all the things given, or every (each) given thing-it means not be abstracted from any of them. 2. 2. Operazione del paragonare Principi necessari. Principles of operation necessary to compare. 8. 8. Paragonare le cose A e B fra loro significa applicare i principi: I. Compare the things A and B together mean to apply the principles: I. Il concetto A è 11 concetto A (principio d'identità). The concept A concept is 11 A (identity principle). Def. Def. I. I. Se A e B rappresentano un solo concetto e, il concetto e rappre- sentato da A è il concetto e rappresentato da B (def. oss. 5 e I). If A and B represent a single concept and the concept and repre-sented by A and the concept is represented by B (def. oss. 5 and I). Diremo: II concetto A è il concetto B o è lo stesso concetto B l). We will say: The concept is the concept B or A is the same concept B l). a. a. Se il concetto A è il concetto B, si deduce : il concetto B è il concetto A. If the concept A is the concept B, we deduce: the concept B is the concept A. Poiché per ipotesi A e B rappresentano un solo concetto (def. I), B e A rappresentano un solo concetto (def. 5), da cui si deduce a. Since by hypothesis A and B represent a single concept (def. I), A and B represent a single concept (def. 5), which implies a. (def. I) 2). (Def. I) 2). b. b. Se il concetto A è il concetto B, e il concetto B è il concetto C, si de- duce: il concetto A è il concetto B. If the concept is the concept B A, B, and the concept is the concept C, we de-duce: A concept is the concept B. Il concetto rappresentato da A e da B è il concetto rappresentato da B e da C, perché B per ipotesi rappresenta un solo concetto ; dunque lo è da A da B da C (def. 5), e perciò anche da A e da C (def. 5), da cui b (def. I) 3). The concept represented by A and B is the concept represented by B and C, because for hypothesis B represents a single concept; therefore it is from A to B by C (final 5), and therefore also from A and C (final 5), from which b (def. I) 3). IL II concetto A non è 11 concetto B (principio di diversità che è la negazione di quello di identità). THE II concept A concept B is not 11 (the principle of diversity that is the negation of the identity). Def. Def. IL Dico : il concetto A è diverso dal concetto B, se il concetto A non è il concetto B. THE I say, the concept A is different from the concept B, though the concept is not to the concept B. Oss. Oss. Il concetto una cosa è diverso dal concetto più cose (2). The concept is something different from the concept more things (2). III. III. Il concetto A è A e non è non - A (principio di contraddizione). The concept A is A and it is not - A (principle of contradiction). Def. Def. III. III. Diremo: A è e non è A o più semplicemente: A è non -A è assurdo. We say: A is and is not A or more simply, A is not-A is ridiculous. IV. IV. Il concetto A è o non è 11 concetto B (principio del mezzo escluso fra i contradditorii). The concept A is or is not 11 concept B (principle of the medium between the contradditorii excluded). e. and. Se il concetto A non è il concetto B, il concetto B non è il concetto A. If the concept A is not the concept B, concept B is not the concept A. i) Si badi bene che non è il segno A uguale al segno , ma il concetto rappresentato da A che è il concetto rappresentato da B. i) Note carefully that the sign is not equal to the sign, but the concept represented by A, which is the concept represented by B. In segni la def. In the final marks. I non esprime altro che Ar.c, Br.c. The other does not express that Ar.c, Br.c. Qui con e inten- diamo il concetto dato stesso. Here with the concept and we intend the data itself. 2j In segni da Ar.c, Br.c si deduce Br.c, Ar.c (def. 5} ; si deduce a fdef. I). In signs of Ar.c 2j, it follows Br.c Br.c, Ar.c (def. 5}, we deduce a FDEF. I). 3} In segni: Ar.c, Br.c; Br.c, cr. 3} In signs: Ar.c, Br.c; Br.c, cr. e, si deduce Ar.c Br.c, Cr.cfdef. and we infer Ar.c Br.c, Cr.cfdef. 5) ; si deduce Ar.c, Cr.c (def. 5). 5), we deduce Ar.c, Cr.c (def. 5). si deduce (def. I), we deduce (def. I),

Page 3 Page 3

3 B è A o non - A (IV). 3 B is A or not - A (IV). Se B è A^ A essendo per dato non - Bì si ha: B è e non è B (b\ ciò che è assurdo (III, def. III). Def. IV. Il risultato (conseguenza) dell'operazione del paragonare le cose A e B si chiama relazione tra A e B. Def. V. L'espressione: Più cose coincidenti significa una cosa (una sola cosa). Più cose che non sono una sola cosa (nel senso del n. 2) si chiamano distinte le une dalle altre. Oss. I. Quando parleremo senz' altro di più cose intenderemo che siano distinte. Def. VI. La proposizione: la cosa A è 'aguale alla cosa B significa: il con- cetto della cosa A è il concetto della cosa B (4). Si dice che in questo para- gone le cose A e B hanno una relazione di uguaglianza (def. IV). Segue da ciò e da ad Se A è uguale a B, B è uguale ad A. Def. VII. Quando A e B sono uguali hanno la stessa rappresentazione mentale nella relazione di uguaglianza (def. VI; 4), e quindi pensare ad A è come se si pensasse alla cosa B; diciamo perciò che le possiamo sostituire una all'alerà nel loro concetto o nella loro determinazione, o che si possono scam- biare fra loro. e. Se A è uguale a B e B è uguale a C segue: A è uguale a C. (def. VI e 6). Def. Vili. Se il concetto della cosa A non è il concetto della cosa B (II) le cose A e B si dicono diverse, la loro relazione dicesi relazione di diversità. f. È assurdo: A è uguale e non uguale a B. Difatti ciò significa che il concetto B (che è quello di A (be def. VI), è e non è lo stesso concetto B (e), il che è assurdo (III, def. III). g. Se A non è uguale a Bt B non è uguale ad A. Difatti se B non è non uguale ad A è uguale ad A (IV), ed allora A è uguale a B (d), il che è assurdo (f). h. Se A è uguale a B ed A non è uguale a C, B non è uguale a C. Difatti se fosse B uguale a C sarebbe A uguale a C (e), contro l'ipo- tesi (IV). 9. Def. I. Contrassegno di una cosa è ciò per cui possiamo paragonarla con altre cose. Se delle cose A e B consideriamo un solo contrassegno M, esse sono uguali perché corrispondono al solo concetto M (def. I, VI, 8). Diremo che A e B sono uguali rispetto al contrassegno M. Def. IL Se le cose A e B sono uguali rispetto ad alcuni loro contrasse- gni e non rispetto ad altri, dirò che hanno comuni quei contrassegni rispetto ai quali sono uguali. Es. Cajo è uguale come uomo a Tizio, ma Cajo e Tizio possono essere diversi ri- spetto ad altri loro contrassegni. Def. Ilf. Se le cose A e B distinte (def. V, 8), ciascuna considerata nel suo concetto (4), sono uguali rispetto a tutti i loro contrassegni che conside- riamo, vale a dire corrispondono allo stesso concetto rispetto ad essi, le If B is A ^ A being given to non - Bi we have: B and not B (b \ which is absurd (III final. III). Def. IV. The result (consequence) to compare the operation of things A and B is called a relationship between A and B. Def. V. Expression: More things coincident means one thing (one thing). More things that are one (in the sense of n. 2) is call distinct from each other. Oss. I. When we speak certainly 'much more shall understand that things are different. Def. VI. Proposition: A thing is' the thing aguale B means, the concept of what A is What the concept of B (4). It is said that in this para-gone things A and B have a relationship of equality (def. IV). It follows from this and to If A equals B, B is equal to A. Def. VII. When A and B are equal have the same mental representation in the relation of equality (def. VI, 4), and then think of A is as if one thought the thing B, we say so that we can replace a all'alerà in their concept or in their determination, or that they can exchange biare between them. and. If A is equal to B and B is equal to C follows: A is equal to C (final VI and 6) . Def. VIII. If the concept of the thing is not the concept of A to B (II) the things they say A and B are different, their relationship is said to respect diversity. f. It is absurd: A is equal and not equal to B. In fact this means that the concept B (which is that of A (final well. VI), is and is not the same concept B (s), which is absurd (III, def. III). g. If A is not equal to Bt B is not equal to A. In fact, if B is not equal to A is equal to A (IV), and then A is equal to B (d), which is absurd (f). h. If A is equal to B and A is not equal to C, B is not equal to C. In fact, if B equals C would be equal to C A (s), against the hypo-thesis (IV). 9. Def . I. Mark one thing is that by which we can compare it with other things. If A and B of the things we consider a single marker M, they are equal because they are the only concept M (def. I, VI, 8). We say that A and B are equal with respect to the marking M. Def. IL If things A and B are equal with respect to some contracted their dreams and not in another, I will say that they have shared those signs against which they are equal. Ex Caius is same as the man to Tom, but Tom and Caius may be different compared to their other re-marks. Def. Ilf. If A and B distinct things (def. V, 8), each considered in its concept (4), are equal with respect to all of their markings that riamo considered, that is to say correspond to the same concept with respect to them, the

Page 4 Page 4

4 diremo uguali in senso assoluto o semplicemente uguali od anche identiche (vedi oss. III). 4 equal say in an absolute sense or just equal or even identical (see oss. III). E scriveremo A = 1?, da cui B = A (d, 8). And written as A = 1?, From which B = A (d, 8). Def. Def. IV. IV. Se sono uguali soltanto rispetto ad alcuni contrassegni, le diremo uguali in senso relativo o equivalenti. If they are equal only in relation to certain marks, shall we say the same in a relative sense, or equivalent. E scriveremo A = B, da cui B = A (d, 8). And we write A = B, where B = A (d, 8). Oss. Oss. I. I. Se non si tien conto che di una sola uguaglianza, nel primo caso pos- siamo scrivere A = B e nel secondo A == B. If no account is taken that only one of equality, in the first case we may write A = B and in the second A == B. Def. Def. V. V. Tanto nell'uno come nell'altro caso A e B si chiamano memori (termini) dell' uguaglianza. So in one case as in the A and B are called Mindful (terms) of 'equality. Oss. Oss. II. II. Nel primo caso possiamo sostituire le cose A e B una all'ai tra rispetto a tutti i loro contrassegni : nel secondo caso invece possono scambiarsi rispetto ai soli contrassegni comuni (def. VII, 8). In the first case we can replace things A and B compared to an AI between all their marks: in the second case can exchange compared to only common markers (def. VII, 8). Dalle def. By def. Ili e IV segue: a. Ill and IV follows: a. Le cose A e B possono essere identiche in un solo modo, mentre pos- sono essere equivalenti in modi diversi secondo i contrassegni rispetto ai quali si possono considerare uguali. Things A and B may be identical in one way, and may have to be equivalent in different ways according to the marks in respect of which can be considered equal. Oss. Oss. III. III. Le cose A e B identiche se sono distinte (def. V, 8) sono però diverse nel senso che non sono una sola cosa, ma di questa diversità non si deve tener conto nella loro relazione di identità, ossia si considerano come se fossero una sola cosa o coincidenti (def. V, 8). The things the same if A and B are distinct (def. V, 8), however, are different in the sense that they are one thing, but this difference should not be taken into account in their relationship of identity, that are considered as if it were a one thing or coincident (def. V, 8). Se si tenesse conto anche della loro diversità, ad una cosa A non si potrebbe sostituire nessun'altra cosa distinta da A. If taking into account their diversity, such a thing could not be replaced at any thing distinct from A. Bisogna però che non sia contradetta l'identità A = A (i, 8) vale a dire non deve risultare che A è e non è A (III, 8). It must not be contradicted, however, that the identity A = A (i, 8) ie should not be that A and not A (III, 8). Def. Def. VI. VI. Se le cose A e B sono distinte, anche se sono identiche, possia- mo dire che hanno una posizione diversa. If things A and B are distinct, even if they are identical, possia-mo say that they have a different position. Oss. Oss. IV. IV. Così più cose non possono essere diverse se in fondo non sono uguali rispetto a qualche loro contrassegno, se non altro per essere ciascuna di esse una cosa. So more things can be different if in the end are not equal with respect to some of their mark, if only for one thing each of them. Ma quando le diciamo identiche non teniamo conto della loro diversità di po- sizione; e quando le diciamo diverse non teniamo conto dei contrassegni comuni (def. II) i). But when we say we do not keep the same account of their different position-and when we say we do not take into account several common markers (def. II)). b. b. Se A e B sono segni di una stessa cosa o del medesimo contrassegno di una cosa si ha: A = B oppure A = B. If A and B are signs of the same thing or the same symbol of something you have: A = B or A = B. Difatti il concetto di A è il concetto di J5, poiché ^u B rappresentando una stessa cosa o il contrassegno di una cosa, rappresentano anche il con- cetto di questa cosa o di questo contrassegno: e quindi il concetto del segno A è il concetto del segno B (def. I, 8), dunque b (def. VI, 8). In fact, the concept is the concept of J5, since u ^ B represents the same thing or the logo of one thing, they also represent, the concept of this thing or that sign: so the concept is the concept of sign A of sign B (final I, 8), then b (final VI, 8). Oss. Oss. V. V. In seguito alle considerazioni precedenti risulta che A rispetto ad al- cuni contrassegni è B, mentre rispetto ad altri, per lo meno perché B e A non sono I) Quando si definiscono o si costruiscono nuovi enti mediante quelli già studiati o un errore lo- gico definire la loro uguaglianza, se questa parola deve conservare il suo significato primitivo e ge- nerale qui esposto e se dalla definizione i nuovi enti sono in so pienamente determinati. Following the above that A with respect to the Cuni-marks is B, while compared to others, at least since B and A are not I) When you define or construct new institutions by those already studied, or an error lo- cal to define their equality, if that word must retain its original meaning and ge-eral described and defined by whether the new authorities are so fully determined. Stabiliti in- fatti i contrassegni dei nuovi oggetti, gli oggetti A e B saranno uguali se si potranno sostituire uno all'altro nelle relazioni A=A, BB, e da questa sostituzione si ricaveranno poi le condizioni di ugua- glianza dei nuovi enti vedi ad es. Established in the markings of the new-made objects, the objects A and B are equal if they can replace each other in the relations A = A, BB, and this substitution then will derive the conditions of equality in the new institutions see eg. cap vili. Chapter VIII. È dai suddetti principi di identità e di diversità che trarremo in seguito quelli per le forme matematiche astratte e per le figure della geometria, senza bisogno di ricorrere al movimento dei corpi senza deformazione, It is from these principles of identity and diversity which will draw in those followed for the abstract mathematical forms and to the figures of geometry, without need to resort to the movement of the bodies without deformation,

Page 5 Page 5

5 una sola cosa, A non è B. 5 one thing, A is not B. E da osservare che qui non vi è assurdo (def. IH, 8) per- ché non risulta nel medesimo paragone che uA è e non è -# ma sarebbe assurda un uguaglianza dalla quale risultatse nel medesimo paragone anche in un solo caso A è e non è U . It should be noted here that there is absurd (def. IH, 8) for-because it does not appear in the same comparison that uA is and is not - # but it would be an absurd equality from which risultatse in the same comparison in a single case A is and U is not. 3. 3. Condizione di determinazione di una, cosa. Determination of a condition, something. Operazioni a senso unico e operazioni inverse. One-way operations and inverse operations. 10. 10. Def. Def. I. I. Si dice che A è condizione di B quando B non può essere senza di A. It is said that A is a condition of B when B can not be without A. Diremo anche che A è condizione di un'operazione se senza di A non è possibile questa operazione. We say that A is also provided for an operation if A is not possible without this operation. Se questa operazione ha per risultato By A è condizione di B. If this has the result By condition A is B. Def. Def. II. II. Quando diremo ad es. When we say eg. che A, B, C, D determinano l'oggetto X intenderemo che A, B, C, D sono condizioni di un'operazione dalla quale si ottiene l'oggetto X, o che date le condizioni è dato l'oggetto stesso. that A, B, C, D, X determine the object shall understand that A, B, C, D are terms of a transaction from which it is the object X, or that given the conditions given is the object itself. Nel primo caso si dice che A, B, C, D servono a costruire l'oggetto X9 e in ogni caso che X dipende dalle condizioni che lo determinano. In the first case it is said that A, B, C, D are used to construct the object X9 and in any case that X depends on the conditions that determine it. E se Y non determina X, X è indipendente da Y. And if Y does not determine X, X is independent of Y. Es. Siccome mediante i contrassegni di una cosa la distinguiamo dalle altre cose (def. I, 9), così i contrassegni sono le condizioni di determinazione della cosa. Since using Ex marks distinguish one thing from other things (def. I, 9), so the markings are the conditions of determination of the thing. 11. 11. Def. Def. I. I. Una cosa, si dice, è determinata in modo unico da date condi- zioni quando quella e solo quella cosa è data da queste condizioni. One thing, they say, is uniquely determined by given conditions and when the only thing that is given by these conditions. Ma sic- come anche se vi fossero più cose determinate da date condizioni per distin- guerle le une dalle altre dovremmo avere altre condizioni : e queste e le prime determinerebbero una cosa soltanto, così quando diremo che una cosa è deter- minata da date condizioni intenderemo che lo sia in modo unico, eccetto che non sì dica diversamente. But sic-like even if there were more things from certain given conditions for guerle distinction from each other we should have other conditions, and these first and only lead to one thing, so when we say that something is deter-mined by certain conditions shall understand that it is in a unique way, except it does not say so otherwise. Def. Def. IL Analogamente se un'operazione da un solo risultato si dice a senso unico. THE Likewise, if an operation is said to result from one-way. a. a. Il porre e il togliere una cosa sono operazioni a senso unico. The put and remove operations are a thing one way. Vale a dire posta una cosa A (6) non si pone che A, e facendo astrazione da A (7), si fa astrazione soltanto da A. That is one thing to post (6) that A does not arise, and abstracting from A (7), we abstract only from A. Se ponendo infatti una cosa A si ponesse un' altra cosa B, si porrebbero più cose e non una (oss. 8). If putting it in something you would put a 'B else, it would put more things and no one (oss. 8). Analogamente per l'operazione del togliere. Similarly for the operation of removing. 12. 12. Def. Def. I. I. Se da A si ottiene B con un'operazione p, l'operazione colla quale da B si deduce A si chiama operazione inversa di pa Il porre e il togliere sono operazioni inverse. If A gives B p with an operation, the operation with which we can deduce B from A is called inverse operation to bring the pa and removers are inverse operations. Difatti porre A significa considerare la cosa A, togliere A significa non considerare la cosa A prima pensata (6, 7). In fact, ask what it means to consider, to remove it is to miss at first thought (6, 7).

Page 6 Page 6

6 4. 6 4. Gruppo di cose. Group of things. Concetto di fuori . Concept outside. 13. 13. Def. Def. I. I. Penso insieme più cose date che non si contraddicono fra loro e tali che togliendo ciascuna di esse (7) non tolgo alcun'altra, delle cose date. I think most things with dates that do not contradict each other and such that removing each of them (7) does not take off anything else, the things given. Il risultato di questa operazione nomino gruppo (aggregato, molteplicità o sistema) delle cose date l). The result of this operation appoint group (aggregate, multiplicity or system) of things dates l). Es. 1. Example 1. Ho ad es, l'idea A, poi l'idea B; dunque ho avuto più idee, cioè A e B (2). I for example, the idea of ​​A, B, then the idea, so I had more ideas, ie A and B (2). Considerando poi insieme queste idee ho il gruppo d'idee A e B. Considering all these ideas I have ideas of the group A and B. Es. 2. Example 2. Sono dati più oggetti ad es. Are data objects eg. la penna, il calamaio, il libro ecc. pen, ink, etc. the book. Pensando insieme questi oggetti ho il gruppo di essi. Thinking along these objects have the group of them. Def. Def. II. II. Diremo che le cose date sono nel gruppo, costituiscono o formano il gruppo o appartengono al gruppo, e che il gruppo è composto da esse. We will say that things are in dates group, constitute or form a group or belong to the group, and that the group is composed by them. Def. Def. III. III. Per evitare talvolta distinzioni inutili e dannose, anziché dire: un oggetto (cosa), diremo anche: un gruppo di un solo oggetto. To avoid unnecessary and sometimes harmful distinctions, rather than say an object (what), we shall also: a group of a single object. Oss. Oss. Delle cose date non può essere una contenuta nell'altra e tanto meno il gruppo può essere una delle cose date. Dates of things can not be contained within the other, much less a group may be one of the things given. Se ciò fosse, facendo astrazione da essa (7) si farebbe astrazione da un'altra cosa data o dalle altre cose date. If this were, in isolation from it (7) abstraction from something else you would date or dates from other things. Ind. Gli oggetti di un gruppo che non sono gruppi di più oggetti li in- dicheremo in generale con lettere A, , C ecc. Ind. The objects of a group that does not have them in groups of multiple objects in general-dicheremo with letters A, C, etc.. ei gruppi coi simboli (A), (B), (C) ecc. and groups with the symbols (A), (B), (C) etc.. Def. Def. IV. IV. Se ogni oggetto di un gruppo (A) (def. II, 7) è un oggetto di un gruppo (.B), si dice che (A) appartiene al gruppo (B). If each object of a group (A) (def. II, 7) is an object of a group (. B), it is said that (A) belongs to the group (B). Def. Def. V. V. Se poi non tutti gli oggetti di (B) sono oggetti di (A), diremo che A è parte o sottogruppo di (B). If not then all the objects (B) are objects of (A), we say that A is a part or subset of (B). Un gruppo si chiama anche tutto rispetto alle sue parti. A group is also called the whole than its parts. a. a. Se (A) è sottogruppo di (B) e (B) è sottogruppo di (C), (A) è sottogrup- po di (C). If (A) is the subgroup of (B) and (B) is sub-group of (C), (A) is-bit subgroup of (C). Difatti ogni oggetto di (A) è oggetto di ( ), che è oggetto di (C), dunque ogni oggetto di (A) è oggetto di (C) (e, 8; def. V). In fact, each object of (A) is the subject of (), which is the subject of (C), then each object of (A) is the subject of (C) (and, 8; final. V). Ma vi sono oggetti di (C) che non sono oggetti di (B) (def. V), i quali non possono appartenere ad (A) perché ogni oggetto di (A) è oggetto di (B) (def. V; IV, 8), dunque a 2). But there are objects of (C) that are not objects of (B) (def. V), which can not belong to (A) because each object of (A) is the subject of (B) (def. V; IV , 8), then to 2). Def. Def. VI. VI. Un gruppo (A), si dice, è fuori di un gruppo (B) quando (A) o una parte di (A) non appartiene a (B) 3). A group (A), it is said, is out of a group (B) when (A) or a part of (A) does not belong to (B) 3). Def. Def. VII. VII. Un gruppo (X) si dice comune a più gruppi (A), (B), (C) quando ogni oggetto di (X), è oggetto dei gruppi (A), (B), (C). A group (X) is said common to several groups (A), (B), (C) where each object (X), is the subject of the groups (A), (B), (C). Def. Def. Vili. VIII. Una cosa qualunque del gruppo, o scelta ad arbitrio, nel gruppo significa che appartiene al gruppo senza essere necessariamente una cosa de- terminata del gruppo stesso. One thing any group, or chosen arbitrarily, it means that the group belongs to the group without being necessarily a de-termined the group. 1) Qui ci appoggiamo sull' operazione del pensare o considerare insieme nella sua espressione più semplice (Vedi il n. 29 nel quale sono stabiliti i principi di questa operazione). 1) Here we rely on 'operation of the thought or considered together in its simplest expression (See n. 29 in which they are established the principles of this operation). 2) Si dedacono imme iatamente altri teoremi analoghi dalle def. 2) It immediately dedacono iatamente other similar theorems from the final. IV e V mediante la diretta ap- plicazione di e, 8. IV and V by the direct applica-tion of e, 8. Ad es. Eg. se (A) appartiene a (B) e (B) appartiene a (e), (A) appartiene a (C); ed an- che: se (A) è sottogruppo di (B) e (B} appartiene a (C), (A) è sottogruppo di (CJ; ecc. 3) II concetto di fuori non include necessariamente quello di spazio, poiché se non altro resi- stenza formale di un oggetto fuori di un gruppo è determinata dalla negazione, cioè che non appar- tiene al gruppo dato. La negazione in questo caso è giustificata dal principio stesso del mezzo escluso fra i contradditori (IV, 8). perché questo principio non avrebbe vigore se non vi fossero cose B fuori di A, o cose A fuori di B (Vedi a, 37). if (A) belongs to (B) and (B) belongs to (e), (A) belongs to (C); and an-that: if (A) is sub-group of (B) and (B} belongs to ( C), (A) is the subgroup of (CJ; etc.. 3) The concept of off does not necessarily include that of space, because if for no other formal resistance of an object out of a group is determined by the negation, ie which do not shall belong to the group since. The denial in this case is justified by the principle of excluded middle between conflicting (IV, 8). why this principle would not apply if there were things out of B of A, or things outside of A B (See, 37).

Page 7 Page 7

5. 5. Ordine di cose Successione o serie di cose. Order of Succession things or series of things. 14. 14. Def. Def. L La -prop.: Pensare le cose A e B nell'ordine AB significa pen- sare prima A e poi B (3). The L-prop.: Think about the things A and B in the order AB means the first pen-Sare A, then B (3). Considerando A e B come date in questo ordine (def. 6) diremo che si succedono nell'ordine AB. Considering A and B as given in the following order (def. 6) we will say that it happens in the order AB. Relativamente a quest'ordine abbiamo detto che A è la prima e B la seconda cosa (3) ; diremo anche che A precede B, e B segue A. In relation to this order we said that A is the first and the second thing B (3); also say that A precedes B, and B follows A. 15. 15. Def. Def. I. I. Ripetere il concetto A significa porre prima il concetto A e poi porre ancora il concetto A (6 e 3). To repeat the concept is to put the concept first and then to give even the concept A (6 and 3). a. a. La ripetizione di un concetto A è un'operazione a senso unico. The repetition of a concept A is a one-way operation. Difatti ripetendo il concetto A (def. I) si ha soltanto il concetto A e non altro (def. I; a, 11 e 3). In fact, by repeating the concept A (final I) has only the concept A and not other (def. I;, 11 and 3). 16. 16. Def. Def. Se date più cose A, B, C, D, E, F, G, H, L, M, N.... If you give most things A, B, C, D, E, F, G, H, L, M, N. ... (i puntini so- stituiscono le lettere), pensiamo prima ad A, poi a Bì e così via *), diremo che pensiamo le cose date, o che le cose date si seguono nell'ordine ABCDEFGHLMN..., nel quale A è la prima, B la seconda, C la terza, D la quarta, E la quinta cosa; e così via usando un nuovo vocabolo per ogni cosa considerata, in modo che per ripetizioni diverse usiamo vocaboli diversi 2). (Dots I-stituiscono letters), we think first of A, then BI and so on *), we say that we think the things given, or that things will follow in the order given ABCDEFGHLMN ..., where A is the first, the second B, C, the third, the fourth D, E the fifth thing, and so on using a new word for all things considered, so that for different repetitions we use different words 2). 17. 17. Def. Def. Considerare le cose A, B, C, D, E, F, G, H, L, M, N... Consider things A, B, C, D, E, F, G, H, L, M, N. .. ordinate, senza che sia dato il loro ordine, significa che le consideriamo una dopo l'al- tra, o successivamente. order, without it being given their order, means that we consider one after the al-between, or subsequently. 18. 18. Oss. Oss. Se esprimiamo ad es. If we express eg. un giudizio, noi possiamo giudicare poi ad es. a judgment, we may judge then, for example. se questo giudizio è o no esatto: in tal caso il giudizio si considera come cosa data al pensiero. If this view is correct or not: in this case the judgment is considered as something given to thought. Analogamente più cose poste prima dal pensiero possiamo considerarle poi come date al pensiero nell'ordine nel quale le abbiamo considerate, oppure indipen- dentemente da questo ordine, vale a dire facendo astrazione da esso (7). Like most things that are put first the thought then we can consider them as given thought to the order in which we have considered, or independently by this order, ie in isolation from it (7). E inversamente: siccome ad una cosa data al pensiero corrisponde un con- cetto (4) mediante il quale noi la confrontiamo colle altre cose (8), così per mezzo di questo concetto la possiamo considerare come posta dal pensiero. And inversely: as a thing given to thought is a concept (4) by which we compare with the other things (8), so using this we can consider the concept as set by the thought. Vale dunque il se- guente principio : Una cosa posta dal pensiero si può considerare poi come data al pensiero, e inversamente. It is therefore the if-guente principle: One thing you can consider mail from thought to thought, then as the date, and inversely. 19. 19. Def. Def. Considerare la successione o serie di cose ABCD.... Consider the sequence or series of things ABCD .... N.... No ... significa considerare le cose ABCD....N.... means considering things ABCD .... N. ... nell'ordine ABCD....N.... in the order ABCD .... N. ... L'ordine ABCD....N.... The order ABCD .... N. ... si chiama ordine della, successione 3). is called the order, sequence 3). 20. 20. Def. Def. I. I. Diremo anche che A è nel primo posto della successione o anche che occupa il primo posto nella successione, B il secondo, C il terzo, D il 1) cosi ma significa che s'intende ripetuta la stessa operazione per le cose date senza conside- rarle una per una. We say that A is also in first place in the succession, or even that ranks first in the succession, the second B, C the third, the D 1) so that means but it means repeating the same operation for the things given without considered rarle one by one. 2) vedi def. 2) see def. IH, 47. IH, 47. 3) La successione delle nostre idee, o il poter considerare più cose una dopo l'altra, ci ^intuire qualche cosa senza la quale noi non potremmo svolgere il nostro pensiero, e questa qualche cosa è il tempo. 3) The succession of our ideas, or to consider several things one after the other, ^ we perceive something without which we could not do our thinking, and this something is the time. Ma il concetto del prima e del poi non include necessariamente quello del tempo, vale a dire che non se ne possa fare astrazione. But the concept of before and then not necessarily includes the time, that is to say that if they can do abstraction. L'intuizione poi è quella facoltà colla quale il nostro spirito si assicura direttamente dell'esistenza di una cosa, e prende forme diverse secondo l'oggetto che si con- sidera. The intuition then is that faculty by which our spirit is directly ensures the existence of a thing, and takes various forms depending on the object which con-siders. Cosi l'intuizione del tempo e quella dello spazio. So the intuition of time and the space.

Page 8 Page 8

8 quarto, e va dicendo (16); appunto perché la loro posizione è diversa non es- sendo una cosa sola, anche se sono identiche (oss. 8, def. Ili, oss. Ili, def. VI, 9). 8 quarter, and is saying (16), precisely because their position is no different es-Sendo one thing, even if they are identical (oss. 8, def. Ill, pers. Ill, def. VI, 9). Def. Def. IL Se indichiamo con A\ B', C9 Z)'... THE If we denote by A \ B ', C9 Z)' ... i posti della successione occupati da A, B, C, ! the posts of the succession occupied by A, B, C,! ..., vale a dire con le stesse lettere accompagnate da apici, di- remo che le cose A, B, C, I),... , ..., Ie with the same letters accompanied by quotes, di-oar that things A, B, C, I), ... sono contenute nella successione A'S^CfU ecc. are contained in the sequence A'S ^ CFU etc.. ed anche nella successione ABCD ecc. and also in the sequence ABCD, etc.. Oss. Oss. I. I. Le cose della successione anche se identiche occupano posti differenti nella successione (def. VI, def. Ili, oss. Ili, 9, oss. 8). The succession of things even if identical occupy different places in succession (def. VI, def. Ill, pers. Ill, 9, pers. 8). Es. Io ho l'idea A, poi l'idea #, poi l'idea C; ABC formano una successione di idee nell'ordine ABC. Eg I have the idea to A, then the idea #, then the idea C. ABC formed a succession of ideas in ABC. Nella mia mente A occupa il primo posto, B il secondo e C il terzo 1). In my mind A ranks first, B second and C third 1). a. a. Cose diverse della serie occupano posti diversi nella serie. Number of different things occupy different places in the series. Perché per cose diverse usiamo vocaboli diversi, corrispondendo ad esse ripetizioni diverse (def. I e 16). Because we use different words for different things, they correspond to different repetitions (def. I and 16). 21. 21. Tnd. TND. Con Xì Y, Z, intenderemo cose qualunque della serie (def. Vili, 13 che vale anche per la serie). With X, Y, Z, shall understand things any series (def. VIII, 13 which also applies to the series). Def. Def. Data una cosa qualunque X della serie ABC....X....Y.... Given a thing any of the ABC series .... X X. ... Y. ... qualunque (16, 19, def. Vili, 13) dico che le cose ABC...X, fatta astrazione da X (7.) pre- cedono o sono prima di X, e le rimanenti cose della serie (7) seguono o sono dopo di X nell'ordine della serie. any (16, 19, def. VIII, 13) say that things ABC ... X, quite apart from X (7.) precede or are before X, and the remaining things in the series (7) below or are after X in the order of the series. a. a. La prima cosa della serie non ha cose che la precedono (def.). The first series of things that did not precede it (def.). b. b. Ogni cosa X di una serie ABC...Y... Everything X of a series ABC ... Y. .. e distinta da un'altra cosa qua- lunque Y della serie precede o segue la cosa Y (def. ea, 20). and distinct from another thing here lunque-Y series Y precedes or follows it (def. and 20). 22. 22. Def. Def. Se in una serie una cosa X non ha cose che la seguono o sono dopo di essa, si dice che X è Vultima cosa della serie. If in a series one thing X has the following things that are or after it, it is said that X is Vultima thing of the series. 23. 23. Def. Def. Se X precede Y e Z segue Y in una data serie, si dice che Y è compresa fra X e Z, e che Y e Z sono separate da X. If X precedes Y and Z follows Y in a given series, it is said that Y is between X and Z, and that Y and Z are separated by X. Le cose di una serie che seguono una cosa X e precedono una cosa Z si chiamano anche interme- die fra X e Z nella serie. The things that follow a series of one thing before something Z and X are also called intermediate-day between X and Z in the series. 24. 24. Def. Def. Se la prima cosa che segue una cosa qualunque X nella serie è Y, Y si chiama consecutiva seguente di X, e X consecutiva antecedente di Y. If the first thing that follows any one thing in the series X is Y, Y is called a row below the X, Y and X in a row prior to 25. 25. Ind. Indicheremo una serie di oggetti anche con un solo segno ad es. Ind. denote a set of objects with a single sign eg. con una lettera greca. with a Greek letter. Def. Def. I. I. Una serie jS si dice contenuta in una serie, o che appartiene ad una serie a, quando gli oggetti di fi sono oggetti di a, e quando gli oggetti che precedono o seguono ogni oggetto X in jS precedono o seguono l'oggetto X in a. A series is said jS contained in a series, or who belongs to a series, when the objects are objects in fi, and when the objects before or after each object X jS precede or follow the object X in a . Def. Def. II. II. Diremo che jS nel caso precedente è parte di a se in a vi sono oggetti che non appartengono a jS. We say that jS in the previous case is in a part of a if there are objects that do not belong to jS. Tuttavia, finché non diremo diversamente per parte jS di una serie a intenderemo una serie contenuta in ai cui oggetti consecutivi sono anche consecutivi in a (24). However, until we say otherwise jS for part of a series shall understand a number contained in the consecutive objects which are also consecutive to (24). i) Anche il concetto di posto o di posizione astratta non Include necessariamente quello di spa- zio (Vedi nota 3, n. 13). i) The concept of place or abstract location is not necessarily that includes spa-uncle (See note 3, n. 13).

Page 9 Page 9

6. 6. Gruppo ordinato. Ordered group. Operazione dell'unire. Operation of uniting. 26. 26. Def. Def. I. I. Date le cose A e B nell'ordine AB, si consideri insieme B con A, o come diremo anche si unisca B ad A; e più generalmente, data una serie qualunque di cose secondo la condizione della def. Given the things A and B in the order AB, consider set B with A, or as we will also join B to A, and more generally, given any number of things according to the condition of the final. I, 13 (19, 18) l) si applichi o si intenda compiuta questa operazione per le cose successive della serie (16, 19); il risultato di questa operazione chiamasi gruppo o tutto ordinato. I, 13 (19, 18) l) is applied or is meant accomplished this operation for the things later in the series (16, 19); the result of this operation is called group or ordered whole. Oss. Oss. Nel gruppo secondo la def. In accordance with the final group. I, 13 non entra come contrassegno di questa operazione l'ordine in cui la si eseguisce. I, 13 does not come as a mark of this order in which it executes. Es. Prima ho avuto l'idea A e poi l'idea B (3). Eg Before I had the idea to the idea and then B (3). Nell'operazione : considero in- sieme B con A tengo conto appunto dell'ordine in cui ho avuto le idee A e B* men- tre nel gruppo delle idee A e B secondo la def. In step: consider to-gether with A B I take into account precisely the order in which I had the ideas A and B * men-three in group A and B of ideas according to the final. 13 non tengo conto di questo ordine. 13 I do not take account of this order. Ind. Questo tutto lo indicheremo col segno AB, dove le lettere A e B si seguono nell'ordine delle cose corrispondenti nel tutto. Ind. This entire denote with the sign AB, where the letters A and B follow the order of things in the whole match. Così se alla cosa AB si unisce la cosa data C, si ha un tutto ordinato che indicheremo col simbolo (AB)C. If so to what AB joins the given thing C, there is an ordered whole denoted with the symbol (AB) C Se a questo si unisce la cosa data D si ha un tutto che indicheremo con ((AB)C)D. If this is combined with the given thing has a whole that D is denoted by ((AB) C) D E così via. And so on. In generale un gruppo ordinato lo indicheremo con un segno della forma (A). In general an ordered group it will be denoted by a sign of the form (A). Def. Def. IL Diremo che gli oggetti dati formano o compongono il gruppo nel dato ordine, e che il gruppo si compone o è l'insieme degli oggetti dati nel- l'ordine stabilito. IL We say that the data objects or form part of the group in the given order, and that the group is made up or is the set of data objects in-the established order. 27. 27. Def. Def. I. I. Un gruppo ordinato (A) appartiene al gruppo (B), se gli oggetti di (A) sono oggetti del gruppo ordinato (B), e la serie di (A) appartiene alla serie di (B) (def. I, 25). An ordered group (A) belongs to the group (B), if the objects of (A) are objects of the orderly group (B), and the series of (A) belongs to the series of (B) (def. I, 25) . Def. Def. li. them. Diremo anche che (A) è parte o sottogruppo di (B) se vi sono og- getti di (B) non contenuti in (A), e, se non si dirà diversamente, intende- remo anche che la serie di (A) sia parte della serie di (B) nel senso indicato nella def. Also we will say that (A) is a part or sub-group of (B) if there are og-jets (B) not contained in (A), and, if not otherwise it will be said, also intends-oar that the series of (A) is the set of (B) in the sense indicated in the final. II, 25. II, 25. a. a. Gli oggetti A, B, C,...., N.... The objects A, B, C, ...., ... N. di un gruppo ordinato che compongono il gruppo (def. I) sono parti del gruppo. of an ordered group making up the group (def. I) are parts of the group. Sono infatti gruppi di un solo oggetto, dati ciascuno da una serie di un solo oggetto ; supponendo estesa anche al caso della serie la def. Are in fact groups of a single object, the data, each by a series of only one object; assuming also extended to the case of the final series. Ili, 13. Ill, 13. b. b. Se il gruppo ordinato (A) apparitene al gruppo ordinato (B), e (B) al gruppo ordinato (C), (A) appartiene al gntppo ordinato (C). If the ordered group (A) apparitene to the ordered group (B), and (B) to the ordered group (C), (A) belongs to the gntppo ordered (C). Ogni oggetto di (A) è oggetto di (B), che è oggetto di (O) (e, 8). Each object of (A) is the subject of (B), which is the subject of (O) (and, 8). Di più gli oggetti consecutivi di (A) sono oggetti consecutivi di (B) (def. II, 25); e questi, che sono gli oggetti considerati di (A), sono consecutivi di (C) (e, 8 e def. I). More consecutive objects of (A) are consecutive objects of (B) (def. II, 25), and these, which are the objects considered to be of (A), are consecutive (C) (and, 8 and final. I). e. and. Se (A) è sottogruppo di un gruppo ordinato (B) e (B) è sottogruppo di un gruppo ordinato (C), (A) è sottogruppo di (C). If (A) is the subgroup of an ordered group (B) and (B) is a subgroup of the ordered group (C), (A) is the subgroup of (C). Il gruppo ordinato (A) appartiene a (C) appartenendo a (B) (b). The orderly group (A) belongs to (C) belonging to (B) (b). Come i) Vedi anche def. As i) See also final. i, II, 32 e def. i, II, 32, and def. Il, 33. The, 33.

Page 10 Page 10

10 pel teorema , 13 sì dimostra che non tutti gli oggetti dì (C) sono oggetti di (A) '). 10 PEL theorem 13 shows that yes, not all objects day (C) are objects of (A) '). d. d. Un gruppo non ordinato determina più gruppi ordinati. An unordered group determines the most ordered groups. Difatti ogni oggetto del gruppo dato può essere considerato come primo oggetto, ogni altro come secondo e così via. In fact, every object in the group given may be regarded as the first object, each other as the second and so on. Ind. Il gruppo che si ottiene dall' unione di un gruppo (B) ordinato o non ad un gruppo (A) ordinato o non, lo indicheremo col simbolo [(A) (B)]. Ind. The group, which is obtained by 'joining a group (B), or ordered not to a group (A) ordered or not, we will indicate with the symbol [(A) (B)]. 28. 28. La serie non è un gruppo ordinato. The series is an ordered group. Difatti nel concetto di serie (19) manca l'operazione dell'unire, come fu spiegato al n. In fact, the concept of the series (19) the operation is missing unify, as was explained in n. 26; esso significa soltanto che sono date o pensate le cose della serie nell'ordine stabilito (es. 26). 26, it just means that you think things are given or the order established in the series (eg 26). Osa. Osa. La serie ci da un tutto ordinato quando le cose della serie AB CD....Assono unite nel medesimo ordine fra loro. The series gives us a whole series of things sorted when AB CD .... Assono joined together in the same order. E quando considereremo la serie come gruppo la intenderemo, come gruppo ordinato. And when we consider the series as the group shall understand, as ordered group. Si vede però che non si tien conto dell'operazione dell'unire, le parole serie e gruppo ordinato corrispondono allo stesso concetto e pos- sono scambiarsi fra loro. We see, however, that no account is taken of the operation of uniting, the words and series ordered group correspond to the same concept and may be exchanged between them. 7. 7. Principi dell'operazione dell'unire. Principles of the operation of uniting. 29. 29. I. I. L'atto semplice del considerare insieme più cose date in un dato ordine o indipendentemente dal loro ordine è a senso unico (def, II, 11). The simple act of regarding things with more dates in a given order, or regardless of their order is one-way (def, II, 11). II. II. Pensando insieme o no più cose in un dato ordine o indi- pendentemente da questo ordine non si pensa alcuna cosa che non sia una delle cose date 2). Thinking together or not more in a given order or independently by this order does not think anything that is not one of the things given 2). III. III. Unire I9 oggetto C ali9 oggetto B unito all'oggetto A, signi- fica unire 1' oggetto C al tutto ottenuto dall' unione di B ad A, ovvero significa unire il tutto dato dall'unione di C a B coll'og- getto A (principio di associazione). Join I9 ali9 object C object B to object A together, it means add 1 'to the whole object obtained from C' union of B to A, that means combining all data from the union of C to B-jet coll'og A (principle of association). ABC = (AB) C (1) ABC A (BC) (2) a. ABC = (AB) C (1) ABC A (BC) (2) a. Unire l'oggetto C al tutto ottenuto dalV unione di B ad A equivale al- l'unire il tutto dato dall'unione di C con B all'oggetto A. Combine all the object C obtained dalV union of B to A is equivalent to the join-all given by the union of C with object A. B Difatti da (1) e (2) si ha: (AB) CA (BC) ( , 9 e III). In fact, from (1) and (2) we have: (AB) CA (BC) (, 9 and III). Oss. Oss. L Finché non si dirà diversamente l'operazione dell'unire sarà conside- rata in questo senso 3). The Until you say otherwise the operation will be deemed to have been uniting in this sense 3). 1) Vedi la nota 2, 13. 1) See note 2, 13. 2) In questo modo è evitato che nel gruppo ordinato o non, o nella serie di cose date si conside- rino anche cose che conseguono dalle prime secondo certi principi. 2) In this way it is avoided that in the group ordered or not, or things in the series of dates is considered rhino also things that follow from the first according to certain principles. 3) Vedi nota n. 3) See note no. 4. 4. Alcuni autori indicano coirunire nn'operazione generale, mentre per noi ha qui un senso particolare ben determinato. Some authors suggest coirunire nn'operazione general, while we have here a particular sense of well-defined. Ad es. Eg. Stolz (Vorles. ub. Alg. Arith. Leipzlg. 1885 voi. I, pag. 2) per eindeutige verHnupfung (che si può tradurre per combinazione od unione a senso unico) delle grandezze a 6 e.,., di un dato sistema intende una regola secondo la quale a ciascuno oppure ad alcuni gruppi ab corrisponde soltanto una grandezza e di questo o di un altro sistema E per in- dicare la Verknupfung usa i segni o, O ecc. Stolz (Vorles. ub. Alg. Arith. Leipzlg. You 1885. I, p. 2) for eindeutige verHnupfung (which translates to a one-way combination or union) in quantities of 6 and.,., A given system means a rule that each ab corresponds to certain groups or only one size and of this or another system and for the in-DICARE Verknupfung uses signs, etc. Or. E scrive ao 6=c, e legge a con b è e. He writes or 6 = c, and reads it, and with b. La Verknttpfung è presa in questo caso in senso generale. The Verknttpfung is taken in this case in a general sense. Anche l'operazione l\2 (A-4-B) è una Verknupfung che è com- mutativa ma non associativa (1. e. nota 2 al cap. m pag. 380. Veggasi anche HanKel: Vorles. ub. compi. Zahlen, 1867 pag. 21). Even the operation l \ 2 (A-4-B) is a com-mutative Verknupfung which is not associative (1. And. Note 2 to chap. M p. 380. Also compare p Hankel: Vorles. Ub. COMPI. Zahlen, 1867 p. 21). Che A o B=l\2 (A+B) si possa leggere se si vuole A con B è C essendo C=i\2 (A+J5) non v'é dubbio, ma il con in questo caso non ha più il suo senso primitivo e comune, e non corrisponde più all'unione più semplice di B con A. That A or B = l \ 2 (A + B) it can be read if one wants to A with B is C = C being the \ 2 (A + J5) There is no doubt, but with in this case no longer has its primitive sense and common, and no longer corresponds to the union of B with A. simplest

Page 11 Page 11

11 b. 11 b. Se i gruppi qualunque (A) e (B) ordinati o non, contengono ciascuno tutti gli oggetti dell'altro, ma non aggruppati diversamente, si ha (A) = (B). If any groups (A) and (B) ordered or not, each contain all the objects of the other, but not grouped differently, one has (A) = (B). Difatti dati gli oggetti di (A) coli'operazione dell'unire si ha un solo gruppo (I, def. II, 11). In fact, data objects of (A) coli'operazione uniting it has only one group (I, def. II, 11). Dunque se (B) fosse diverso da (A) (def. Vili, 8) si ot- terrebbero dagli stessi oggetti più gruppi e non un solo (oss. 8), contro il prin- cipio I. So if (B) was different from (A) (def. VIII, 8) are obtained by the same objects-would take more than one group and not a single (oss. 8), against the principle I. e. and. I sottogruppi di un gruppo ordinato (A) sono sottogruppi del gruppo formato dagli oggetti di (A) indipendentemente dal loro ordine. The subgroups of an ordered group (A) are subsets of the group formed by the objects of (A) independently of their order. Gli oggetti di (A) sono oggetti del gruppo (A') da essi formato considerane doli indipendentemente dal loro ordine, perché così facendo non si astrae da alcuno di essi, altrimenti considerandoli di nuovo nell'ordine dato si pense- rebbe un altro oggetto, contro II. The objects of (A) are objects of the group (A ') formed by them considerane doli regardless of their order, because doing so would not be abstracted by any of them, otherwise considering them again in the given order is another object would pense- , against II. Se (T) è un sottogruppo qualunque del gruppo ordinato (A) (def. Vili, 13), esso da un gruppo (T) che appartiene al gruppo (A'), e poiché in (A) vi sono oggetti fuori di (T) (def. II, 27), ad es. If (T) is a subset of any ordered group (A) (def. VIII, 13), it by a group (T) that belongs to the group (A '), and as in (A) there are objects out of ( T) (def. II, 27), eg. l'oggetto X, così al gruppo (T') di (A) non appartiene X (II). the object X, so the group (T ') of (A) does not belong X (II). Oss. Oss. IL Se gli oggetti di (A) e (B) sono aggruppati in modo diverso ma nello stesso ordine l'uguaglianza risulta dal principio III (vedi a, 40). THE If the objects of (A) and (B) are grouped in different ways but in the same order equality is apparent from the principle III (see a, 40). 8. 8. Operazione dello scomporre Gruppo nullo Estensione dell'operazione del togliere. Operation of the break away group of zero extension operation. 30. 30. Def. Def. Scomporre una cosa data X in parti è l'operazione colla quale si determinano delle parti AiB,C,Dr...,N che insieme unite danno il tutto X. Break a given thing X is the process by which shares are determined AIB shares, C, Dr. .., N that joined together give the whole X. a. a. Lo scomporre è l'operazione inversa dell'unire. The break is the inverse operation of uniting. Perché date le parti ABCD... Why are you the parts ABCD ... N.... No ... dall'unione di esse si ottiene il tutto, e collo scomporre si ottengono le parti ABCD... union of them will get it all, and break his neck ... you get the parts ABCD N... N. .. del tutto (def. 12). altogether (def. 12). 31. 31. 0*5. 0 * 5. I. I. Se tolgo dalle parti ABCD,.. If I remove the parties ABCD .. N... N. .. di un gruppo una o più parti, ma non tutte, le parti non tolte sono le parti rimanenti (7). a group of one or more parts, but not all, parts are removed the remaining parts (7). Def. Def. I. I. Per esprimere che togliendo tutte le parti dal tutto non vi è al- cuna parte rimanente, diremo che nulla rimane. To express that removing all parties from all there is to-cradle rest, we will say that nothing remains. Per evitare distinzioni inu- tili, o che facendole complicano le questioni, diremo anche che si ottiene in tal caso un gruppo nullo 1). To avoid distinctions inu-Tili, or making complicate matters, we will say that also is obtained in that case a group null 1). Conv. Nell'operazione del togliere una o più parti dal tutto d'ora innanzi riterremo compresa l'operazione dello scomporre il tutto in parti, quando la scomposizione non è già eseguita. Conv At step of removing one or more parts from the whole henceforth we will assume including the operation of the decompose the whole into parts, when the decomposition is not already been executed. Oss. Oss. IL In questo senso le operazioni dell'unire e del togliere si possono consi- derare come inverse, imperocché la prima operazione dalle parti ci da il tutto, men- tre la seconda, eseguita la scomposizione, dal tutto ci fa conoscere ciascuna p rte facendo astrazione dalle altre (7). THE In this sense, the operations and unify-off can be considered as inverse derare, Inasmuch as the first operation gives us all the parties, while the second three, performed the decomposition, since everything leads us to know each p rte doing abstraction from the other (7). Oss. Oss. III. III. Se si tratta di un gruppo ordinato, l'operazione del togliere, essendo inversa di quella dell'unire, segue nell'ordine inverso dell'operazione dell'unire. If it is an ordered group, the operation of the remove, being inverse of that unify, follows in the reverse order of the operation of uniting. i) In questo caso il nulla si considera per convenzione come qualche cosa, vale a dire come un gruppo di nessuna cosa. i) In this case, nothing is considered by convention as anything, that is, as a group of anything.

Page 12 Page 12

12 9. 12 9. Serie e gruppo ordinato limitati e ilUmtati Serie limitata, di 1* specie Serie di serie. Series and Series ilUmtati ordered group limited and restricted to species 1 * Series series. 32. 32. Def. Def. I. I. Se una serie ha un primo ed un ultimo oggetto (22) si dice limitata. If a series has a first and a last object (22) is said limited. Es. La serie delle mie idee ABC è limitata. Eg, the ABC series of my ideas is limited. Def. Def. //. / /. Se la serie non ha un' ultima cosa si chiama illimitata o senza fine, e quindi se ogni oggetto della serie data ha una cosa consecutiva seguente (24) la serie che si considera è illimitata *). If the series does not have a 'last thing called unlimited or endless, and so if every object has a series on what the next row (24) the series that we consider is unlimited *). 33. 33. Def. Def. I. I. Quando le cose A, B, C, D,..., JV,... When things A, B, C, D, ..., JV, ... di una serie si considerano in un nuovo ordine, in modo che le cose che precedevano e seguivano una data cosa la seguono, rispettivamente la precedono, nel nuovo ordine, la nuova serie e il nuovo ordine si chiamano inversi od opposti alla serie e all'ordine dati. of a series is considered a new order, so that things that preceded and followed a thing to follow, respectively, prior to, in the new order, the new series and the new order are called inverse or opposite to the series and all ' order data. a. a. La serie inversa dell'inversa di una serie data è la serie data stessa. The inverse of the inverse number of a given series is the same date range. In altre parole nell'ordine inverso dell'inverso le cose si succedono nello stesso ordine della prima serie. In other words in reverse order of the inverse things will happen in the same order of the first series. Difatti le cose che precedono e quelle che se- guono una cosa qualunque X nella serie data, la seguono, rispettivamente la precedono, nell'ordine inverso (def. I); e nell'ordine inverso dell'inverso la precedono, rispettivamente la seguono (def. I). In fact things that precede and those which follow a thing in any given series X, the following, respectively, prior to, in reverse order (def. I), and precede it in the reverse order of the inverse, respectively, the following (def. I). b. b. L'ultimo oggetto di una serie è il primo oggetto della serie inversa. The last object of a series is the first object of the inverse series. Perché tutte le cose che precedono un oggetto nella prima serie lo se- guono nell'ordine inverso (def. I), e quindi tutte le cose che precedono l'ultima nella prima (22) la seguono nella seconda. For all things that precede an object in the first series if guono-order (def. I), and then all the things that precede the last in the first (22) follow in the second. Es. Nell'ordine AB delle cose AB, A è la prima e B la seconda; neU'ordine in- verso BA, B è la prima ed A la seconda. In the order of things eg AB AB, A is the first and the second B; neU'ordine-in towards BA, B and A is the first to the second. b'. b '. Se in una serie una cosa è compresa fra due altre, lo è pure nella se- rie inversa. If a number is something between two other, it is also in the reverse se-ries. Difatti se la cosa B è dopo di A e prima di C nella serie data, le cose date si seguono nell'ordine ABC (16); e nella serie inversa C è la prima ed A è l'ultima, quindi la B è pure compresa fra A e C (def. 23). In fact, if it is after B of A and C in the series before date, things dates are followed in the order ABC (16); and in the series is the first inverse C and A is the last, then B is also between A and C (final 23). b". Se una serie non ha un ultimo oggetto, la serie inversa non ha un primo oggetto. Difatti se lo avesse, la serie data avrebbe un ultimo oggetto (b). Oss. /. La serie inversa ha però nel caso b" l'ultimo oggetto (def. 19). b. "If a series does not have a last object, the series does not have an inverse first object. In fact, if it had, the series would have given a last object (b). Oss. /. The inverse series has, however, in case b" the last object (def. 19). Def. Def. II. II. In tal caso diremo che la serie inversa non ha principio, ed è pure illimitata, come diremo illimitata una serie che non ha né primo né ul- timo elemento. In this case we will say that the series has not reverse principle, and is also unlimited, as we shall unlimited a series which has neither first nor ul-thyme element. Oss. Oss. li. them. Possiamo considerare non solo che siano date più cose A,B, C, D...N... We consider not only that things are more dates A, B, C, D. .. N. .. al pensiero ma possiamo anche ritenere, senza cadere in contraddizione, che l'ordine sia un contrassegno proprio delle cose date (18). thinking but we can also assume, without contradiction, that the order is just a sign of things dates (18). i) il concetto di successione di cose date (19) è indipendente dal fatto che questa serie sia o no li- mitata, e quindi i contrassegni di limitato e illimitato non sono in contraddizione col concetto di serie già dato. i) the concept of succession of things given (19) is independent of whether or not this series be-ited them, and then the marks of limited and unlimited are not in contradiction with the concept of the series already. La negazione è anche in questo caso sufficiente a stabilire astrattamente l'esistenza della serie illimitata, perché non o in contraddizione col concetto di serie limitata, che la prima comprende in sé. Denial is also in this case sufficient to establish the existence of theoretically unlimited series, or because they do not contradict the concept of limited series, that it includes in itself. il concetto del Ti 11 imitato come si vedrà non o precisamente quello dell'infinito. We imitated the concept of 11 as will be seen exactly what the infinite or not.

Page 13 Page 13

13 34. 13 34. Def. Def. I. I. La serie limitata, o illimitata, data può essere considerata come gruppo ordinato (oss. 28). The limited number, or unlimited, the date may be considered as ordered group (oss. 28). Il gruppo ordinato che ne risulta si chiama limitato o illimitato. The resulting ordered group is called limited or unlimited. Def. Def. IL Considerando le cose ABCD... THE ABCD Considering things ... N... N. .. di una serie limitata o illi- mitata come costituenti un gruppo (13), questo gruppo nel primo caso (def. I) dicesi limitato nell' ordine ABCD... a limited or unlimited-bounded as forming a group (13), this group in the first case (def. I) is called limited in 'order ABCD ... N... N. .. della serie ; e nel secondo caso dicesi illimitato nell'ordine stesso. the series, and in the second case it is said unlimited in the order. 35. 35. Oss. Oss. La prima formazione della serie si ottiene colla semplice ripetizione del medesimo atto mentale (15), e la prima serie così ottenuta ha una prima ed ultima cosa. The first training series is obtained by simple repetition of the same mental act (15), and the first series so obtained has a first and last thing. Diamo quindi la seguente : Def. We therefore as follows: Def. Una serie limitata che non contiene come parte alcuna serie illimi- tata (def. II, 32; def. I, 25; def. II, 33) si chiama serie naturale o limitata di la specie. A limited series that does not contain any series as part of unrestricted-nanny (def. II, 32, def. I, 25; final. II, 33) is called natural or limited number of species. a. a. Ogni cosa X di una serie limitata di la specie ha una consecutiva se- guente e una consecutiva antecedente. Everything X of a limited number of the species has a straight-guente and if a row before. Se X non ha una consecutiva antecedente e non è la prima, significa che vi sono cose nella serie che la precedono (def. 21). If X does not have an antecedent and a row is not the first, means that there are things which precede it in the series (final 21). Fra una qualunque Y di queste e X vi è dunque un'altra cosa della serie, altrimenti Y sarebbe conse- cutiva antecedente di X (24), contro l'ipotesi. Between any of these Y and X there is therefore another thing in the series, otherwise Y would be conse-cutiva antecedent of X (24), against the hypothesis. Dunque la serie data conterrebbe come parte una serie illimitata che precederebbe X, il che è assurdo (def.). Therefore the given series as part contains an unlimited series that precede X, which is absurd (def.). X non può avere più consecutive antecedenti, ad es. X can not have more consecutive antecedents, eg. Y e Z, perché o Y precede Z, o Z precede Y (b, 21), dunque nel primo caso Y è consecutiva antecedente di Z, e Z consecutiva antecedente di X. Y and Z, because Y precedes or Z, or Z precedes Y (b, 21), therefore in the first case Y is consecutive antecedent of Z, and Z consecutive antecedent of X. Analogamente nel secondo caso; dun- que X non può avere più consecutive antecedenti. Similarly in the second case, this dun-X can not have more consecutive antecedents. Slmilmente si dimostra che X deve avere una consecutiva seguente. Similarly it is shown that X must have a consecutive following. 36. 36. Def. Def. Se nessuna cosa nella serie è ripetuta (15) la serie dicesi semplice. If anything is repeated in the series (15) the series is called simple. a. a. Ogni serie può essere ritenuta come una serie semplice. Each series can be considered as a single series. Essendo diversi i posti occupati nella serie dalla stessa cosa (20) possiamo indicare la cosa ripetuta in ogni ripetizione con un segno diverso dai prece- denti, e quindi supponendo che la cosa ripetuta rappresenti più cose distinte vale la proprietà della def. Since different places occupied by the same thing in the series (20) we can point the thing repeated in each repetition with a different sign from the precedents, and then assuming that it represents the most repeated things that separate the ownership of the final. per tutte le cose della serie. for all things in the series. Oss. Oss. II. II. Quando non diremo diversamente intenderemo che la serie sia semplice. When not say otherwise shall understand that the series is simple. b. b. In una serie semplice date le cose qualunque A, J9, C\ \ o A è com- presa fra B e C; 2 o B è compresa fra A e C; 3 o C è compresa fra A e B. In a series dates simple things any A, J9, C \ \ or A is com-socket between B and C; 2 or B is between A and C; 3 or C is between A and B. Difatti data la cosa A, le altre cose o la precedono o la seguono nella serie (6, 21), dunque o B e C seguono o precedono .A, oppure B precede A e C segue A ; o finalmente C precede A e B segue A. In fact, given the thing, other things or precede or follow it in the series (6, 21), then B and C or below or above. A or B before A and C follows A, or A and B before C finally follows A. Se B e C seguono A nell'or- dine della serie, in questo ordine o sarà prima B o C. If B and C follow in the OR-A dyn of the series, in this order or will be before B or C. Se è prima B, B è com- presa fra A e C, perché B segue A e precede C (23); analogamente se è prima C, C è compresa fra A e B, e si ottengono i casi 2 e 3. If it is before B, B-com is taken between A and C, because B follows A and C above (23); similarly if it is before C, C is between A and B, and we obtain the cases 2 and 3. Se B e C precedono A basta considerare la serie inversa alla data, e vale per questa il ragiona- mento precedente. If B and C above is enough to consider the inverse series to date, and applies to this reasoning, the previous year. Ma se una cosa è compresa fra altre in una serie lo è an- che nella serie inversa ( ', 33); dunque hanno luogo gli stessi casi secondo e terzo. But if something is between the others in a series-which has an inverse in the series (', 33), then place the same second and third cases. Finalmente negli altri casi A è compresa fra B e C. Finally, in other cases A is between B and C. 37. 37. a. a. Data una cosa A determinata, se non è stabilito che A è il gruppo di At what date a given, unless it is established that A is the group of

Page 14 Page 14

14 tutte le cose possibili die vogliamo considerare, possiamo pensarne uri* altra non contenuta in A (vale a dire fuori di A) e indipendente da A. 14 things we want to consider possible day, we can think of other uri * not contained in A (ie outside of A) and independent of A. Difatti considerando ha cosa data A, la facciamo corrispondere ad un atto a del pensiero (4), e ripetendo ad es. In fact, considering what has to date, we make it correspond to an act of thought (4), and repeating eg. una cosa B di A} che non sia un gruppo (def. I, 13; def. I, 26), se A è essa stessa un gruppo ordinato o non ordinato, e riguardando come contrassegno delle idee (9 e 4) l'ordine in cui si succedono (16), la seconda idea di B (3) è distinta dalle idee corrispondenti alle cose della prima (def. V, 8). something that B of A} is a group (def. I, 13; final. I, 26), if A is itself a group ordered or unordered, and covering as a sign of the ideas (9 and 4) 's order in which they happen (16), the second idea of ​​B (3) is distinct from the ideas of things corresponding to the first (def. V, 8). Indicando questa seconda idea di B con #, la cosa ff è uguale a B (oss. HI, 9) ma non coincide con B essendo distinta da essa (IV, def. V, 8). Indicating this second idea of ​​B with #, the thing ff is equal to B (oss. HI, 9) but does not coincide with B being distinct from it (IV, final. V, 8). Così se la seconda idea corrisponde a tutta la cosa A, riguardando l'or- dine come contrassegno delle cose pensate si ha un'idea A' distinta da A ed uguale ad A, ma che non coincide con A, altrimenti A e A' non sarebbero di- stinte (def. V; e IV, 8 e 18). So if the second idea corresponds to the whole thing A, covering the or-dine as a mark of things think you have an idea A 'distinct from A and equal to A, but which does not coincide with A, otherwise A and A' would not be faded-in (final V and IV, 8 and 18). E poiché l'atto mentale a cui corrisponde A' possiamo ritenerlo indipen- dente dall'atto cui corrisponde A, così A' è indipendente da A. And because the mental act which corresponds to A 'we can feel it independently by the act which corresponds to A, so A' is independent of A. Se si dice invece che A contiene tutte le cose possibili che vogliamo pen- sare, con ciò escludiamo priori le cose non contenute in A. If you say instead that A contains all the possible things that we want to pen-pass and thereby priori exclude things not contained in A. Oss. Oss. /. /. La negazione che una cosa non appartiene ad A, o il concetto di fuori (def. VI, 13) ha dunque sempre valore logico e'quindi scientifico,, applicabile anche al caso del gruppo ordinato. The denial that something does not belong to A, or the concept outside (def. VI, 13) thus always logical value e'quindi Scientific, which also applies to the case of the ordered group. Avremo cura però ogniqualvolta faremo uso di questa legge nel campo ristretto delle nostre forme possibili di aggiungere altre ragioni in appoggio di essa. We will take care, however, whenever we use this law in the narrow field of our possible ways to add other reasons in support of it. Es. Dato lo spazio intuitivo S, separando l'idea del punto da quella dello spazio (vedi oss. emp. parte I, 1) se non si dice che lo spazio intuitivo contiene tutti i punti possibili, possiamo pensare un altro punto fuori di S, vale a dire uguale agli altri punti ma distinto da essi; oppure un altro spazio S" intuitivo uguale a Sma distinto da S. a. La serie delle cose cìie si ottiene ponencf/) una cosa B fuori di un'altra A, una cosa C fuori del gruppo AB, e così via, è illimitata. Perché supposto che si ottenga un ultimo gruppo A si può immaginare un' altra cosa B fuori di A (a). b. Una serie limitata o illimitata può contenere come parte un'altra serie illimitata. Difatti quando si dice che una serie è limitata non significa che essa non possa contenere un'altra serie illimitata come parte (def. II, 25), perché essa è limitata soltanto pel fatto che ha un primo ed ultimo oggetto (def. I, 34) ; ma ciò non da alcuna proprietà sugli oggetti intermedii (23). Nel caso del teorema a, A (o B} può essere anche un tutto limitato o illimitato ottenuto da una serie limitata o illimitata di serie limitate o illimitate considerate ciascuna come un oggetto. Se si ha il tutto MN ove M. è dato da una serie illimitata, MN è una serie limitata, e in questa seconda serie M è la prima cosa. Oppure se la se- rie M ha un primo oggetto A, la serie MN ha per primo oggetto A e per ul- timo oggetto N. Def. Se nelle successioni ABCD..., A'B'CD'..., limitate o no si ha A = A', B = B\ CC", D = JD' ecc. si dice che le cose delle serie sono ordinatamente o rispettivamente uguali. Since the space S eg intuitive, the idea of ​​separating from that point of space (see oss. Emp. Part I, 1) if you do not say that the space contains all input points as possible, we can think of another place outside S, ie equal to the other points, but separate from them, or another space S "intuitive equal to Sma distinct from S. a. The series of things cìie is obtained ponencf /) a thing B out of another A, something out of the AB C, and so on, is unlimited. Why do you supposed to get a last group you can imagine a 'else B out of A (a). b. A series may contain limited or unlimited as part another set unlimited. In fact when we say that a series is limited does not mean that it can not contain another series unlimited as part (def. II, 25), because it is limited only from the fact that a first and last object (final I, 34), but this does not by any property on the objects intermedi (23). In the case of the theorem a, A (or B} can also be a limited or unlimited all obtained from a limited or unlimited series of series limited or unlimited considered each as an object. If you did everything MN where M is given by an unlimited series, MN is a limited series, and in this second series M is the first thing. Or if the se-ries M a first object A, the MN series was the first to object A and object thyme N. ul-Def. If ABCD ... in succession, A'B'CD '... limited or no one has A = A' , B = B \ CC ", D = JD 'etc.. they say that things are orderly series or equal, respectively.

Page 15 Page 15

CAPITOLO II. CHAPTER II. Prime proprietà delle forme matematiche astratte. Basic properties of abstract mathematical forms. I- Caratteri delle forme o grandezze matematiche astratte e concrete. The font-sizes or shapes of abstract mathematics and concrete. 38, 0ss, /. 38, 0SS, /. Le cose che vogliamo d'ora innanzi considerare oltre i contrassegni di tutto e di parte, di ordine o di serie hanno anche per contrassegno il modo con cui sono poste o date (9). The things that we will henceforth consider both marks everything and part of order or series have also to mark the way in which they are located or dates (9). L'ordine ci assicura quando una cosa è posta prima o dopo di un'altra, il modo riguarda invece le altre relazioni possibili di posizione (def. VI, 9 e def. IV, 8) che supponiamo esistano e non siano contenute nel concetto di ordine. The order gives us when something is placed before or after another, the way regards the other possible relations position (def. VI, 9, and def. IV, 8) and suppose there are not contained in the concept order. Questa ipotesi non contraddice ai principii precedenti dovendo essere que- ste relazioni di posizione indipendenti dalle altre. This hypothesis does not contradict the principles of previous ste-reports having to be this independent position from the other. Es. 1. Example 1. Posta l'idea A% ripeto l'idea A e poi ancora l'idea A. Post the idea to repeat the idea% A and then again the idea A. Se si tien conto del tempo trascorso in ogni ripetizione si ha una relazione di posizione non compresa nel concetto di semplice successione e di ordine, poiché il tempo trascorso nella prima ripetizione può essere differente da quello trascorso nella seconda. If one takes into account the time spent in each repetition has a positional relationship is not included in the concept of simple succession and order, because the time spent in the first iteration may be different from that spent in the second. Es. 2. Example 2. Io pronuncio prima la vocale aa voce bassa e poi pronuncio la vocale e a voce alta; l'altezza della voce da una relazione di posizione non compresa nel con- cetto di ordine in cui pronuncio le vocali a ed e. I pronounce the vowel aa first softly and then loudly and speak the voice, the height of the entry to a position not included in the report with the concept of order in which they pronounce the vowels a and e. Noi supponiamo inoltre che questi contrassegni siano determinati per via di ipotesi o di costruzioni possibili *). We suppose further that these marks are determined for a hypothesis or possible constructions *). Def. Def. L Le cose i cui contrassegni sono tutto, parte, ordine e modo di po- sizione, o che si possono paragonare mediante questi contrassegni (8 e 9) si chiamano forme o graiidezze matematiche astratte; anche se si fa astrazione (7) da alcuni dei suddetti contrassegni. The things whose markings are all, part, order and position-way, or that can be compared using these markers (8 and 9) are called graiidezze abstract mathematical forms or, even if one disregards (7) by some of these markings. Ma finché non diremo diversamente intenderemo che le forme abbiano tutti i contrassegni considerati 2). But until we say otherwise shall understand that the forms have considered all the marks 2). 1) Abbiamo già detto nella prefazione a quali condizioni devono soddisfare un'ipotesi, una co- struzione o una dimostrazione matematica. 1) We have already said in the preface to what conditions must satisfy a hypothesis, a co-construction or a mathematical proof. Qui basta logicamente la semplice ipotesi che possono esi- stere tali relazioni all'infuori del concetto di ordine. Here just the simple hypothesis that can logically existing stere these relationships outside the concept of order. Gli esempi citati sono un di più, ma l'ipotesi non è dipendente da essi. The examples cited are a plus, but the hypothesis is not dependent on them. Abbiamo qui evitato di ricorrere ad esempi geometrici appunto per allon- tanare il sospetto che il modo con cui sono poste le parti nel tutto sia necessariamente dipendente dall'idea di spazio. Here we have avoided resorting to geometric examples just for Allon-tanare suspect that the way in which they are located in all parts is necessarily dependent on the idea of ​​space. Al n. At n. 41 ricorriamo anche ad esempi tratti dai corpi e dalle loro qualità. 41 also have recourse to examples taken from the bodies and their quality. 2) Questa definizione delle forme matematiche astratte vale certamente per tutte quelle che noi considereremo, ma non intendiamo però che questa definizione debba essere assoluta e quindi circo- scriva fin d'ora il campo della matematica. 2) This definition of abstract mathematical forms certainly applies to all those that we consider, but not mean, however, that this definition should be absolute and circus-write from now on the field of mathematics. Come ho avvertito nella nota del n. As I warned in the memo of n. 4 non cerco defini- zioni o spiegazioni che valgano in ogni caso, ma soltanto nei casi che mano mano si presentano. 4 definitions shall not seek or explanations that apply in every case, but only in proportion as cases arise. Eu- clide non spiega in nessuna parte dei suoi Elementi il concetto di grandezza, come del resto non ne spiega molti altri. Euclid does not explain in any part of its elements the concept of magnitude, as the rest does not explain many others. H. H. Grassmann chiama grandezza ogni cosa che deve essere posta uguale o disu- guale ad un'altra cosa (Lehrbuch der Arithmetik, Berlin 1861, p. i). Grassmann calls greatness everything that must be set equal to or resulting health Guale another thing (Lehrbuch der Arithmetik, Berlin 1861, p. I). Questa definizione per la grandezza matematica, accettata anche da Stolz (1. ep 5) a me pare troppo ristretta nel senso in cui è intesa da Grassmann nel libro suddetto il concetto dell'uguale; mentre in generale è invece indeterminata, se non si dice rispetto a quali contrassegni sono uguali o disuguali e se non si aggiunge anche che deb- bano potersi determinare nei loro stati onde si rendano suscettibili di confronto le loro modificazioni. This definition for the mathematical quantity, also accepted by Stolz (1. Ep 5) seems to me too narrow in the sense understood by Grassmann in the book that the concept of equal, while in general is rather indefinite, if not stated with respect to such markers are equal or unequal, and if you do not add deb-Ban also be able to determine their states in order to render it likely to compare their changes. Per noi questi contrassegni sono tutto e parte ordine e modo di posizione. For us these are all signs and order and the order position. Secondo Stolz (1. e. pag. 2) tutte le cose che sono confrontate (verglichen) con una cosa si dicono omogenee (glejchartige) e for- According to Stolz (1. And. P. 2) all the things that are compared (verglichen) with a thing they say is homogeneous (glejchartige) and for-

Page 16 Page 16

16 Def. 16 Def. IL Se ad un concreto (oggetto reale esistente fuori del pensiero) cor- risponde una forma matematica astratta, l'oggetto dato si chiama forma ma- tematica concreta 1). If IL to a concrete (real object existing outside of thought) cor-responds an abstract mathematical form, the given object is called shape-but real issue 1). 2. 2. Serie limitate o illimitate Serie limitate o illimitate di prima specie. Series limited or unlimited limited or unlimited series of the first kind. 39. 39. Def. Def. I. I. Le forme di un gruppo o di una serie, se teniamo conto del solo fatto che esse appartengono al gruppo o alla serie (def. IV, 13, o def. I, 27 e def. I, 29, 7) le chiameremo elementi del gruppo o della serie. The forms of a group or series, if we consider the mere fact that they belong to the group or series (def. IV, 13, or final. I, 27 and def. I, 29, 7) may be called the elements of group or in the series. Def. Def. IL Diremo che una serie segue tiri altra serie quando ogni elemento della prima segue ogni elemento della seconda (21), e diremo che la seconda serie precede la prima. THE We say that a series follows shots other set when each element of the first follows each element of the second (21), and we will say that the second set before the first. a. a. Una serie limitata jS che segue una serie limitata a da colla prima una serie limitata 7. A limited number jS following a limited series with the first of a limited edition 7. Difatti nell'ordine della serie risultante (aj8) = y gli elementi di a pre- cedono quelli di ]3, e gli elementi di ]3 seguono quelli di a (21). In fact, in the order of the resulting series (aj8) = y elements to precede those of] 3, and the elements of] 3 follow those in (21). Poiché gli ele- menti di ae j3, eccetto l'ultimo di /5, precedono questo elemento in 7 (21), e in 7 non vi sono altri elementi oltre a quelli di ae jS (II, 29; def. 26 e oss. 28), l'ultimo elemento di ]3 non ha in 7 elementi che lo Seguono; e perciò è l'ul- timo elemento di 7 (def. 22 e def. I, 32). Since the elements of a and j3, except the last of / 5, prior to this element in 7 (21), and 7 there are other elements besides those of a and jS (II, 29; final. Oss 26 and . 28), the last element of] 3 in 7 has no elements that follow, and so it is on the last element of 7 (def. 22 and def. I, 32). a'. to '. Una serie illimitata ]3 che segue una serie limitata o illimitata a da colla prima una serie illimitata 7. An unlimited number] 3, which follows a limited or unlimited by an unlimited series with the first 7. Difatti l'ordine di ae jS ci da l'ordine della serie 7 (def. II, 16 e 19), e poiché ]5 segue a, e jS non ha un ultimo elemento (def. II, 32), non lo ha nep- pure 7. In fact, the order of a and jS gives us the order of the series 7 (def. II, 16 and 19), and since] 5 follows a, jS, and has no last element (def. II, 32), has not n and p-well 7. Se lo avesse, esso sarebbe un elemento di /5 ; ma in jS vi è un elemento che lo segue che appartiene pure nello stesso ordine a 7 (def. II, 32), dunque è assurdo che 7 abbia un ultimo elemento (IV, 8). If he had, it would be an element of / 5; in jS but there is an element that follows the same order, which also belongs to 7 (def. II, 32), therefore it is absurd that 7 has a last element (IV, 8). a". In una serie limitata la serie che segue una serie limitata, parte della serie data, è pure limitata. Difatti se fosse illimitata la serie data sarebbe illimitata (a'). mano un sistema di grandezze. Ma tutte le cose possono essere confrontate con una cosa data, per- ché appunto dal confronto risulta che sono o non sono la cosa data (IV, 8} e il sistema di grandezze omogenee matematiche non ci pare cosi ben definito (Vedi def. Ili, n. ili). Stolz aggiunge che due cose siccome non possono essere uguali in ogni loro contrassegno è troppo dire, secondo Grassmann, che due cose sono uguali quando in ogni giudizio si può porre runa al posto dell'altra, e che nel suo libro ciò avviene soltanto nelle formule (1. ep 2). Cioè giusto, ma bisogna osservare che due cose si possono dire identiche od uguali quando il concetto dell'una è il concetto dell'altra considerata cia- scuna in sé e non in relazione di posizione con altre cose (def. IH, oss. II, HI, 91, oss. Ili, 58). Grass- mann però nella sua Ausdehnungslehre (Leipzig 1844) da, appoggiandosi sul criterio del discreto e del continuo, un concetto più determinato delle grandezze matematiche, ed osserva che per le forme bi- sogna stabilire diverse relazioni di uguaglianza e di diversità. DU Bois Reymond nel libro Die Allg. Functionentheorie (Tiibingen 1882), si occupa dei concetti fondamentali matematici : Grandezza, limite, argomento e funzione; ma non definisce astrattamente il concetto di grandezza (1. e. 14). studia una grandezza fondamentale che riferisce alla rappresentazione della retta e che non definisce astratta- mente in tutte le sue parti. Su ciò avremo occasione di ritornare quando tratteremo della nostra for- ma fondamentale (vedi 2a nota, 71). 1) Da ciò o chiaro che per studiare con rigore logico le forme matematiche concrete bisogna per lo meno stabilire i principi fondamentali delle forme astratte che corrispondono alle prime,in quanto che noi ragioniamo non già sugli oggetti reali ma sulle corrispondenti rappresentazioni mentali (4). a. "In a limited series that follows a short list, the given series, is also limited. In fact if it were unlimited it would be given unlimited series (a '). a system of hand sizes. But all things can be compared with a given thing, precisely because-for the comparison shows that are or are not the given thing (IV, 8} and the system of homogeneous quantities math does not seem so well-defined (see def. Ill, no. ill). Stolz adds that two things can not be the same as if each marker is too much to say, according to Grassmann, that two things are equal in every judgment when you can put in place of the rune, and in his book that this only happens in formulas (1. ep 2). That is right, but it should be noted that two things you can say the same or identical when the concept is the concept of one each of the other scuna considered in itself and not the position in relation to other things ( final. IH, pers. II, HI, 91, pers. Ill, 58). Grass-mann, however, in its Ausdehnungslehre (Leipzig 1844) by, leaning on the criterion of the discrete and continuous, a more specific concept of mathematical magnitudes, and notes that forms bi-dreams establish different relations of equality and diversity. du Bois Reymond in his book Die Allg. Functionentheorie (Tubingen 1882), deals with the fundamental mathematical concepts: size, limit, argument and function, but does not define the abstract the concept of magnitude (1. and. 14). study a fundamental quantity that relates to the representation of the line that defines the abstract-mind in all its parts. On this occasion we will come back when we treat our for-but the fundamental ( see second note, 71). 1) From this clear or logical rigor with which to study the mathematical forms concrete need at least to establish the fundamental principles of abstract forms that correspond to the first, in that we reason about objects not real but the corresponding mental representations (4).

Page 17 Page 17

17 a'". La serie che segue una serie limitata in una serie illimitata a è pure illimitata. Difatti se fosse limitata darebbe colla prima una serie limitata ( ). Def. IH. Divo che una serie illimitata che ha un primo elemento è illi- mitata di la specie se le sue parti limitate aventi per primo elemento quello della serie data SODO di prima specie (def. 1, 32; def. II, 25 e 35). b. Ogni serie limitata di una serie illimiltata di la specie è di la specie. Se la serie limitata /? ha il primo elemento nel primo elemento della se- rie illimitata essa deve soddisfare a questa proprietà (def. HI). Se non ha lo stesso primo elemento significa che nella serie illimitata esiste una serie x che la precede (def. IL), Se 0 non è limitata di la specie (35) significa che deve contenere come parte una serie illimitata (35), ma la serie afi è limitata (a) collo stesso primo elemento della serie illimitata di 1* specie, dunque essa conterrebbe come parte una serie illimitata (e, 26; oss. 28), il che è assurdo (def. Ili e 35). e. La serie immersa di una serie limitata di la specie è pure limitata di la specie. Difatti sia ABCD....LM la serie data che ha A come primo ed M come ultimo elemento (10, 16 e def. I, 32). La serie inversa ML....DCBA è limitata perché M è il primo ed A è 1' ultimo elemento di essa (a, 33), Ora se la se- conda serie contenesse una serie illimitata ad es. ML.....X..... precedente la serie DCBA (def. II), nella serie ML.....X.... non vi sarebbe un ultimo elemento (def. II, 32) e perciò nella serie data D non avrebbe un elemento consecutivo seguente (24), perché se lo avesse esso sarebbe l'ultimo elemento della serie ML....X che precede DCBA nella serie inversa ( ', 33), e quindi la serie data non sarebbe limitata di prima specie (35). d. La serie che segue una serie limitata in una serie illimitata di la spe- cie a è pure illimitata di la specie. Difatti è illimitata ( "); se non fosse illimitata di la specie dovrebbe contenere almeno una serie illimitata e degli elementi fuori di questa serie (35 e def. III). 17 to '. "The series which follows a limited series in an unlimited series a is also unlimited. Indeed if it were limited would glue before a limited range (). Def. IH. Divo that an unlimited series which has a first element is unlimited - especially if the bounded of its parts having limited to the first element of the series SODO date of the first kind (def. 1, 32; final. II, 25 and 35). b. Each limited set of a series illimiltata of the species is the species. If the limited series /? has the first element in the first element of the se-ries unlimited it must satisfy this property (def. HI). If you do not have the same first element in the series means that there is a limitless number x that precedes it (final IL) If 0 is not limited to the species (35) means that it must contain as part of an unlimited series (35), but the series afi is limited (a) with the same first element of the unlimited series 1 * species, then it would contain as part of an unlimited series (and, 26; oss. 28), which is absurd (def. Ili and 35). and. series immersed in a limited range of the species is also limited of the species. fact is ABCD .... LM series to date that has A as the first and the last element M (10, 16 and final. I, 32). ML Reverse Series .... DCBA is limited because M is the first and A is 1 'last element of it (33), Now if the sec-ond series contain an unlimited number eg. ML ..... X. .... DCBA previous series (final . II), the ML series ..... X. ... there would be a last element (def. II, 32) and so on in the series would not have a D next consecutive element (24), because if he it would be the last element of the ML series .... X preceding DCBA in inverse series (', 33), and then the series would not be limited date of the first kind (35). d. The series which follows a limited series in an unlimited series of the species in the species is also unlimited. fact is unlimited (") if it were not unlimited species should contain at least one unlimited series and items out of this series (35 and def. III ). Ma siccome gli elementi di essa sono per dato elementi di a, a non sarebbe illimitata di la specie (def. I, li 25 e def. III). But since the elements of it are given to elements of a, not to be unlimited of the species (final I, 25 and final them. III). e. and. Una serie illimitata contenuta in una serie illimitata di I* specie è pure di la specie. An unlimited number contained in an unlimited series of * The species is also of the species. Dim. analoga alla precedente (def. I, 25). Size similar to the preceding (final I, 25). f. f. Ogni sottogruppo di un gruppo ordinato naturale è pure un gruppo or- dinato naturale. Each subgroup of a group is also a group ordered natural or natural-ordinated. Difatti se non fosse tale la serie dei suoi elementi sarebbe per lo meno illimitata di la specie (25; oss. 28; 35, def. III.), e quindi la serie del gruppo dato conterrebbe una serie ilimitata contro l'ipotesi (35 e oss. 28; def. II, 25) g. Indeed if it were not that the number of its components would be at least unlimited of the species (25; obs. 28; 35, final. III.), And then the series of the given group contains a series ilimitata against the hypothesis (35 and oss. 28; final. II, 25) g. Ogni gruppo naturale (A) che contiene come parte un gruppo (B) col primo elemento nel primo elemento di (A), si ottiene da (B) colla semplice unione successiva di altri elementi. Each natural group (A) which contains as part of a group (B) with the first element in the first element (A), is obtained from (B) with the simple union next of other elements. O in altre parole la serie degli elementi di (A) che segue (B) è limitata di la specie (def. II; 35; def. I, 26; oss. 28; def. Il, 25). Or in other words the series of the elements of (A) which follows (B) is limited to the species (final II; 35; final. I, 26; obs. 28; final. The, 25). Se non lo fosse do- If it is not do-

Page 18 Page 18

18 vrebbe contenere almeno una serie illimitata, e quindi (A) non potrebbe es- sere un gruppo naturale (e, 26; 35). 18 vrebbe contain at least one unlimited series, then (A) could not be es-a natural group (and, 26, 35). h. h. Se (A), (B) sono sottogruppi qualunque di un gruppo ordinato (C) aventi per primo elemento quello di (O, e non tutti gli elementi di (B) sono elementi di (A\ (A) é^ottogruppo di (B). Significacene (B) ha elementi che seguono quelli di (A) perché ogni ele- mento che precede in (C) un elemento qualunque di (A] appartiene ad (A) (def. 21, def. II, 27 e oss. 28); dunque ogni elemento di (A) precede ogni ele- mento di (B) (def. 21 e oss. 28), dunque A) è parte di ( )(def. II, 27). i. I sottogruppi di un gruppo ordinato (A) illimitato di la specie die si ottengono dal primo elemento unendo successivamente gli elemeuti del gruppo al precedente sottogruppo, formane una serie illimitata di 1* specie. Tutti questi sottogruppi per dato hanno lo stesso primo elemento (16, def. II, 27). Ciascuno di essi deve essere un gruppo ordinato naturale, (def. Ili; 26 e 35). Se tutti i sottogruppi suddetti formassero una serie limitata vi sarebbe un ultimo sottogruppo (B) di (A), il cui ultimo elemento X sarebbe anche ulti- mo elemento di (A), perché se vi fosse in (A) un elemento Y consecutivo seguente di -X, il sottogruppo (B) non sarebbe I1 ultimo ma bensì (B) Y (22) ; dunque il gruppo (A) sarebbe limitato contro I1 ipotesi. La serie deve essere il- limitata di la specie, che altrimenti conterrebbe un sottogruppo limitato che non sarebbe di la specie e per dato parte di (A), il che è assurdo (6). I. Data una serie limitata o illimitata di la specie ABCD....LM.... per di- mostrare che una proprietà P vale per tutte le forme della serie basta dimostrare: 1. Che P vale per la prima forma A della serie. 2. Che supposto valga per una forma X scelta ad arbitrio nella serie vale anche per la consecutiva seguente. Supponiamo che le forme della serie data che hanno la proprietà P diano una serie $*, la quale per (1) e (2) sarà parte della serie data da (def. II, 25). La $' non può essere limitata perché per ogni forma data di essa valendo la pro- prietà P vale anche per la consecutiva seguente di d che appartiene perciò alla 8* (2). Ma se in vi fossero altre forme non contenute in ff, non sarebbe il- limitata di la specie perché conterrebbe almeno un sottogruppo limitato che non sarebbe di la specie (def. Ili); quello cioè dato da ^ e dall'elemento di $ fuori di $; dunque ecc. T. Se ima proprietà P vale per ogni forma data di una serie illimitata di la specie vale per tutte le forme della serie. Difatti se vale per ogni forma data X vale anche per la consecutiva se- guente, che è la prima forma dopo X, e quindi il teor. è dimostrato (O 'X i) 11 sig. B. Efdmann già conosciuto dal pubblico matematico pel suo lavoro Die Axlome der Geo- metrie (1887), nella sua Memoria Zur Theoriedes Syllogismus u. der Induktion. Phti. Aufsàtze-Eduard Zeller 1887. pag. 197-238 osserva che è inesatto chiamare la dimostrazione secondo le due regole di I dimostrazione per induzione completa, perché l'induzione contiene sempre un' ipotesi e cioè che una verità che ha luogo in alcuni casi di una serie valga anche negli altri casi della serie ; la dimostra- zione egli dice o perfettamente deduttiva sebbene il criterio direttivo sia induttivo. Bisogna però di- mostrare come abbiamo fatto noi che la serie $ è contenuta nella serie 5\ come ^ o contenuta in . Come si vede però I è una conseguenza immediata delle def. della serie limitata e illimitata di 1 spe- cie. Nel nostro ordine di idee, che ci pare il più naturale nella costruzione delle prime serie, limi- tate e illimitate, '3, 14, 15, 16, oss. 35, def. Ili), il principio suddetto deriva da questa costruzione come proprietà speciale di queste serie. If (A), (B) subgroups are any of an ordered group (C) having as first element of the one (W, and not all elements of (B) are elements of (A \ (A) is ^ ottogruppo of ( B). Significacene (B) has elements which follow those of (A) because each ele-ment which precedes in (C) any one element of (A] belongs to (A) (def. 21, final. II, 27 and oss 28). Thus every element of (A) before each ele-ment of (B) (def. 21 and oss. 28), then A) is part of () (def. II, 27). i. I subgroups of an ordered group (A) Unlimited species are obtained from the first day after the elemeuti element joining the group in the previous subgroup, formane an unlimited number of 1 * species. All these subgroups are the same as the first element (16, final. II, 27). Each of them must be a natural ordered group, (final Ili; 26 and 35). If all the above-mentioned subgroups formed a limited range, there would be a last subgroup (B) of (A), the whose last element X would also be ULTI-th element of (A), because if there were in (A) a component of the following consecutive Y-X, the sub-group (B) would not last but rather I1 (B) Y (22) ; therefore, the group (A) would be restricted against I1 hypothesis. The series must be the-limited the species which would otherwise contain a limited subset that would not be of the species and for the given part of (A), which is absurd ( 6). I. Given a limited or unlimited number of species of ABCD .... .... for LM-show that a property P is true for all forms of the series is enough to prove: 1. What is true of the first P A form of the series. 2. What is worth supposed to form a X chosen arbitrarily in the series also applies to the following consecutive. Suppose that the shapes of the series date that have the property P give a series $ *, for which (1) and (2) will be part of the series given by (def. II, 25). The $ 'can not be limited because for any given form of it being valid the pro-property P is also true for the following consecutive therefore, belongs to that of d 8 * (2). But if there were other forms not contained in the acting, not the limited-species of the least because it would contain a limited subset of the species that would not have (def. Ill), namely that given by ^ and element of $ $ off, etc. So. T. If ima property P holds for any given form of an unlimited number of species applies to all forms of the series. In fact, if it holds for all forms on X is also true for the consecutive if-guente, which is the first form after X, and hence the theorem. is shown (O 'X i) 11 Mr. B. Efdmann already known to audiences for his mathematical work Die Axlome der geometries (1887), in his memory Zur Theoriedes Syllogismus u. der Induktion. Phti. Aufsàtze Eduard Zeller-1887. p. 197-238 observes that it is incorrect to call the demonstration according to two rules of the proof by complete induction, because induction always contains a ' hypothesis, namely that a truth that takes place in some cases a series of cases also applies in other series, the show-tion he says or perfectly although the guiding standard is deductive-inductive. need to demonstrate, however, as we have done that series contained in the series is $ 5 \ ^ or as contained in the. As you can see though I is an immediate consequence of the def. of limited and unlimited 1 species. In our line of thinking, which seems the most natural in construction of the first series, limited and unlimited nannies, '3, 14, 15, 16, pers. 35, def. III), the above principle is derived from this construction as a special property of these series.

Page 19 Page 19

19 4- Legge associala di un gruppo ordinato Come V operazione dell'unire possa, non essere un'operazione a senso unico. 19 4 - Law associala an ordered group uniting As V operation can not be a one-way operation. 40. 40. a. a. Dati più sottogruppi di un gruppo ordinato che non hanno alcun elemento comune ma che contengono tutti gli elementi del gruppo ì il gruppo può ritenersi dato dall'unione successiva dei sottogruppi nell'ordine in cui si se- guono nel gruppo dato. Data subsets of an ordered group who have nothing in common but which contain all the elements of the group ì the group can be considered as the union of the following subgroups in the order if you guono-group data. (Legge associativa dell1 unire). (Associative Law dell1 merge). Si ha infatti: (ABC) D = ((AB) C)D== (AB) CD = (A (BC)) DE=A(BC)D==A ((BC) D) = ==A(B (CD)) == (AB) (CD) = ABCD (a, 29). In fact we have: (ABC) D = ((AB) C) D == (AB) CD = (A (BC)) DE = A (BC) D == A ((BC) D) === A ( B (CD)) == (AB) (CD) = ABCD (a, 29). Supponiamo che ripetendo successivamente questa dimostrazione la pro- prietà suddetta valga per il gruppo ordinato naturale dato dalla serie ABCD.... Suppose then repeating this demonstration pro-property that holds for the group as ordered by the natural series ABCD .... A^. A ^. Si avrà perciò : (ABCD....AJ BI == ABCD.^A^ intendendo col simbolo (ABCD.. ..A^) B^ che Bl è unito al tutto (ABCD....A,) avente per ipotesi la suddetta proprietà, mentre col simbolo ABCD....A1B1 s'in- tende che Bl è unito ad Au già unito a ecc., già unito a D, già unito a C, già unito a B già unito ad A. Si avrà perciò: ((ABCD....AJ B,) C, = (ABCD....AJ B (a, 29). ~ ABCD....AÌB ( , 9; i, 29). E siccome per ipotesi si ha ad es.: ABCD....MN....A ==(ABCD....M) (N....A ) si ha pure : ABCD^A^^ = (ABCD^.M^N.^.A^) C, = (ABCD....M)(N....A,B1C1). Vale a dire si possono togliere le parentesi del gruppo naturale dato dalla serie ordinata ABCD^.^B^ se si possono togliere nel gruppo dato dalla serie ABCD^^A^. Ma questo gruppo si ottiene dal gruppo consecutivo pre- cedente coli' unione di un altro elemento (def. I, 26; oss. 28), e siccome per il gruppo dato dalla serie ABC vale questa proprietà (IIlt 29), così vale anche per ogni gruppo limitato di un gruppo illimitato di la specie (def III, i, I 39). Si vede facilmente che la proprietà vale per tutto il gruppo (Z*, 39). 11 teorema vale anche nel caso che la serie delle forme che compongono il gruppo ordinato non sia di la specie. Difatti il tutto che deriva da una serie illimitata di 1* specie (oss. 28), e che indicheremo con Ted ha la proprietà sud- detta, va consideralo come una sola forma alla quale vengono unite altre forme. Se si unisce a T un1 altra forma A' si ha il tutto TA'. Ma T è anche TT'\ ove T è un sottogruppo limitato di Te la cui serie di elementi ha lo stesso primo elemento, e T" è il sottogruppo rimanente; quindi avremo: In altre parole un gruppo illimitato in unione con altre forme viene scom- posto in una serie limitata di sottogruppi che contengono tutti gli elementi We thus have: (... AJ ABCD. BI == ABCD. ^ A ^ meaning the symbol (ABCD. ... A ^) B ^ Bl, which is joined to all (... ABCD. A) having as hypothesis that the property while under the symbol ABCD .... s'in A1B1-tents that Bl is combined with Au, etc. already joined., already joined to D, have joined to C, have already joined together to B to A. It will therefore have: ((ABCD. ... AJ B) C = (AJ ABCD. ... B (a, 29). ~ ABCD .... AIB (, 9; i, 29). And since hypothesis we have for eg.: ABCD .... MN .... A == (ABCD. ... M) (No ... A) you did well: ABCD ^ A ^ ^ = (^ ABCD . M ^ N ^. A ^) C = (M ABCD. ...) (... N. A, B1C1). That is to say you can remove the brackets from the natural group given ordered set ABCD ^. ^ B ^ if you can remove in the group given by the series ABCD ^ ^ A ^. ​​But this group is obtained from the previous consecutive group coli 'union of another element (def. I, 26; oss. 28), and since for the group given by the ABC series is this property (IIlt 29), applies to each group of a limited group of species Unlimited (def III, i, I 39). It is easily seen that the property holds for the whole group (Z *, 39). theorem 11 also applies in the case that the series of forms that make up the ordered group is not of the species. In fact, all that is derived from an unlimited series of 1 * species (oss. 28), and that Ted has the property denoted by the south-called, should consider it as one form of which are joined by other forms. If T joins other form UN1 A 'has all the TA'. But is TT T '\ where T is You a limited subset of the set of elements which has the same first element, and T "is the remaining subset, then we have: In other words, an unlimited group in conjunction with other forms will disappear is placed in a limited number of subgroups that contain all the elements

Page 20 Page 20

20 del gruppo dato e senza aver alcun elemento comune, ea questa serie in unione colla prima delle forme date è applicabile il principio di associazione. 20 of the given group and without any common element, and this set in union with the first forms of dates apply the principle of association. Se la serie delle altre forme date non avesse una prima forma si lascia scom- porre anch'essa in una serie limitata di sottogruppi, di cui essa rappresenta l'unione successiva (26), II teor. If the series of other dates did not have a first form is left will disappear also put in a limited number of subgroups, of which it represents the union later (26), theorem II. è così in ogni caso dimostrato. is thus in any case shown. Oss. Oss. S'intende che T unire si riferisce qui a cose già date in posizione, e nel senso del semplice considerare insieme. Means that T refers here to join what is already given in position, and the sense of simple to consider together. 40. 40. Oss. Oss. Se nell'operazione dell'unire considerando come condizioni di essa (def. I, 10) il modo di posizione delle parti fra loro e l'ordine di esse (oss, e def. I, 38). If the transaction considering uniting as a condition of it (def. I, 10) so the position of the parties together and order them (oss, and def. I, 38). allora evidentemente il tutto dipenderà dal modo e dall'ordine con cui sono unite le sue parti e l'unione non sarà più a senso unico, potendo essere diversi gli ordini ei modi di unione delle parti. then obviously it all depends on the manner and order in which the parts are joined and the union will no longer be a one-way, and may be different orders and ways of joining the parts. Da ciò si deduce che se le parti A, JB, C, D di un tutto sono ordinatamente uguali alle parti di un altro tutto (def. 37), non risulta perciò che il primo tutto sia uguale al secondo ; bisogna che siano anche gli stessi T ordine e il modo di posizione delle parti nel tutto (def. Ili, 9). From this it follows that if the parties A, JB, C, D of a whole are neatly equal to the parts of another round (final 37), it is not, therefore, that the first round is equal to the second; must also be T the same order and position of the parties in the way of everything (def. Ill, 9). Può anche darai che il tutto ABCD sia identico al tutto A'ITC'D'* ma non sia identico al tutto D* C1 A' inverso al prece- dente. It can also give you the whole ABCD is identical to all A'ITC'D '* but not identical to the whole D * C1 A' reverse the previous year. E perciò quando diciamo forme uguali le dobbiamo intendere tali nell'ordine in cui sono uguali, dato, come dobbiamo suppore da principio e in generale, che in un altro ordine non siano uguali. And so when we say we are to understand these forms of the same order they are equal, since, as we must presume from the beginning and in general, in another order are not equal. Es. 1. Example 1. Colle stesse pietre di mosaico di colore diverso e supposte uguali ri- spetto agli altri loro contrassegni si possono formare diversi mosaici. Colle very stones of the mosaic of different color and suppositories equal compared to their other re-marks can form different mosaics. Possono es- sere poste nello stesso ordine rispetto alla loro successione e in modo differente, (formando disegni diversi) ; o nello stesso modo (formando lo stesso disegno.) e in or- dine differente. They can eg be-placed in the same order with respect to their sequence, and in a different way, (forming different designs), or in the same manner (forming the same design.) And in or-dyn different. La differenza di ordine è data in tal caso dalla differenza di colore. The difference in order is given in this case by the difference in color. Es. 2. Example 2. Coi pezzi di un bicchiere rotto unendoli insieme in un dato ordine e in un dato modo si ottiene il bicchiere primitivo (fatta astrazione dalie leggi fisiche), ma unendoli altrimenti si ottiene in generale un altro tutto non identico al bicchiere dato. With pieces of broken glass by uniting together in a certain order and in a certain way you get the original glass (quite apart dahlias physical laws), but uniting them otherwise you'll get another round in general not identical because the glass. 5. 5. Corrispondenza univoca, e nel medesimo ordine fra più gruppi. One correspondence, and in the same order among multiple groups. 40. 40. Def. Def. I. I. Quando tra gli elementi A e X, B e 7, C e Z ecc., che appar- tengono rispettivamente ai gruppi (A) e (^4') esiste o si stabilisce una rela- zione qualsiasi comune (def. IV, 8) e tale che dato un elemento del primo gruppo qualunque (def. Vili, 13) sussista qnesta relazione rispetto ad uno o più elementi del secondo gruppo, si dirà che i gruppi si corrispondono secondo la relazione suddetta. When the elements of A and X, and 7 B, C and Z etc.., That they belong to groups, respectively (A) and (^ 4 ') There is established or a report every common (def. IV, 8 ) and such that a given element of the first group any (final VIII, 13) there qnesta relationship with respect to one or more elements of the second group, it will be said that the groups correspond to each other according to the equation above. Gii elementi A e X, B e Y, C e Z ecc. Gil elements A and X, B and Y, C and Z etc.. si dicono elementi corrispondenti dei gruppi dati. corresponding elements are called groups of data. Def. Def. IL Se ad ogni elemento A del primo gruppo corrisponde un solo elemento A' del secondo, e ad ogni elemento A' di questo corrisponde lo stesso elemento A del primo e questo solo, si dice che gli elementi dei gruppi dati si corrispondono univocamente, e la corrispondenza si chiama univoca e re- ciproca o soltanto univoca 1). IL If every element of the first group corresponds to one element A 'of the second, and each element A' of this is the same item at the first and only this, it is said that the elements of the data groups correspond uniquely, and correspondence is called unique and re-reciprocal or just unique 1). 1) Noi non ci occupiamo che di queste corrispondenze univoche, e quindi quando parleremo di corrispondenze univoctie intenderemo anche reciproche. 1) We are not concerned that these unique matches, and then when we talk about matches univoctie shall understand each other well. La reiasione di corrispondenza è qualunque The correspondence is any reiasione

Page 21 Page 21

2t Oss. 2t Oss. ì. ì. Nessun elemento di un gruppo significa che si fa astrazione da ogni ele- mento del gruppo (7 e 29), quindi nessun eleménto non è elemento del gruppo (IV. 8;; dunque non può essere che ad un elemento del gruppo nella corrispondenza univoca corrisponda nessun elemento dell' altro gruppo. Es. 1. Così fra le forme ei loro segni vi è una corrispondenza univoca se ad ogni segno corrisponde una cosa e ad una cosa un segno (5). Oss. IL Se i grappi (A) e (#) sono ordinati e si corrispondono univocamente in modo 1 che gli elementi corrispondenti siano compresi fra elementi corrispondenti, e quando essendo limitati il primo elemento s'intenda compreso fra l'ultimo e il se- condo, e l'ultimo fra il primo e il consecutivo antecedente (24) dell1 ultimo (penultimo), 2 che agli elementi che precedono un dato elemento corrispondono elementi che precedono l'elemento corsispondente al dato, è giustificato dire che i gruppi (A) e (/?) si corrispondono nel medesimo ordine. Difatti la posizione relativa degli elementi corrispondenti nei gruppi rispetto alla definizione 21 (14, 16 def. VII, 8) è la stessa ') Def. No part of a group means that we abstract from every element of the group (7 and 29), then nothing is not an element of the group (iv. 8;; therefore can not be that a group element in the unique match matches any element of 'other group. Example 1. So between forms and their signs if there is a unique match for each sign is one thing and one thing a sign (5). Oss. THE grappi If (A) and (#) are sorted and uniquely correspond to 1 and the corresponding elements are included between corresponding elements, and when we are restricted to the first element we mean between the last and if the second-, and the last of the first and consecutive antecedent (24) dell1 last (penultimate), 2 than to the foregoing elements match a given element preceding the element corsispondente to the data, it is justified to say that the groups (A) and (/?) correspond in the same order. In fact, the relative position of the corresponding elements in the groups with respect to the definition 21 (14, 16 final. VII, 8) is the same ') Def. Ilf. Ilf. Circa i gruppi (A) e (B) che soddisfano alle condizioni dell' oss. About the groups (A) and (B) that satisfy the conditions of 'oss. precedente, si dice che si corrispondono univocamente e nel medesimo ordine. earlier, it says that you are uniquely and in the same order. Se è soddisfatta soltanto la prima condizione dell'osservazione II diremo che (A) e (5) si corrispondono univocamente in ordine inverso. If only the first condition is satisfied we say that observation II (A) and (5) is uniquely correspond in reverse order. Es. 2* Una serie di cose e la serie dei concetti corrispondenti (4), si corrispon- dono univocamente e nel medesimo ordine. Example 2 * A number of things and the corresponding number of concepts (4), is uniquely and correspond in the same order. Es. 3. Example 3. Se dati i gruppi ABCDE, A'B CD'E1 si fa corrispondere C' ad A, D' a J5, E1 a C, A ad D, ad E, e inversamente; i gruppi si corrispondono univocamente e nel medesimo ordine. If data groups ABCDE, A'B CD'E1 it matches C 'to A, D' to J5, E1, C, A to D, E, and inversely, the groups are uniquely and in the same order. Es. 4. Example 4. Se invece nel caso precedente si corrispondono A e J5', B e D', C e -4% D e E', E e ', i gruppi si corrispondono univocamente ma non nello stesso ordine. If, however, in the previous case correspond to A and J5 ', B and D', C and -4% D and E ', E, and', the groups correspond uniquely but not in the same order. a. a. In grappi (A) e (B) ordinati che si corrispondono univocamente e nel medesimo ordine o in ordine inverso ad elementi consecutivi nell'imo corri- spondono elementi consecutivi nell'altro. In grappi (A) and (B) that are uniquely arranged and in the same order or in reverse order to nell'imo consecutive elements correspond consecutive elements in the other. E inversamente; Se si corrispondono a uno a uno gli elementi consecutivi i gruppi si cor- rispondono univocamente e nello stesso ordine o in ordine inverso. Conversely, if you match one by one the items consecutive groups are uniquely cor-respond in the same order or in reverse order. Difatti se agli elementi consecutivi AB qualunque dell' uno (def. Vili, 13)2) corrispondessero elementi non consecutivi dell'altro, l'elemento X corri- spondente ad un clemente X1 compreso fra gli elementi A' e B' (def' I, 23, 24) per ipotesi non sarebbe compreso fra A e 2? In fact, if the elements of any consecutive AB 'a (def. VIII, 13) 2) corresponded nonconsecutive items of the other, the element X corresponding to a merciful X1 between the elements A' and B '(def' I, 23, 24) for hypothesis would not be included between A and 2? ei gruppi non si corrisponde- rebbero nel medesimo ordine o in ordine inverso (def. Ili e oss. II). and groups do not correspond-rebbero in the same order or in reverse order (def. Ili and oss. II). Se pòi si corrispondono ad uno ad uno gli elementi consecutivi, ad ogni elemento X compreso fra gli elementi qualunque A e B nel primo corrisponde un elemento JT compreso fra gli elementi corrispondenti A' e I? If you then correspond, one by one consecutive elements, each element X between any elements A and B in the first element corresponds to a JT between the corresponding elements A 'and I? ; e perciò anche la proprietà inversa è dimostrata (def. HI e oss. II). , And therefore also the inverse property is proved (def. HI and oss. II). b. b. Se i gruppi ordinatilo serie limitate) di prima specie ABCD....LM, A'B'C jy..t.L'M' si corrispondono univocamente, nel medesimo ordine o in ordine in- verso, in modo che di primo e secondo elemento del primo gruppo corrispon- dono ordinatamente il primo e il secondo elemento del secondo gruppo, gli ul- timi elementi si corrispondono fra loro. If the groups ordinatilo limited series) of the first species ABCD .... LM, jy .. t.L A'B'C 'M' is uniquely correspond, in the same order or in order in-line, in such a way that at first and second element of the first group correspond neatly the first and the second element of the second group, the ul-timi elements correspond to each other. 1) vedi npta, 9 e 4, cap. 1) see NPTA, 9 and 4, ch. IV. IV. 2) Questa def. 2) This final. vale sia per la serie come per il gruppo ordinato. applies both to the series as for the ordered group.

Page 22 Page 22

Difatti ali1 ultimo elemento M delia serie del primo gruppo per la corri- spondenza univoca deve corrispondere un solo elemento della serie del secondo gruppo. In fact ALI1 last element M Delia series of the first group for the univocal correspondence must correspond to a single element of the series of the second group. Se ad M corrisponde un elemento X' precedente di 3f, ultimo elemento del secondo gruppo (21 e 22), l'elemento consecutivo seguente di M, ossia A (oss. II. ) deve corrispondere a un elemento consecutivo di X (a). If M corresponds to an element X 'of the previous 3f, last element of the second group (21 and 22), the element following a row of M, ie A (oss. II.) Must correspond to an element in a row of X (a) . Ma l'elemento corrispondente ad A è A'. But the element corresponding to A is A '. Ora se A' è consecutivo seguente di X*, X è M' stesso (oss. II), e il teor. Now if A 'is a row of the following X *, X is M' the same (oss. II), and the theorem. è dimostrato. is shown. Se invece A' è il consecutivo antecedente di X* (24), X' è il secondo elemento del gruppo A'#C*Z)'....M.' If A 'is the antecedent of consecutive X * (24), X' is the second element of the group A '# C * Z)' .... M. ' Ma M non è il se- condo elemento B del primo gruppo che corrisponde al secondo elemento B' del secondo per i dati stessi del teorema; dunque se X* fosse #, all'elemento B' corrisponderebbero gli elementi distinti B ed M del primo gruppo, ciò che con- traddice alla corrispondenza univoca (def. II). But if M is not the second element-B of the first group corresponds to the second element B 'the second to the data of the theorem, so if it were # X *, the element B' and B correspond to distinct elements of the first M group, which contradicts to-one correspondence with (final II). e. and. In gruppi (A), (A') corrispondentisi univocamente i sottogruppi delV uno corrispondono univocamente ai sottogruppi dell' altro. In groups (A), (A ') corrispondentisi uniquely subgroups delV a uniquely correspond to the subgroups of' other. Sia (T) una parte del gruppo (A). Let (T) a part of the group (A). Ad ogni elemento di (T) come elemento di (A) (def. V, 13) corrisponde un elemento di (A'), e tutti gli elementi in (A') che corrispondono a quelli di (T) formano un gruppo (T) che è parte di (A'} (def. V, 13). Difatti ad un elemento Xdi (A) che non appartiene a (T) non può corrispondere in (A') un elemento di (T) perché a questo corrisponderebbe in (T) un altro elemento diverso da X, perché X è fuori di (T) (def. VI, 13) con- tro Tipotesi della corrispondenza univoca (def. II). Supponiamo ora che a (T) corrispondano i gruppi diversi (7*), (7") di (A). Perché siano diversi bisogna che l'uno contenga almeno un elemento X' fuori dell'altro, altrimenti (Tf) è (T") sarebbero lo stesso gruppo (#, 29). Sia X' contenuto in (2*) e fuori di (T"). All'elemento X corrispondente di -XMn (T) corrisponderebbero e l'elemento X in (T') e un altro elemento diverso da X9 in (Z7"), il che è pure contro l'ipotesi. d. In gruppi ordinati (A) e (A') corrispondentisi univocannente, nello stesso ordine o in ordine inverso, ad un sottogruppo dell'uno corrisponde un solo sot- togruppo deW altro. In gruppi che si corrispondono univocamente, ad un sottogruppo (I7) di (A) corrisponde un solo sottogruppo (T') di (A1) (e). Ma i gruppi (A) e (A') si corrispondono anche nel medesimo ordine o in ordine inverso, e quindi a ele- menti consecutivi dell' uno corrispondono elementi consecutivi dell' altro (a). Se A e B sono elementi consecutivi di (I7) e quindi di (A) (def. II, 27), gli elementi corrispondenti A'e in (A') appartengono a (T) (e). Dunque (T) è formato da elementi consecutivi di (A') epperciò è un sottogruppo di (A) (def II, 27). e. Gruppi corrispondenti univocamente ad un altro gruppo si corrispon- dono univocamente fra loro. Siano (A), (A') i gruppi corrispondenti univocamente al gruppo (A"). Ad ogni elemento X del primo corrisponde un elemento ^X" del terzo, ea que- sto elemento X" corrisponde un elemento X* del secondo. In questo modo si fa corrispondere l'elemento X all'elemento X', e inversamente all'elemento X P elemento X per mezzo del terzo gruppo (A"). Difatti rispetto al solo concetto di corrispondenza univoca X e X" si possono ritenere uguali fra loro, poiché non viene considerata la loro diversità, così X' e X", e quindi anche X e X' (e, 8): mentre altri elementi YJ F, Y", corrispondenti possono riguardarsi di- For each element of (T) as an element of (A) (def. V, 13) corresponds to an element of (A '), and all the elements in (A') that correspond to those of (T) form a group ( T) which is part of (A '} (final V, 13). In fact, to an element XDI (A) that does not belong to (T) can not match in (A') an element (T) because at this correspond in (T) another element different from X, because X is outside (T) (def. VI, 13) against Tipotesi of unique match (final II). Suppose now that a (T) match the groups different (7 *), (7 ") of (A). Why are different it is necessary that each contains at least one element X 'out of the other, otherwise (Tf) is (T") would be the same group (#, 29). Let X 'contained in (2 *) and out of (T "). The element of the corresponding X-Xmn (T) correspond, and the element X in (T') and another element different from X9 (Z7 "), which is also against the hypothesis. d. In ordered groups (A) and (A ') corrispondentisi univocannente, in the same order or in reverse order, to a subgroup of one corresponds to a single subgroup dew another. In groups which correspond uniquely, a subgroup (I7) of (A) corresponds to a single subgroup (T ') of (A1) (e). But the groups (A) and (A') is also correspond in the same order or in reverse order, and then in consecutive elements of 'a corresponding consecutive elements of the' other (s). If A and B are consecutive elements of (I7), and then of (A) (def. II, 27), the corresponding elements in A'e (A ') belong to (T) (e). Therefore (T) is formed by consecutive elements of (A') epperciò is a subgroup of (A) (final II, 27 .) and. Groups corresponding uniquely to another group is uniquely correspond to each other. Let (A), (A ') groups corresponding uniquely to the group (A "). For each element X of the first corresponds to an element X ^ "of the third, and this I-element X" is an element X * of the second. In this way the element is made to correspond to the element X X ', and inversely to the element XP element X by means of the third group (A "). In fact, compared to only concept of univocal correspondence X and X" can be considered equal to one another, is not considered because their diversity, so X 'and X ", and therefore also X and X' (and 8): while other elements YJ F, Y ', may be regarded corresponding di-

Page 23 Page 23

23 versi da X, X', X" essendo rispettivamente distìnti da essi (def. I, 13; def. V, 8; oss. Ili, 9). f. Gruppi ordinati corrispondenti univocamente e nello stesso ordine ad un altro gruppo si corrispondono univocamente e nello stesso ordine fra loro. La dina, è analoga alla precedente tenendo conto della def. III. Oss. Nella corrispondenza univoca e del medesimo ordine o di órdine inverso al grappo ordinato possiamo sostituire la serie di esso e inversamente, perché in questa corrispondenza non si tien conto di ciò che distingue il gruppo dalla serie (oss. 28). 43, a. Ogni gruppo ordinato naturale si può far corrispondere univoca- mente e nel medesimo ordine ad un solo sottogruppo di un gruppo ordinato qualunque illimitato di la specie facendo corrispondere al primo elemento del primo un elemento dqto qualunque del secondo. Difatti siano (A) ABCD....M il gruppo ordinato naturale (35) e (A') = A'B'CD'^M'NN'.,., il gruppo ordinato illimitato di la specie. Posso far corri- spondere al primo, secondo, terzo.... elemento di (A) il primo, secondo, ter^ zo.... elemento di (A1) ; vale a dire ali' elemento consecutivo seguente di un elemento qualunque X di (A) posso far corrispondere l'elemento consecu- tivo seguente dell'elemento corrispondente X'. Se in questa corrispondenza al- l'ultimo elemento M di (A) corrisponde un determinato elemento M' di (4*), il teorema è dimostrato perché essendo M' dato, il gruppo A'BC'D'....M' è un gruppo limitato e perciò di prima specie (def. Ili, 39). Se invece ad M non cor- risponde alcun elemento dato di (Af), vi deve essere però un ultimo ele- mento X di (A) cui corrisponde un elemento determinato X* di (A); perché per lo meno X è A, cui corrisponde A'. Ma in (.A1) l'elemento X'ha un elemento consecutivo seguente (24) essendo il gruppo (A') illimitato di la specie (def. Ili, 39), ea questo elemento corrisponde il consecutivo seguente di X in (A), che è compreso per ipotesi fra X e M. Dunque X non può essere l'ultimo elemento di (A) cui corrisponde un elemento determinato di (A'), eccetto che X non sia I1 ultimo elemento stesso di (A). Non può essere che ad (4) corrispondano sotto- gruppi diversi (B) e (B') di (A'), uno dei quali dovrebbe contenere un elemento almeno fuori dell'altro (b, 29), e quindi ad un elemento di (A) non corrispon- derebbe un solo elemento di (B) e (ff) ossia di (A). Il teorema è dunque di- mostrato. È chiaro che la dimostrazione vale ugualmente se invece di far corri- spondere l'elemento A all'elemento A' di (A) si fa corrispondere ad un altro elemento qualunque dato X1 di (A). b. Un gruppo ordinato illimitato di la specie si può far corrispondere uni- vocamente e nel medesimo ordine ad un altro gruppo ordinato illimitato di la specie. Siano ABCD....N...., A' CD'....N'.... le serie dei gruppi dati coi primi ele- menti A e A'. Ad ogni serie limitata ABC....N della prima si può far corrispon- dere univocamente e nello stesso ordine una serie limitata ABC*..N della se- conda ed una sola facendo corrispondere i primi elementi e gli elementi con- secutivi fra loro (a)., Dunque ad ogni elemento dato N del primo gruppo cor- risponde in tal modo un solo elemento N' del secondo, e inversamente, perché 23 lines from X, X ', X "being distinct from them, respectively (def. I, 13; final. V, 8; oss. Ill, 9). F. Groups corresponding uniquely ordered in the same order, and to another group uniquely correspond to each other and in the same order. The dynamic is similar to taking into account the previous final. III. Oss. In one correspondence, and the same order or reverse order to replace the set Grappo we ordered it, and conversely, because this correspondence we consider what distinguishes the group from the series (oss. 28). 43, a. Each group can be ordered to match unique natural-mind and in the same order to a single subgroup of a group ordered any unlimited the species by matching the first element of the first element dqto any of the second. fact are (A) ABCD .... M the natural ordered group (35) and (A ') = A'B'CD' ^ M'NN '.,., the ordered group unlimited of the species. Can I corre-spond to the first, second, third .... element (A) the first, second, b ^ z .... element (A1) ; ie wings 'following consecutive element of any one element X of (A) I can match the element consecutive follow-tive of the corresponding element X'. If in this correspondence to-the last element of M (A) corresponds to a given element M 'of (4 *), the theorem is demonstrated because being M' given, the group A'BC'D '.... M' is a group limited and therefore of the first kind (final Ill, 39). If not cor-responds to M any given element of (Af), however, there must be a last ele-ment X of (A) which corresponds to a certain element X * of (A); because at least X is A, which corresponds to A '. But in (. A1), the element X'ha an element in a row following (24) being the group (A') of the unlimited species (final Ill, 39), and this element corresponds the following row of X in (A), which is included for hypothesis between X and M. Therefore X can not be the last element of (A) which corresponds to a given element of (A '), except that X is not I1 last element of the same (A). can not be that to (4) correspond to different sub-groups (B) and (B ') of (A'), one of which should contain at least one element out of the other (b, 29), and then to an element of (A) does not correspond these being only one element (B) and (ff), ie of (A). The theorem is thus shown-. It is clear that the demonstration applies equally if, instead to correspond with whichever the A element to the element A 'of (A) is made to correspond to another element of any given X1 (A). b. An ordered group of the species can be unlimited match uni-ing and quantifying and in the same order to another group ordered the unlimited species. Let ABCD .... N. ..., A 'CD' .... N '.... the number of data sets with the first elements to and A '. For each series limited .... ABC N of the first one can be uniquely correspond-ing in the same order and a limited series ABC * .. N of the sec-ond and only one by matching the first elements and the elements -consecutive with each other (a)., So at every given element N of the first group cor-responds in this way only one element N 'of the second, and conversely, because

Page 24 Page 24

24 ogni elemento # (JV*) determina un solo gruppo formato dagli elementi che lo precedono e da N (JV) (def., 6, 21). Each element # 24 (JV *) leads one group formed by the elements which precede and N (JV) (def., 6, 21). Ciò vale per tutti gli elementi dei gruppi dati (i, I, 39); e per la corrispondenza delle serie di essi, ad elementi consecu- tivi dell'uno corrispondono elementi consecutivi dello stesso nome dell'altro (24) e quindi i gruppi dati si corrispondono univocamente e nel medesimo ordine (a, 42). This applies to all the elements of the data groups (i, I, 39), and for matching the series of them, for consecutive elements of one-tives correspond consecutive elements of the same name of the other (24) and thus the groups data correspond uniquely and in the same order (a, 42). b*. b *. Un gruppo ordinato illimitato di la specie si può far corrispondere uni" vocamente e nello stesso ordine ad ogni gruppo ordinato illimitato contenute nel primo. Pechè ogni gruppo ordinato illimitato contenuto in un gruppo illimitato di la specie è pure di la specie (e, 39), e quindi il teor. è dimostrato (b). e. Se i gruppi ordinati (A) e (A') si corrispondono univocamente, nel me- desimo ordine o in ordine inverso, (A') è limitato o illimitato secondo che (A) è limitato o illimitato. Sia (A)^ABCD....M, (A') = A'#C7)'...jr..... Al primo elemento A di (A) (16) corrisponde uno ed un solo elemento ad es. A' dì (A) (def. Ili, 42), e al consecutivo seguente B di A in (A) corrisponde un elemento consecutivo di A1 in (A) (a. 42), ad es. il consecutivo seguente B'. Se X e X* sono ele- menti COITI spendenti qualunque (def. Vili, 13 e def. I, 26), al consecutivo se- guente Y di X, se esiste, deve corrispondere il consecutivo seguente Y' di X\ perché non gli può corrispondere il consecutivo antecedente essendo X com- preso fra A e Y (def. Ili, 42). All'ultimo elemento M di (A) corrisponde un elemento M' di (A'); e poiché M ha per consecutivo seguente A (oss. n, 42). ad A deve corrispondere il consecutivo seguente di M'. Ma se (A') non ha ul- timo elemento (22) il consecutivo seguente di M* non è A', e quindi ad A non corrisponderebbe un solo elemento di (A'), contro il dato (def. Ili, 42). Lo stesso accadrebbe se (A1) non avesse il primo elemento ed avesse l'ultimo ad es. M'; agli elementi che precedono A' in (A') (21) non corrisponderebbero elementi di (A), ea maggior ragione se (A') non avesse né primo né ultimo elemento, il che è contro l'ipotesi (def. Ili, 42). Dunque quando all'elemento B di (A) corrisponde il consecutivo seguente B di A' in (A'), il gruppo (A'), è limitato (def. I, 32 ; oss. 23). Se invece all'elemento B corrisponde l'elemento consecutivo antecedente di A' in (A') (24) basta considerare il gruppo inverso (def. 1,33; def. I, 26). Si dimostra nello stesso modo che esso è limitato, e quindi anche (A) (b, 33). Se (A) è illimitato, (Af) non può essere limitato perché lo sarebbe anche (A). Il teorema è così in ogni caso dimostrato. e. Ogni gruppo ordinato (A) che corrispoude univocamente, nel medesimo ordine o in ordine inverso, ad un gruppo naturale (A), è un gruppo naturale. Perché ogni sottogruppo di (A) corrisponde ad un sottogruppo di (A') (d, 42), il quale è limitato e non contiene alcun sottogruppo illimitato fdef. 35 e oss. 42), dunque ogni sottogruppo di (A) è limitato e non contiene alcun sot- togruppo illimitato (e), dunque e' (def. 35 e oss. 42). e". A group ordered the unlimited species can match each "ing and quantifying the same order and each group contained in the first ordained unlimited. Peche each group ordered Unlimited Unlimited contained in a group of species is also of the species (and 39) , and then the theor.. is shown (b). and. If the ordered groups (A) and (A ') is uniquely correspond, in the me-desimo order or in reverse order, (A') is limited or unlimited according as (A) is limited or unlimited. Both (A) ^ ABCD .... M, (A ') = A' # C7) '... jr ..... At the first element A of (A) (16 ) corresponds to one and only one element eg. A 'day (A) (def. Ill, 42), and the following consecutive B of A in (A) represents an element in a row of A1 in (A) (a. 42) , eg. the row below B '. If X and X * are elements spenders any copulations (def. VIII, 13, and def. I, 26), if the row-guente Y of X, if it exists, must correspond the row below Y 'of X \ because he can match the X com-row before being taken between A and Y (def. Ill, 42). the last element of M (A) represents an element M' of (A '); and since M has the following consecutive A (oss. n, 42). A must correspond to the following row of M'. But if (A ') has no thymus-ul element (22) following the row of M * is not A ', and then to A does not correspond to a single element of (A'), against the data (def. Ill, 42). The same would happen if (A1) had not had the first element and the last to es. M ', the elements preceding A' (A ') (21) does not correspond to items (A), and a fortiori if (A') had neither first nor last element, which is against the hypothesis (final Ill, 42). Therefore, when the element B of (A) corresponds to the following consecutive B-A '(A'), the group (A '), is limited (final I, 32; obs. 23). If the element B corresponds to the element consecutive antecedent of A '(A') (24) suffices to consider the inverse group (final 1.33; final. I, 26). It is demonstrated in the same way that it is limited, and therefore also (A) (b, 33). If (A) is unlimited, (Af) may not be limited because it would also (A). The theorem is thus in any case shown. and. each ordered group (A) that uniquely corrispoude, in the same order or in reverse order, to a natural group (A), is a natural group. Because each sub-group of (A) corresponds to a subset of (A ') (d, 42), which is limited and does not contain any subgroup unlimited FDEF. oss 35 and 42)., then every subgroup of (A) is limited and does not contain any subgroup Unlimited (s), and thus' (def. 35 and oss. 42). and ". Ogni gruppo ordinato (A) che ha un primo elemento e corrisponde uni" vocamente e nello stesso ordine ad un gruppo illimitato (A') di la specie^ è il- limitato di la specie. ' Each ordered group (A) that has a first element and corresponds to one "ing and quantifying and in the same order to a group unlimited (A ') of the species-^ is the limited amount of the species.'

Page 25 Page 25

Dìfatti ogni sottogruppo limitato di (A) è un gruppo limitato di la spe- cie (d, 42; ee e'), dunque og|i Sottogruppo limitato di (A) col primo elemento nel primo elemento di (A) è limitato di la specie, e quindi il teorema è dimo- strato (def. WJ, e 0 S^4?X; si , ^ v ^ ?; ;: i 44. De/1. I. Quando gli elementi di un gruppo corrispondono agli elementi del gruppo stesso si dice cile1 il'g^upVio fef trasforma in sé medesimo, e si dice che la trasformazione è univoca quando ad ogni elemento del gruppo corri- sponde uno ed un solo elemento dello stesso gruppo ea questo corrisponde il primo elemento e questo solo. Si dice che la trasformazione è univoca e dello stesso ordine se il gruppo è ordinato e gli elementi corrispondenti sono compresi fra elementi corri- spondenti e ad ogni elemento X che precede un elemento qualunque Y corri- sponde un elemento X' che precede l'elemento corrispondente Y'. Def. IL II caso più setfcpliee di una tràsfortilàzìone univoca è quello in cui ogni elemento del gruppo corrisponde a sé stesso. In tal caso la trasfor- mazione si chiama corrispondenza o trasformazione di coincidenza. Oss. Nelle corrispondenze qui stabilite non si tien conto evidentemente del modo con cui sono posti gli elementi dei gruppi corrispondenti (oss. I, 38). In fact, each limited subset of (A) is a limited group of the species (d, 42; ee and '), thus og | Subgroup the limited amount of (A) with the first element in the first element (A) is limited to the species, and then the theorem is demonstrated (def. WJ, S and 0 ^ 4? X, is, ^ v ^?;;: the 44. De / 1. I. When the elements of a group correspond to elements of the group is said cile1 il'g ^ fef upVio into himself, and says that when the transformation is unique to each group element corresponds one and only one element of the same group and this is the first element and this alone. It is said that the transformation is unique and of the same order if the group is ordered and the corresponding elements are between elements corresponding to each element and any element X that precedes Y corresponds an element X 'before the corresponding element Y '. Def. II THE case of a setfcpliee tràsfortilàzìone unique is that in which each element corresponds to the group itself. In this case the transformation is called correspondence or transformation of coincidence. Oss. In matches Here we consider not established clearly the way in which places are the elements of the corresponding groups (oss. I, 38).

Page 26 Page 26

CAPITOLO III. CHAPTER III. Il numero nella sua prima formazione. The number in its first formation. Numeri naturali. Natural numbers. 1. 1. Primo concetto di numero. First the concept of number. 45. 45. Def. Def. /. /. Unità si chiama una cosa qualunque X data (6) considerando che è una anziché più cose (2, oss. 8), facendo astrazione dagli altri suoi con- trassegni (9, 7). Unit is called one thing any given X (6) Whereas it is a rather more things (2, obs. 8), in isolation from its other with-trassegni (9, 7). a. a. Cose distinte considerate come unità sono uguali. Distinct things considered as a unit are the same. Invero si considerano rispetto al solo contrassegno uno (def. I; oss. III. 9); quindi il concetto uno dell'una è il concetto uno dell'altra, dunque a. Indeed we consider than just a flag (def. I, oss. III. 9), so the concept is a concept of one of the other one, therefore. (def. VI, 8). (Def. VI, 8). Def. Def. IL Dato un gruppo ordinato di oggetti ...ABCDE... THE Given an ordered group of objects ABCDE ... ... qualunque (26; 6,37), e se si considera ciascuno di questi oggetti come unità (def. I) e facendo astrazione dal modo con cui sono posti, non però dal loro ordine (7 ; def. I, 38), in modo che oggetti distinti danno unità distinte, il gruppo ordinato di unità che così risulta si chiama numero del gruppo dato 1). any (26, 6.37), and if we consider each of these objects as a unit (def. I) and abstracting from the way in which they are placed, but not by their order (7; final. I, 38), so that distinct objects damage distinct units, the orderly group of units so that it is called number of the group given 1). b. b. Gli elementi del gruppo ordinato (A) e le unità del numero cui da ori- gine sì corrispondono univocamente e nel medesimo ordine. The elements of the ordered group (A) and the units from which the number origin yes correspond uniquely and in the same order. Difatti gli elementi del gruppo e le unità del numero si corrispondono univocamente perché ad ogni elemento A del gruppo corrisponde una sola unità del numero, ea questa unità corrisponde così il solo elemento A, poi- ché è data da questo solo elemento del gruppo (def. II), inoltre a un elemento C che segue A e precede B corrisponde un1 unità che segue I1 unità corrispon- dente ad A e precede quella corrispondente a B (def. li; def. Ili, 42). In fact, the elements of the group and the units of the number will correspond uniquely because each element of the group A corresponds to one unit of the number, and this unit is thus the only element A, then-because it is given by only this element of the group (final . II), also to an element A and C which follows precedes B corresponds UN1 unit that follows I1 units corresponding to A and preceding the one corresponding to B (final them; final. Ill, 42). ti. you. Ai sottogruppi di un gruppo ordinato corrispondono i numeri che sono partì del numero corrispondente al gruppo (def. II ; d, 42 e def. II, 25). For the subgroups of an ordered group match the numbers that are left of the number corresponding to the group (def. II d, 42 and def. II, 25). Oss. Oss. II. II. L'unità è parte di tutti i numeri ( ', def. I), ed è il numero corrispon- dente ad un gruppo di un solo elemento (def. Ili, 13; 19; 26). The drive is part of all the numbers (', final. I), and is the number corresponding to a group of only one element (final Ill, 13; 19; 26). 1) Ciò non significa che ogni forma che chiameremo numero debba dedursi in questo modo (Vedi notan. 4), come non significa che ci riferiamo soltanto al numero intero finito (Vedi 2 e 3 Gap. vi). 1) This does not mean that any form which we call number should be deducted in this way (See Notan. 4), as it does not mean that we refer only to finite integer (See two three Gap. Vi). Scegliendo come def. Choosing as final. del numero la seguente: Si dice che i gruppi ordinati qualunque (A) e (B) han- no lo stesso numero quando si possono far corrispondere univocamente e nel medesimo ordine (def. ir, 42) si incontrerebbe il difetto già notato altrove che si introdurrebbe il concetto d'identità (def. VI,8), senza sapere se è in questo caso applicabile. number of the following: It is said that any ordered group (A) and (B) have the same number-no when you can match uniquely and in the same order (def. ir, 42) will meet with the defect noted elsewhere that we introduce the concept of identity (def. VI, 8), without knowing whether it is applicable in this case. Ciò potrebbe però essere giustificato facilmente. This could however be easily justified. Ma cosi il numero verrebbe introdotto come un modo di dire per esprimere il concetto della corrispondenza univoca e del medesimo ordine, che non è ancora quello di numero da noi definito (def. llt 42, def. Il e oss. I). But so the number would be introduced as a way of saying to express the concept of unique match and the same order, which is not yet what we call the number (def. 42 llt, def. And the oss. I). È chiaro poi che nella nostra genesi il numero intero in generale e in particolare quello naturale (46) deriva dalle operazioni e dai concetti determinati e comuni del cap. It is also clear that our genesis in the integer in general and in particular the natural one (46) is derived from operations and certain concepts and common cap. i. the.

Page 27 Page 27

2 o. Or 2. tfumerì le unità dei quali si corrispondono univocamente e nel medesimo ordine, e di cui l'uno non è parte o uguale ad una parte dell'altro, sono uguali. tfumerì the units of which correspond uniquely and in the same order, and one of which is not part of or equal to a part of the other, are equal. Se (A) e (B) sono gruppi ordinati dati di elementi, (A') e ( ) le loro rap- presentazioni mentali (4), (A) e (A'), (B) e (#) si corrispondono univocamente e nel medesimo ordine (es. 2, 42). If (A) and (B) are ordered groups of data elements, (A ') and () their rap-mental presentations (4), (A) and (A'), (B) and (#) correspond uniquely and in the same order (eg 2, 42). Se si tien conto di questa sola corrispon- denza come contrassegno di confronto fra i gruppi (A) e (B) (def. I, 9) e se i gruppi (A) e (B) si corrispondono univocamente e nel medesimo ordine se corri- spondono univocamente e nel medesimo ordine ad (A'), e quindi rispetto al suddetto contrassegno sono uguali (def. I, 9). If one takes into account only this correspondence as a mark of comparisons between groups (A) and (B) (def. I, 9) and whether the groups (A) and (B) correspond uniquely and in the same order if correspond uniquely and in the same order to (A '), and then with respect to said marking are equal (def. I, 9). Ma se si tien conto altresì, come si deve fare in generale (def. I, 88) della diversità degli elementi, e della diversità del modo di posizione fra gli elementi e da quella che risulta dall'essere un gruppo parte o uguale ad una parte del- l'altro (def. II, 27), allora i gruppi (A) e (B) non sono più in generale uguali colla sola corrispondenza univoca e del medesimo ordine. But if one takes into account also, as you must do in general (def. I, 88) of the elements of diversity, and diversity of the way position between the elements and from that resulting from being part of a group or equal to a -part of the other (final II, 27), then the groups (A) and (B) are not in general equal glue alone and univocal correspondence of the same order. Nei numeri di (A) e di (B) considerati come gruppi dati di unità (def. I e def. II), gli elementi sono uguali (a), ed è escluso il modo di posizione fra gli elementi (def. II) mentre non è escluso il terzo contrassegno di confronto. In the numbers of (A) and (B) considered as groups of data units (def. I and final. II), the elements are equal (a), and is excluded the way position between the elements (final II) while it is not excluded the third mark for comparison. Se questa diversità non esiste e vi è la corrispondenza univoca e nel medesimo ordine come ammette la tesi, i numeri di (A) e (B) sono uguali (def. Ili, 9). If this difference does not exist and there is a unique match, and admits in the same order as the thesis, the numbers of (A) and (B) are equal (def. Ill, 9). Oss I. Oss I. Se il numero si fa dipendere invece dalla sola corrispondenza univoca e del medesimo ordine, o anche dalla sola corrispondenza univoca i numeri di (A) e di (B) sono ugnali se vi è nel primo caso la corrispondenza univoca del medesimo ordine, e la sola corrispondenza univoca nel secondo caso. If the number is made to depend instead only by the univocal correspondence and of the same order, or even by the single unique match the numbers of (A) and (B) are ugnali if there is in the first case the univocal correspondence of the same order, and the single unique match in the second case. 2. 2. Operazione del numerare. Operation of the number. Gruppi e numeri naturali. Groups and natural numbers. Addizione. Addition. 46. 46. Def. Def. I. I. L'operazione colla quale si determina il numero di un gruppo ordinato (def. II, 45), si chiama operazione del numerare o del contare. The operation by which it determines the amount of an ordered group (def. II, 45), is called the task of counting or numbering. Def. Def. II. II. Ai gruppi ordinati naturali (35, oss. 28) corrispondono numeri che chiameremo numeri naturali (def. II, 45). For the natural ordered groups (35, pers. 28) match the numbers that we call natural numbers (def. II, 45). Oss. Oss. I. I. Il numero nella 8ua 'prima costruzione, o il numero naturale, è runione successiva di più unità ottenute colla semplice ripetizione limitata dell'unità (def. I, oss. 35 e def. 15). The number in the 8UA 'first construction, or the natural number, is next runione more units obtained with the simple repetition of the unit limited (final I, obs. 35 and final. 15). a. a. Ogni parte di un numero naturale è pure un numero naturale (/. 39 e def. I). Each part of a natural number is also a natural number (. / 39 and final. I). b. b. I numeri naturali si possono far corrispondere univocamente e nel me- desimo ordine ai sottogruppi di un gruppo ordinato illimitato di 1* specie ed aventi con questo lo stesso primo elemento. The natural numbers can be uniquely and match in order for me desimo-subgroups of an ordered group of 1 * unlimited with this species and having the same first element. Sia (A) il gruppo naturale corrispondente ad un numero dato, (B) il gruppo ordinato illimitato di la specie. Both (A) the natural group corresponding to a given number, (B) the ordered group of the unlimited species. Il gruppo (A) si può far corrispondere univocamente e nello stesso ordine ad un sottogruppo (A') di (B) collo stesso The group (A) can match and in the same order uniquely to a subset (A ') of (B) with the same

Page 28 Page 28

28 primo elemento { , 43), e quindi le unità del numero si possono far corrispon- dere univocamente e nello stesso ordine al gruppo (-4) (f. 42). First element {28, 43), and therefore the number of units can be made to correspond-ing uniquely and in the same order to the group (-4) (f. 42). e. and. Tutti i numeri naturali nel modo indicato dal teor. All natural numbers as indicated by the theorem. b formano una serie illinntata di 1* specie. b form a series of 1 illinntata * species. Segue immediatamente dalla def. Follows immediately from the def. I e da i. I and i. 39. 39. Def. Def. III. III. Chiameremo questa serie, per seguire i1 uso comune, serie natu- rale dei numeri naturali e la indicheremo col segno (I). We will call this series, to follow i1 commonly used by natural series of natural numbers and denote by sign (I). e'. and '. Ogni numero naturale si ottiene colla semplice unione successiva limitala dell'unità ad un numerò precedente nella serie (I) *) (C; def. II, ht g, 39). Every natural number is obtained by simple union limitala next to a numbered unit in the previous series (I) *) (C, def. II, ht g, 39). 47. 47. a. a. L'operazione dell'unire l'unità (e quindi successivamente delle unità di un numero') o un numero all'unità o ad un numero, è a senso unico. The operation of uniting the unit (and then subsequently the units of a number ') or a number to the unit or a number, is one-way. L'unione semplice è un'operagione a senso unico (I, 29; def. II, 11); il gruppo ordinato di unità che ne deriva può dipendere dall'ordine e dal modo con cui sono posti i suoi elementi (def I, 38). The union is un'operagione simple one-way (I, 29; final. II, 11); the ordered group of units which results may depend on the order and the manner in which are placed its entirety (final I, 38). Ma l'ordine è in tal caso già stabilito, poiché ad es. But the order is already established in this case because, for example. al tutto (ABCD) si unisce l'elemento E. at all (ABCD) joins the element E. Il numero non dipende dal modo con cui sono posti gli elementi del gruppo corrispon- dente (def. II, 45), quindi il teor. The number does not depend on the way in which are placed the elements of the group corresponding (final II, 45), then the theorem. è dimostrato. is shown. Def. Def. I. I. L'unione di un numero ad un altro numero (def. Il, 45 e def. I, 26) si chiama addizione, e il risultato si chiama somma del secondo numero al primo. The combination of a number to another number (def. The, 45, and def. I, 26) is called addition, and the result is the sum of the second issue first. I numeri dati si chiamano sommandi o addendi. The numbers are called sommandi or addenda. Ind. I. Ind. I. Useremo il segnò H- per questa operazione. We will use the H-marked for this operation. Oss. Oss. 1. 1. 11 gruppo ordinato (k)) (B)] se (A), (B) rappresentano i numeri eo rappresenta la somma af Mind. 11 ordered group (k)) (B)] if (A), (B) represent the numbers and o represents the sum f Mind. 27). 27). lud. lud. IL Indicheremo l'unità col segno 1. IL will denote the unit 1 with the sign. Ind. IH. Ind. IH. Il primo numero dopo l'unità si ottiene dall'unione dell'unità ripetuta all'unità cioè; * + l che indicheremo col segno 2 (due), e quindi: 1*1-2 (b, 9), il primo numero dopo 2 è 2 + 1 che indicheremo col segno 3 (tre), e quindi : 2+1=3 Così il primo numero dopo il tre è 3 -f 1, che indicheremo col segno 4 (quat- tro), ed avremo: 3+1=4 e cosi via. The first number after the unit is made from the drive unit that is repeated, * + l denoted by the sign 2 (two), and then: 1 * 1-2 (b, 9), the first number after 2 2 + 1 is denoted with the sign of 3 (three), and then: 2 +1 = 3 So the first number after the three is 3-f 1, which we denote with the sign of 4 (four), and we have: 3 +1 = 4 and so on. In generale dato un numero indicato con m il numero successivo della serie (I) sì indica con m 4-1. In general, given a number indicated by m the next number in the series (I) with m indicates yes 4-1. I numeri dedotti dalla ripetizione limitata dell'unità e che si seguono secondo l'ordine della serie (I) sono indicati come segue: (1) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11... The numbers put forward by the limited repetition of the unit and which are followed according to the order of the series (I) are indicated as follows: (1) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ... 20, 21... 20, 21 ... 100. 100. 101... 101 ... 200... 200 ... i) il nostro gruppo ordinato illimitato qualslasi che ha un primo elemento (26) e nel quale ogni elemento dato ha un solo elemento consecutivo seguente e uno antecedente (24) soddisfa alle prime 8 delle 9 proprietà che il sig. i) our group ordered unlimited qualslasi which has a first element (26) and in which each data element has only one element and a row following one preceding (24) satisfies the first 8 of the 9 properties that Mr. Peano da come assiomi nei suoi Arith. By Peano axioms as in his Arith. Principia (1889) per il segno N (numero), alcuni dei quali sono però proprietà logiche generali come ocra/ se a=b si deduce b=a; se ab, 6=c si deduce a=c, che corrispondono alle proprietà I, def. Principia (1889) for the sign N (number), some of which are, however, as general logical properties ocher / if a = b we deduce b = a; if ab, c = 6 we deduce a = c, which correspond to the properties I , def. Vi ; d. I d. e del n 8. and No. 8. La proprietà 5 1 del sig. 5 1 The property of Mr. Peanò esprime che l'uguaglianza ha luogo relativamente al solo concetto dì numero, (vedi l'oss. IV, del nura. 47). Peano which expresses the equality takes place only with regard to the concept of number, (see the oss. IV, the nura. 47). La proprietà 9 ( i) esprime appunto la nostra proprietà I. Property 9 (i) precisely expresses our property I. del n. of n. 39. 39. Come ulteriore pro- prietà caratteristica del gruppo ordinato illimitato che ha un primo elemento noi abbiamo invece la def. As a further pro-properties characteristic of the ordered group unlimited which has a first element we have instead the final. di serie e quindi di gruppo illimitato di i. Series and then the group unlimited. specie (Vedi nota n. 39 e 50/. species (See note no. 39 and 50 /.

Page 29 Page 29

29 e si chiamano successivamente uno, due, tre, quattro, cinque, sei, sette, otto, nove, dieci, undici.,, venti, ventuno... 29 and are named after one, two, three, four, five, six, seven, eight, nine, ten, eleven., Twenty, twenty-one ... cento, cento e uno... one hundred, one hundred and one ... duecento... two hundred ... l) Def. l) Def. IL I segni (cifre) che servono ad indicare i numeri si chiamano pure numeri 2). THE Signs (numbers) that serve to indicate the numbers are called even numbers 2). Oss. Oss. IL I punti in (I) occupano il posto degli altri numeri della serie. THE points in (I) take the place of the other numbers of the series. Oss. Oss. III. III. Si usano pure delle lettere ad es. We also use the letters eg. a, 6, ecc. a, 6, etc.. per indicare i numeri della serie (i; ; ma mentre ad es. 9 indica un numero di posto determinato della serie (I), a indica invece un numero qualunque di essa (def. VII!, 13, 19), ed a si chiama pure un numero. Quando però si dice che è dato un numero a di (I) s' intende in generale un numero qualunque di (I) (def, Vili, 13 e 19), ma che rappresenta in ogni operazione lo stesso numero di (I). b. Se aeb rappresentano lo stesso numero di (I), aeb, considerati come dite numeri, sono uguali. Difatti possono sostituirsi uno all'altro, epperò scriveremo a = b da cui b = a (b, 9 ; d, 8). Oss. IV. Ci basta pei soli numeri il segno = non considerando tra essi altra uguaglianza (oss. I, 9) 3). to indicate the numbers of the series (i;; but while eg. 9 indicates a number of determined place of the series (I), indicates any number of it (final VII!, 13, 19), and is also calls a number. When, however, is said to be given a number of (I) s' mean in general any number of (I) (final, VIII, 13 and 19), but which represents in each operation the same number of (I). b. If a and b represent the same number of (I), and b, say, considered as numbers, are equal. fact can substitute for one another, epperò write a = b where b = a (b, 9 d, 8). Oss. IV. It just numbers pei just the sign = between them without considering other equality (oss. I, 9) 3). _ , e. _, And. Due numeri uguali ad un terzo sono uguali fra loro* Cioè se az= , = c si ha azsc. Two numbers equal to one-third are equal to each other * That is, if z =, = c we have azsc. Se a, b, e sono segni di uno stesso gruppo di unitala proprietà è conse- guenza di , 9. If a, b, and are signs of a same group of unitala property is consequence of, 9. Se invece a, bee sono gruppi di unità distinti allora la pro- prietà è conseguenza del teor. If, however, a, b and c are distinct groups of units then the pro-property is a consequence of the theorem. e, 8. and, 8. Oss. Oss. V. V. Se bastasse la sola corrispondensa univoca o del medesimo ordine per l'uguaglianza dei numeri (oss. I, 45) aeb; beo sì corrisponderebbero nel secondo caso univocamente e nel medesimo ordine, e quindi anche aee (f, 42) e quindi a~ e. If enough alone corrispondensa unique or of the same order by the equality of the numbers (oss. I, 45) and b; beo yes would correspond in the second case uniquely and in the same order, and therefore also EEE (f, 42) and then to ~ and. Così se bastasse la sola corrispondenza univoca (oss. I, 45). So if enough alone-one correspondence (oss. I, 45). d. d. Se az=a',b=sb' si ha Ossia: Se a numeri ugnali si sommano numeri uguali si ottengono nu- meri uguali. If z = a ', b = sb' That you have: If ugnali numbers to add up the same numbers are obtained nu-mer alike. Difatti siano (A) e (A'), (B) e (S) i gruppi corrispondenti ai numeri aa \ be b'. In fact, are (A) and (A '), (B) and (S) groups corresponding to the numbers aa \ b and b'. Il gruppo che si ottiene dall'unione del gruppo (B) al gruppo (A)/ cioè [(A) ( )], rappresenta il numero a + b (oss. I); il gruppo [(A') (#)] rappresenta il numero a' + b'. The group which is obtained by the union of the group (B) to the group (A) / namely [(A) ()], represents the number a + b (oss. I); the group [(A ') (#) ] stands for the '+ b'. Ma siccome a = a\b=:b' si ha a -f- b = a' -f- b' perché l'addi- zione è a senso unico (a) e non si tien conto d'altra parte della diversità di posizione fra le unità dei numeri e quindi dei gruppi (def. II, 45 e 41). But since a = a \ b =: b 'has a-f-b = a'-f-b 'because the addi-tion is one-way (a) and no account is taken of diversity on the other hand position between the units of the numbers, and then the groups (final II, 45 and 41). 1) Qui, se io non avessi bisogno dei concetti due, tre, ecc. 1) Here, if I did not need the two concepts, three, etc.. e se non fosse poi opportuno adope- rarli nel discorso, mentre li abbiamo esclusi fino ad ora, avrei potuto lasciare impregiudicata la questione del sistema di numerazione. and if not then should Adope rarli-in speech, while we have excluded up to now, I could leave open the question of the number system. Trattando completamente la teoria dei numeri interi, que- sto punto dovrebbe essere trattato con maggiore diffusione mentre altre considerazioni precedenti trattando esclusivamente questa teoria potrebbero essere tralasciate o semplificate. Fully treating the theory of integers, is now safe should be treated with greater spread and other considerations before treating only this theory may be omitted or simplified. 2) i tedeschi hanno due vocaboli distinti pei numeri. 2) the Germans have two words pei distinct numbers. Per quelli che si ottengono contando gli oggetti di un gruppo usano la parola Anzahl per i segni che li indicano il vocabolo zahl , ei due concetti sono ben distinti. For those that are obtained by counting the objects in a group use the word Anzahl for signs that show them the word Zahl, and the two concepts are distinct. 3) Questa Indicazione diversa di uno stesso numero occorre spesso nelle operazioni numeriche quando prima o durante un'operazione si considera un numero che pure appartenendo alla serie (i) ed essendo sempre lo stesso, è indeterminato. 3) This indication of a different number often occurs in the same numerical operations before or during an operation when you have a number that also belong to the set (s) and being always the same, is indeterminate. E se vi e ancora un altro numero indeterminato, può darsi che eseguite le operazioni si trovi per l'imo e per l'altro lo stesso numero di (I). And if there is yet another undetermined number, it may be that all is done you are the ith and the other the same number of (I). Ciò avviene anche per es. This also happens eg. nelle dimostrazioni per assurdo quando i risultati di due operazioni numeriche si vo- gliono dimostrare uguali, ammettendo che non rappresentino lo stessa numero di ([) ed indicandoli perciò nella dimostrazione con segni diversi. demonstrations ad absurdum when the results of two numerical operations are vo-gliono prove equal, it might not represent the same number of ([) and so highlighting them in the demonstration with different signs.

Page 30 Page 30

30 Oss. 30 Oss. VI. VI. Se bastasse la sola corrispondenza univoca e ne! If enough alone and unique match! medesimo ordine per l'uguaglianza dei numeri (oss. 1,45) i gruppi aea' ; be V si corrisponderebbero uni- vocamente e nel medesimo ordine, e quindi anche i gruppi a + a', b + V perche questi non contengono altri elementi che non siano in ae a', oeb' (II, 29), e perciò anche in tal caso af- af = -f '. same order by the equality of the numbers (oss. 1.45) groups a and a '; b and V correspond-ing and quantifying each and in the same order, and therefore also the groups a + a', b + V because these do not contain other elements that are not in a and a ', EPO' (II, 29), and therefore also in this case f =-f-f '. Slmilmente se bastasse la sola corrispondenza univoca (ose. I, 45;. Def. IIL Gli elementi di un gruppo ordinato naturale che corrisponde al numero n corrispondono successivamente ai numeri 1, 2.., nl,n delle serie, (I) (a, 43; i 39; e, 46; 6, 43). L'ultimo elemento lo diremo perciò l'elemento nno (ennesimo) del gruppo. Def. IV. Ripetere un'operazione b (o un numero b di) volte significa che considerata ogni ripetizione (15) come un oggetto rappresentante l'unità, il numero che si ottiene da queste ripetizioni è bl). Similarly, if only enough unique match (ose. I, 45,. Def. IIL The elements of an ordered group which is the natural number n then correspond to the numbers 1, 2 .., nl, n series, (I) ( , 43, to 39, and 46, 6, 43). The last element we will say so the element nno (another) group. Def. IV. Repeat operation b (or a number of b) times means that considered each repetition (15) as an object representing the unit, the number you get from these repetitions is bl). e. and. La somma a -f- b è un numero che si ottiene sommando successivamente le unità di b ad ae ai numeri che cosi si ottengono. The sum a-f-b is a number which is obtained by adding thereafter the unit to a and b so that the numbers are obtained. Siano (A) e (B) i gruppi corrispondenti ai numeri aeb\ [(A)(B)} rap- presenta il numero a -f- b (oss. I). Are (A) and (B) the groups corresponding to the numbers a and b \ [(A) (B)} repre-sents the number a-f-b (oss. I). Il numero af-1 si ottiene unendo ad (4) il primo elemento di (B) (def. II, 45 e ind. Ili); il numero (a -4-1)4-1 unendo al gruppo così ottenuto il se- condo elemento di (B). The number f-1 is obtained by joining to (4) the first element of (B) (def. II, 45 and ind. Ill), the number (a -4-1) 4-1 joining to the group so obtained if the - second element (B). Ripetendo l'operazione b volte, useremo tutti gli ele- menti di (B). Repeating the operation b times, we will use all elements of (B). Ma il gruppo cosi ottenuto è [(A) (B)] (a. 40), dunque e (def. II, 45). But the group so obtained is [(A) (B)] (a. 40), and therefore (def. II, 45). Oss. Oss. VII. VII. Bisogna tener presente che: (A)(B) EE^A! Keep in mind that: (A) (B) EE ^ A! A2...Aa ) (#1 B2..Bb ) = (Al A2...A BJ (52 B3 B4... Bb ) ecc. ==Al A2 A3..Ba Bl B2..Bi (a, 40 e def. li, 45). f. Dati tre numeri a, by e si ha: (a -f- ) -fe iz: a -J- (6 -f- c) = -f -fe (legge associativa). Essa vale anche per un numero qualunque di sommandi (def. II. 45 e a. 40; e, 46)2). A2 ... Aa) (Bb .. # 1 B2) = (Al A2 ... A BJ (52 B3 B4 ... Bb) etc.. == Al A2 A3 Bl B2 .. Ba .. Bi (a, 40 and final. li, 45). f. Given three numbers a, by and has: (a-f-)-f iz: a-J-(6-f-c) =-f-f (associative law ). It also applies to any number of sommandi (final II. 45 and a. 40; and, 46) 2). Ose. Ose. Vili. VIII. D'ora innanzi in questo capitolo e nei seguenti finché non diremo diversamente considereremo soltanto i numeri naturali e li chiameremo perciò anche nunreri soltanto. Henceforth in this chapter and the following until we say otherwise we will consider only the natural numbers and call them so well nunreri only. 48. 48. a. a. In un gruppo ordinato naturale dato, ogni elemento può essere con- siderato al posto di ogni altro mediante lo scambio di posto di elementi con- secutivi. In the natural order as a group, each element can be with-siderato instead of each other through the exchange of post-consecutive elements. 1) Ciò dimostra che per lo meno non è chiara l'osservazione di G. 1) This shows that at least is not clear observation of G. cantar (Zeitschrift far Philo- sophie v. Pielite, voi. 91 pag. 252) ove dice : l'addizione di uni (Einsen) non può servire alla definizione del numero, perché non si può dire quante volte devono essere sommati senza il numero stesso che si vuoi definire. sing (Zeitschrift to Philo-sophie st. Fichte, you. page 91. 252) where it says: the addition of one (Einsen) can not serve to define the number, because you can not say how many times must be added without the number the same that you define. Il numero in generale secondo la nostra def. The number in general, according to our def. II, n. II, n. 45, o ottenuto come gruppo ordi- nato dalP operazione dell'unire successivamente un oggetto ad un altro, senza che vi sia bisogno di dire quante volte noi ripetiamo questa operazione. 45, or obtained as a group task uniting ordinary dalP born after an object to another, without any need to say how many times we repeat this operation. Se si tratta poi di un numero particolare si può ottenere col l'addizione di unità. If it is then a particular number can be achieved with the addition of units. H numero 2 si ottiene ripetendo una volta Punita, il numero 3 ri- petendo due volte Punita, e cosi via. H number 2 is obtained by repeating once Punished and the number 3 re-petendo twice Punished, and so on. E supposto determinato cosi un numero qualunque che indico con n \, il numero n si ottiene da l ripetendo nl volte Punita. And assuming certain so any number that I indicate with n \, the number n is obtained by repeating the nl times Punished. 2) H. 2) H. Grassmann ammette la legge associativa dei numeri, come segni pel seguente caso : a+6) .4- i = a -r- + l come anchefa + b) -4- e = a-4-ft-tc (Lehr. d. Arith. 1861, p. 2e 4). Grassmann's law allows membership numbers, as signs PEL following case: a +6) .4 - i = a-r-+ l as anchefa + b) -4 - e = a-4-ft-tc (d Lehr. . Arith., 1861, p. 4 second). vedi anche ad es. see also eg. HanKel 1 ee %el- (Das zfihlens und. Messen. Phil. Auf. Eduard Zeller), Pcano (1. e.), ecc. Hankel and 1% ee-(und Das zfihlens. Messen. Phil. Auf. Eduard Zeller), Pcano (1. And.), Etc..

Page 31 Page 31

31 La proprietà è chiara per il gruppo ordinato AB, che corrisponde al nu- mero 2 (def. I, 46; ind. Ili, 47), basta considerare prima B e poi A (3 e 20), ossia scambiare nella nostra mente il posto di B con quello di A (def. I, 33). 31 The property is clear for the ordered group AB, which corresponds to the number 2 (def. I, 46; ind. Ill, 47), just consider the first B and then A (3 and 20), ie share in our minds the place of B with that of A (final I, 33). Supponiamo che ciò valga per il gruppo di elementi ordinato ABCD...MN (1) che corrisponde ad un numero n, e consideriamo il gruppo ABCD... Suppose that this applies to the group of items ordered ABCD ... MN (1) which corresponds to a number n, and consider the group ABCD ... MNNT = (ABCD...M) (NN1) (2) (a, 40), cui corrisponde il numero n -f- 1 (ind. Ili, 47). MNNT = (ABCD. .. M) (NN1) (2) (a, 40), which corresponds to the number n-f-1 (ind. Ill, 47). Lasciando al medesimo posto in questo gruppo gli elementi ehe prece- dono NN*, per quanto si è detto sopra, si possono scambiare fra loro N e N', e si ha il gruppo: (ABCD... M)(NN*) = (ABCD... MN1} N= ABCD... MN'N (a, 40). E siccome per ipotesi il posto di N si può scambiare nel gruppo (1) col posto di qualunque elemento che lo precede, così potremo scambiare N1 in ABCD... MN1 col posto di qualunque altro elemento del gruppo ABCD... M; e poi considerato un elemento al posto di JV* in ABCD... MN'N lo potremo scambiare con N, che è il posto di N* nel gruppo dato (2). Ma la proprietà è vera per AB, è vera dunque per ogni gruppo naturale (a, 43; ie 19 39). b. Cambiando l'ordine degli elementi di un gruppo ordinato J) si ottiene un gruppo che corrisponde univocamente al primo facendo corrispondere ogni ele- mento a sé stesso. Leaving the same place in this group the elements EHE previous gift NN *, as has been said above, can be exchanged between their N and N ', and there is the group: (ABCD. .. M) (NN *) = (MN1 ABCD. ..} N = ABCD ... MN'N (a, 40). And as for the hypothesis place of N can be exchanged in the group (1) with the place of any element which precedes it, so we can exchange in ABCD N1 ... MN1 with the place of any other element of the group ABCD ... M, and then considered an element in place of JV * in ABCD ... MN'N we can exchange with the N, which is the place of N * in the given group (2). But the property is true for AB, it is therefore true for every natural group (a, 43, ie 19 39). b. Changing the order of the elements of an ordered group J) get a group that uniquely corresponds to the first matching each ele-ment to himself. Perché ogni elemento dell' uno è elemento dell' altro (II, 29), ossia non vi è alcun elemento dell'uno che non sia elemento dell'altro; e quindi ad ogni elemento dell'uno, corrispondendo a sé stesso, corrisponde un elemento del- l'altro, vale a dire si ha fra 5 due gruppi una corrispondenza univoca (def. II, 42). Because every element of 'is an element of' other (II, 29), ie there is no evidence of one who is not part of the other, and therefore every element of one, corresponding to itself, is a -element of the other, that is to say it has two groups of between 5 a unique match (final II, 42). e. and. Dato un gruppo ordinato naturale scambiando di posto degli elementi consecutivi si ottengono tutti i gruppi ordinati formati cogli elementi del primo. Given an ordered group instead of exchanging the natural elements that produce all the consecutive ordered groups formed with the elements of the first. Sia dapprima dato il gruppo ordinato AB =(A), che contiene i soli ele- menti A e B. Is first given the ordered group AB = (A), which contains only the elements A and B. Sia (A') un altro gruppo ordinato con questi stessi elementi. Is (A ') another group ordered with these same elements. Se il primo elemento A1 di (Ar) è A, siccome (A') deve avere anche l'elemento B, si ha (A') = (A) (II, 6, 29). If the first element of A1 (Ar) is A, as (A ') must also have the element B, we have (A') = (A) (II, 6, 29). Se invece Af è B, allora # secondo elemento di (A') è A, perché non contiene altri elementi oltre A e B (II, 29). However, if Af is B, then # the second element of (A ') is A, because it contains elements other than A and B (II, 29). Un terzo gruppo è escluso perché supposto che esista non può essere che (A) o (A')5 dovendo essere A o B il primo elemento di un terzo gruppo cogli elementi A, B, e quindi -B o A il secondo elemento, non potendo averne altri (IL 29). A third group is excluded because supposed that there can not be that (A) or (A ') 5 having to be A or B the first element of a third group with the elements A, B,-B or A, and then the second element, not being able to have others (IL 29). Supponiamo ora che il teorema sia vero per un gruppo naturale: (A) = ABCD...X e sia dato un gruppo indipendentemente dal numero che rappresenta (B)=ABCD...NP = (A)P (a, 40) e consideriamo un altro gruppo ordinato formato cogli elementi di (B), cioè : j) Cambiando l'ordine ecc. Suppose now that the theorem is true for a natural group: (A) = ABCD ... X and is given a group regardless of the number that represents (B) = ABCD ... = NP (A) P (a, 40) and consider a more ordered group formed with the elements of (B), ie: j) changing the order etc. significa considerare gli elementi dati in qn ordine diverso- means considering the data items in different order qn-

Page 32 Page 32

In (#) l'elemento P occupa un dato posto, e si può scambiare con P me- diante scambi di elementi consecutivi (a\ e si abbia così il gruppo ordinato: ( *)== A* BTC'...N"P ove A"B"C"...N" sono gli elementi di (A) indipendentemente dal loro ordine (II, 29) Facendo gli scambi inversi da (#') si ottiene ( ') (def. I, 33), Basta osservare che consideriamo P successivamente nei posti ad es. degli elementi che lo seguono in (#) (24, , 35); che quando P occupa il posto del suo conse- cutivo antecedente, ogni elemento che seguiva P è pensato nel posto del suo consecutivo antecedente ; e che poi si considera P successivamente nel posto degli elementi precedenti (21) finché occupa il posto di P, e che dopo questi scambi ogni elemento che seguiva dapprima P occupa il posto del consecutivo seguente nell'ordine dato; vale a dire dopo l'operazione ogni altro elemento che non sia P o P1 occupa lo stesso posto (a. 33). L'operazione inversa ci da perciò il gruppo primitivo (JBJ. Dunque (#) si ottiene da (B") con uno scambio di elementi consecutivi, ma (#') si ottiene per ipotesi colla stessa operazione da (B), dunque (#) si ottiene da (J5) con scambi di elementi consecutivi. Dunque se il teorema vale per il gruppo (A) vale per il gruppo (A) P; ma esso vale per il gruppo AB, dunque vale per tutti i gruppi ordinati naturali (a, 43, ie I, 39). d. Se due gruppi ordinati si corrispondono unìvocamente, ad ogni elemento dell'uno sì può far corrispondere un elemento dell'altro scelto ad arbitrio, mantenendo la corrispondenza univoca fra gli altri elementi. Supponiamo che X e Y siano elementi qualunque del primo gruppo (def. Vili, 13) (che sono sempre distinti quando non si dice diversamente (oss. I, 8)); e ad essi corrispondono gli elemenli X' e T del secondo gruppo. Siccome pos- siamo scambiare di posto Y con X (a) ali' elemento Y corrisponderà con questo scambio l'elemento X' nel secondo gruppo, perché gli elementi X e Y, X*e Y sono considerati separatamente dagli altri (7), i quali si corrispondono come prima. Facendo dunque corrispondere ad X l'elemento Y, i rimanenti elementi (7) si corrispondono univocamente. Il teor. è dunqu$ dimostrato. d'. Se in due gruppi ordinati naturqli che si corrispondono univocamente ab elementi qualunque dell'uno si fanno corrispondere b elementi dell'altro, i rimanenti elementi si corrispondouo univocamente. Siano Al Ay.. Ab ... Am, A\ A'2... A'*... Am i due gruppi dati. Ad un elemento del primo ad es. Ax si può far corrispondere un ele- mento qualunque dato X del secondo, i rimanenti elementi si corrispondono univocamente (d). Facendo astrazione dagli elementi Aì e X, e ripetendo l'o- perazione b volte pei gruppi dati dai rimanenti elementi (def. IV, 47), i gruppi di elementi rimanenti dopo ciascuna di queste ripetizioni si corrispondono uni- vocamente (d)9 e quindi anche dopo la b* ripetizione (def. Ili, 47; ?, 39). e. Se gli elementi di due gruppi ordinati naturali si corrispondono univo - camente e nel medesimo ordine, cambiando l'ordine di uno qualunque di essi, si corrispondono univocamente. Siano ABC... M, ABC...M' i gruppi dati, e sia A' 'C'M" un altro gruppo ordinato ottenuto cogli elementi del primo. Siccome il gruppo A"ff' ? .] " i In (#) the P element occupies a certain place, and you can share with me P-exchanges by means of successive elements (a \ and so the group has ordered: (*) A * BTC == 'N ... "P where A" B "C" ... N "are the elements of (A) regardless of their order (II, 29) Taking the inverse of exchanges (# ') we obtain (') (def. I, 33 ), then P is enough to observe that we consider in such places. of the elements that follow in (#) (24, 35), when P takes the place of its conse-cutivo before, each element in the thought that P is followed instead of its previous row, and then P is considered later in the place of the previous items (21) while holding the post of P, and that after this exchange that followed each element P takes the place of the first row following the order given; ie after the operation of any other factor other than P or P1 occupies the same position (a. 33). The reverse gives us therefore the primitive group (JBJ. So (#) is obtained from (B ') with an exchange of consecutive elements, but (# ') is obtained by hypothesis with the same operation from (B), then (#) is obtained from (J5) with exchanges of consecutive elements. So if the theorem is true for the group (A ) applies to the group (A) P, but it applies to the AB group, therefore, applies to all natural ordered groups (a, 43, ie I, 39). d. If two ordered groups correspond uniquely, to each element of one so it can match an arbitrarily chosen element from the other, keeping the other one correspondence between the elements. Suppose that X and Y are any elements of the first group (def. VIII, 13) (which are always different when are said differently (oss. I, 8)), and they correspond to the elemenli X 'and T of the second group. Since we may exchange the places of Y with X (a) wings' Y element corresponds with this exchange element X 'in the second group, because the elements X and Y, X * and Y are considered separately from the others (7), which correspond as before. By then the element Y correspond to X, the remaining elements (7) is uniquely match. the theorem. $ dunqu is shown. d '. If naturqli sorted into two groups that correspond uniquely ab elements of one should make any of the other elements correspond to b, the remaining elements are uniquely corrispondouo. Let Al Ay. . Ab Am ..., A \ A'2 ... A '* ... Am the two data groups. For an element of the first example. Ax can match an ele-ment of the second any given X, the remaining elements correspond uniquely (d). By abstracting from the elements AI and X, and repeating b times the o-operation pei data sets from the remaining elements (def. IV, 47), groups of elements remaining after each of these repeats each correspond-ing and quantifying (d) 9 and therefore even after the repetition b * (final Ill, 47;?, 39). and. If the elements of two ordered groups natural correspond univocal - cally and in the same order, changing the order of any one of them, will correspond uniquely. Let ABC ... M, ABC ... M 'data groups, and both A' 'C'M "another ordered group obtained with the elements of the first. Since the group A 'ff'?.] "the

Page 33 Page 33

può far corrispondere univocamente al gruppo ABC... can match uniquely to the group ABC ... M (6), e A'ffC...M' per dato corrisponde univocamente al gruppo ABC..M, i gruppi A"ff'C?'.. M", A'B'C..M' si corrispondono univocamente (e, 42). M (6), and A'ffC ... M 'to figure corresponds univocally to the ABC group .. M, the groups A "ff'C?' .. M", A'B'C .. M 'correspond univocally (and 42). f. f. Un gruppo naturale non può corrispondere univocamente ad un suo sottogruppo. A natural group may not correspond uniquely to a subgroup. Ciò è evidente per il gruppo AB perché non può corrispondere univo- camente ad un solo elemento A o B, altrimenti A o B non avrebbe elemento corrispondente nel sottogruppo dato, che in questo caso sarebbe di un solo elemento (def. Ili, 13 e oss. I, 42). This is evident for the AB group because it can not match univocal-cally to a single element A or B, or A or B would not have corresponding element in the given subset, which in this case would be of only one element (final Ill, 13 and oss. I, 42). Se tale proprietà ha anche un gruppo (4) si dimostra facilmente che l'ha anche il gruppo (A) B, cioè il gruppo dato, dal- l'unione di un altro elemento B al gruppo (A). If this property also has a group (4) is easily demonstrated that also has the group (A) B, that is, the group given, by-the union of another element to the group B (A). Supponiamo il contrario, e sia (A') una parte di (A) B, tale che si possano far corrispondere univocamente gli elementi di (A') con quelli di (A) B. Suppose the contrary, and both (A ') a part of (A) B, that can be uniquely to match the elements (A') with those of (A) B. Si presentano due casi: o B non è compreso in (A9) o lo è. We present two cases: either B is not included in (A9) or it is not. Nel primo caso all'elemento B si può far corrispon- dere un elemento qualunque ad es. In the first case the element B can correspond-ing to any one element eg. l'ultimo di (Af) (d), supposto che (A') sia ordinato. the last of (Af) (d), assuming that (A ') is ordered. Indicando questo elemento con B' e con (A") la parte rimanente di (A'), (A") corrisponderebbe univocamente ad (A) (d) contro l'ipotesi. Indicating this element with B 'and with (A ") the remaining part of (A'), (A") corresponds uniquely to (A) (d) against the hypothesis. Se invece B fosse compreso in (A'), stabilita la corrispondenza fra (A1) e (A) B, si po- trebbe far corrispondere B a sé stesso (d); e quindi di (A') rimarrebbe una parte (A") che corrisponderebbe anche in questo caso ad (A) (d) contro l'ipotesi. 11 teorema se vale per (A) vale anche per (A) B ; ma vale pel gruppo di elementi AB, dunque vale per tutti i gruppi naturali ( , 43; ee I, 39). g. Se due gruppi naturali si corrispondono univocamente e nello stesso or- dine essi rappresentano numeri uguali. Non può darsi che due gruppi naturali e quindi anche due numeri (def. II, 45) si corrispondano univocamente e nel medesimo ordine e l'uno sia parte od uguale ad una parte dell'altro, perché questo corrisponderebbe univoca- mente e nel medesimo ordine quindi anche univocamente ad una sua parte, contro f; dunque g (e, 45) h. Qualunque sia r ordine in cui si considerano gli elementi di un gruppo ordinato naturale esso rappresenta lo stessq numero. Siano A e B gli elementi del gruppo (A), la, 16 le unità del numero corrispondente la-M (def. I, 46; ind. Ili, 47). Agli elementi , A possiamo far corrispondere univocamente le stesse unità 10, 1 perché fatto corrispon- dere B a \a 9 l'elemento A non può corrispondere che a 1 (d). La corrispon- denza univoca può ritenersi in tal caso anche dello stesso ordine (oss. II, def. Ili, 42). Supponiamo ora che la proprietà sia vera per un gruppo naturale qua- lunque dato (M) = ABCD...M e fjt = la U lc ld... \m sia la serie delle unità corrispondenti agli elementi di (M); il numero corri- spondente sia: m== la 4- U + le + ld 4-... 4- lm (def. II, 45; ind. I, oss. Ili, 47) Sia dato il gruppo: (M) N = ABCD.., MN (a, 40) 3 However, if B is included in (A '), established the correspondence between (A1) and (A) B, is bit-trebbe to match B to itself (d), and then of (A') would remain a part (A ") that also in this case would correspond to (A) (d) against the hypothesis. 11 theorem holds for (A) also applies to (A) B; but applies PEL group of AB units, therefore, applies to all groups natural (, 43, ee, 39). g. If two groups are uniquely natural and dine in the same or-equal numbers they represent. It may be that the two groups and thus two natural numbers (def. II, 45) will correspond uniquely and in the same order and each is a party or equal to a part of the other, because this would correspond uniquely-mind and therefore also in the same order univocally to a part thereof, against f; therefore g (s, 45) h. Whatever r order in which you consider the elements of an ordered group it represents the stessq natural number. Let A and B the elements of the group (A), the, 16 units of the number corresponding to the-M (final I , 46; ind. Ill, 47). to the elements, A we can uniquely to match the same units 10, 1 because it is made correspond-ing to B \ to 9 the element A can not match that to 1 (d). The corresponding - law can be considered unique in this case also the same order (oss. II, def. Ill, 42). Suppose now that the property is true for a natural group-lunque here since (M) = M and FJT ABCD ... = U lc ld ... \ m is the number of units corresponding to the elements of (M), the corresponding number is: m == the 4 - U + the + ld 4 - ... 4 - lm ( final. II, 45; ind. I, oss. Ill, 47) Consider the group: (M) N = ABCD .., MN (a, 40) 3

Page 34 Page 34

34 cui corrisponde la serie di unità (A \n = la 1 lc la ... 1 m In e il numero m + ln = la -f 1 + 1* 4- ld +..- + lm + In Se inverto l'ordine di M ed JV, vale a dire il posto di M con quello di JV, il che è possibile (a), ho il gruppo: ABCD... NM (1) e quindi facendo corrispondere agli elementi che precedono N le stesse unità la 1 le !* che precedono lm come pel gruppo ABCD... MN e ad JV l'unità lm, all'elemento M dovrà corrispondere l'unità ln (d); e quindi al gruppo ABCD... NM corrisponderà lo stesso numero m+ln (def. IL 45, f. 42 e #). Ma nel gruppo ABCD... N si può scambiare il posto di N mediante scambi di elementi consecutivi con quello di qualunque altro elemento precedente ( ) senza che per ipotesi cambi il numero corrispondente. Così scambiando poi di posto ognuno di questi elementi quando occupa il posto di N con M in (1), per ciò che. si è detto testé al gruppo corrisponderà lo stesso numero. Ma in questo modo si ottengono tutti i gruppi ordinati dati dagli elementi del gruppo (M) N (e), dunque se il teorema è vero per il gruppo (M) vale anche pel gruppo (M) N; ma vale pel gruppo AB dunque vale per tutti i gruppi ordinati natu- rali (a, 43; ie ?, 39). l). 34 which corresponds to the number of units (A \ n = 1 to m ... 1 In the lc and the number m + ln =-f 1 + 1 * 4 - .. ld + - + In + lm If I reverse the 'order of M and JV, ie the place of M with that of JV, which is possible (a), the group I: ABCD ... NM (1) and then by matching the elements preceding the same N the unit 1 the! * preceding lm as PEL group ABCD ... MN and to JV unit lm, the element M must match the unit ln (d), and then to the group ABCD ... NM will match the same number m + ln (def. IL 45, f. and # 42). But the group ABCD ... N can be exchanged instead of N through exchanges of consecutive elements with that of any other previous item () without having to hypothesis changes the corresponding number. Thus exchanging then place each of these elements when it occupies the place of N with M in (1), for what. has been said above-group will correspond to the same number. But in this way we get all groups sorted data by group elements (M) N (e), so if the theorem is true for the group (M) is also applicable PEL group (M) N, but it PEL Group AB is therefore natural for all ordered groups - Funds (a, 43; ie?, 39). l). I) in generale nel numero degli oggetti di un gruppo non si tien conto dell'ordine di questi og- getti, e non si segue il metodo di derivare le proprietà del numero dalla corrispondenza coi gruppi ordinati, mentre se il numero deriva nella sua più semplice costruzione dalla funzione logica del nu- merare (45 e def. I, 46), esso dipende dall'ordine nel quale si contano gli oggetti del gruppo dato. I) in general in the number of objects in a group we consider the order of these ob-jets, and you do not follow the method of deriving the properties of the correspondence with the number ordered groups, while if the number comes in its most simple construction of the logic function of the nu-merare (45 and def. I, 46), it depends on the order in which there are objects of the given group. I nu- meri interi finiti (che corrispondono come vedremo ai nostri gruppi naturali) sono indipendenti dall'ordine degli elementi dei gruppi corrispondenti (Ti), ma ciò deve essere dimostrato, perché vi sono gruppi di elementi cui corrispondono i numeri transfiniti di a. The whole finite nu-mer (as we shall see that match our natural groups) are independent of the order of the elements of the corresponding groups (Ti), but this must be demonstrated, because there are groups of elements which correspond to the transfinite numbers. Cantar, pel quali non ha più luogo questa proprietà (Acta Math. voi 2 pag. 385,1883. Grundlagen einer Mannigfaltigkeitsiehre, Leipzig 1883 pag. 32 e seg. Zeitschrift fttr phil. v. Fichte Voi. 91 fase- I e 2 1887, ecc.). Cantor, owing which no longer takes place this property (Acta Math. You 2 p. 385.1883. Grundlagen einer Mannigfaltigkeitsiehre, Leipzig 1883 p. 32 et seq. Zeitschrift fttr phil. V. Fichte Vol 91-I and Phase 2 in 1887 , etc.).. Quanto dice clifford del teor. As the theorem says clifford. h. h. (Il senso comune nelle scienze esatte, Milano 1888) è una spiegazione empirica ma matematicamente suppone la proprietà medesima. (Common sense in the exact sciences, Milan, 1888) is an empirical explanation but mathematically implies the same property. Cosi ha ragione G. So right G. Cantar quando rileva l'a- nalogo difetto nello scritto di Kronecker (Phil. Aufs. Ed. zeller-Ueber den zahlbegriff, p. 268). Sing when it detects a fault in the writing-nalogo Kronecker (Phil. AUFS. Ed ​​Ueber den zahlbegriff-Zeller, p. 268). peano (1. e.) non se ne occupa. Peano (1. and.) does not care. Per quanto so è lo Schrdder che ha il merito di aver trattata per primo una tale questione (Lehrbuch der Arith. u. Algebra. Leipz ig 1873). To know what is the Schrdder which has the merit of having treated the first to that question (Lehrbuch der Arith. U. Algebra. Leipz ig 1873). Da quanto egli dice nell' enunciato a pag. From what he says in 'statement on p. 8 pare che basti che siano le stesse cose che vengono contate in diversi ordini affinchè i numeri risul- tanti siano uguali; ma ciò ammette già il teor. 8 have more than enough that they are the same things that are counted in different orders so that the numbers are the same results-many, but that already admits the theorem. suddetto perché anche nelle due serie 1 2 3...n... this because even in the two series 1 2 3 ... n ... 23..-H... 23 ..-H ... i si hanno le stesse cose, ma i numeri sono diversi. i will have the same things, but the numbers are different. Cosi il teor. So the theorem. di pag. on p. 20 è enunciato in gene- rale, ma nella dimostrazione non completa comunicatagli dal prof. 20 is set out in general, but the proof is not complete communicated by prof. LùrotJt egli dichiara di avere am- messo tacitamente che si tratta di una molteplicità finita limitata (endlich begrenzte Menge) che non ci pare ben definita. LùrotJt he declares to have am-put tacitly assumed that it is a finite limited multiplicity (endlich begrenzte Menge) that there seems well-defined. Secondo noi la proprietà che ad un elemento non può corrispondere univocamente nessun elemento, analoga a quella che sckroder assume come assioma, o compresa nella corrispon- denza univoca stessa (oss. I. 48). In our opinion the property that an element can not correspond uniquely no element, analogous to that which takes as sckroder axiom, or included in the same univocal correspondence (oss. I. 48). a. a. cantar distingue due specie di numeri : il Cardinalzahl o Màchtigkeit (potenza) e l'Idealzahl. sing distinguishes two kinds of numbers: the Cardinalzahl or Màchtigkeit (power) and the Idealzahl. il Cardinalzahl secondo Cantar si ottiene da una molteplicità di cose facendo astrazione e dalle proprietà di queste cose e dair ordine di esse, e chiama uguali due molteplicità quando si corrispon- dono univocamente, e quindi ad esse corrisponde lo stesso Cardinalzahl ; L1 Idealzahl i* ottiene invece facendo astrazione dalle proprietà delle cose ma non dall'ordine in cui sono date o si consi- derano. the second Cardinalzahl Cantor is obtained from a variety of things in isolation and properties of these things and dair order them, and when you call the same two multiplicities correspond uniquely, and for approximately the same Cardinalzahl; L1 Idealzahl i * obtained instead by abstracting from the properties of things but not the order in which they are given or shall be deemed to. Il Cardinalzahl cosi definito non deriva certo dalla funzione logica del numerare poiché quando si conta si conta in un dato ordine salvo poi a vedere se cambiando V ordine del conteggio si ottiene lo stesso numero. The so called Cardinalzahl certainly not derived from the logic function of the number because when you count it counts in a given order, but then they see if changing the order of V is obtained by counting the same number. Anziché dire che due molteplicità fatta astrazione dal le proprietà delle cose che le compongono e dell'ordine di esso si chiamano uguali quando si corrispondono univocamente, nello stesso ordine o no, si può dimostrare che se due molteplicità sono identiche (def. VI, 8 e def. Ili, 9) esse si corrispon- dono univocamente e nello stesso ordine, e se una è contenuta nell' altra questa è contenuta nella prima; e se si tien conto soltanto della sola corrispondonza univoca fra una molteplicità e la sua rappresentazione mentale (4), sì dimostra pure che se due molteplicità si corrispondono univocamente senza tener conto che r una sia o no parte dell'altra, le due melteplicità sona uguali- Instead of saying that two multiplicity and quite apart from the properties of the things that make you call and order it the same when you are unequivocally, in the same order or not, it can be shown that if two are the same variety (def. VI, 8 and def. Ill, 9) they correspond uniquely and in the same order, and if one is included in 'other it is in the first, and if one takes into account only the one unique corrispondonza between a multiplicity and its mental representation (4), so also shows that if two multiplicity correspond uniquely without taking into account that r is or is not a part of the other, the two equal-person melteplicità

Page 35 Page 35

35 Oss. 35 Oss. I. I. D'ora innanzi possiamo dunque non tener conto dell' ordine dei gruppi che corrispondono ai numeri naturali. Henceforth we can therefore not take into account the 'order of the groups that correspond to natural numbers. i. the. Due gruppi naturali cìie rappresentano lo stesso numero si possono far corrispondere univocamente. Two natural groups cìie represent the same number can be uniquely match. Siano A, B, C, D... Let A, B, C, D. .. M; A, B', C, Z)r,... And M, A, B ', C, Z) r, ... M1 i gruppi dati. M1 data groups. Le unità del numero di un gruppo corrispondono univocamente e nello stesso ordine agli elementi del gruppo (b, 45). The units of the number of a group correspond uniquely and in the same order to the elements of group (b, 45). Gli elementi del primo gruppo ordinato siano: " JA% - 3" An ( " ) e le unità del numero corrispondente al #2 3... an (a) perché le unità possiamo indicarle in tal caso anche con segni diversi da L La unità di (a) per dato corrispondono univocamente e nello stesso ordine agli elementi del secondo gruppo A\ A\ A'3... A'n = (A'). Siccome i gruppi (A) e (A) corrispondono univocamente e nel medesimo ordine al gruppo (a), così si corrispondono univocamente e nel medesimo ordine fra loro (/; 42). Ma il nu- mero del primo gruppo non cambia se si cambia l'ordine dei suoi elementi (h), e cambiando quest'ordine i due gruppi si corrispondono univocamente (e). Dunque ecc. i'. Se due numeri naturali sono uguali le unità di essi si corrispondono univocamente (ie def. II, 46). I. Due gruppi naturali die si corrispondono univocamente rappresentano lo stesso numero (geh). I'. Se le unità di due numeri aeb si corrispondono univocamente, i due numeri sono uguali. m. La somma del numero b al numero a non cambia se si cambia l'ordine dei due numeri (legge commutativa). Dim. 1. Il numero a sia rappresentato dal gruppo (A) = ABC... M ed il numero b dal gruppo (A') = A'# 7... N' ; la somma a -f- b viene rappresentata dal gruppo [(A)(AJ] = ABCD...MACN' (oss. I, 47). Si abbia un altro gruppo (B) che corrisponda univocamente al gruppo [(A) (A)]. Se ai primi b elementi del secondo si fanno corrispondere gli ultimi b elementi del primo i rimanenti elementi si corrispondono univocamente ( ), e perciò devono essere a in am- bidue i gruppi (I). Ma i due gruppi (B) e [(A) (A')~\ rappresentano lo stesso nu- mero (I) dunque: a -fb = b + a Dim. 2. Il gruppo [(A')(A)] ha tutti gli elementi del gruppo [(^1)(A')] come questo ha tutti gli elementi del primo, perché ogni elemento del primo o del secondo appartiene ad (A) o (A) (li, 29); e quindi i due gruppi differi- scono solo per l'ordine e perciò si corrispondono univocamente (b) e rappre- sentano lo stesso numoro (I). Dim. 3. Supponiamo dapprima che ad un elemento A sia unito un gruppo AI A2 A3... AW+I di m -f- 1 elementi. Facciamo corrispondere l'elemento A all'elemento Al,Al all'elemento A2ì ecc. l'elemento Am-i all'elemento Am Am ad ^4m-Hi, vale a dire ogni elemento al suo consecutivo seguente nella serie A Al Ay.. Am-M. I gruppi A Aì A^... Am^ A, A2... Am+\ si corrispondono così uni- The elements are ordered in the first group: "JA% - 3" An (') and the number of units corresponding to the # 2 3 ... n (a) because the units can indicate them in this case with characters other than the L units of (a) given to uniquely correspond and in the same order to the elements of the second group A \ A \ A'3 ... a'n = (A '). Since the groups (A) and (A) correspond uniquely and in the same order to the group (a), it is uniquely and correspond with each other in the same order (/, 42). But the num-ber of the first group does not change if you change the order of its elements (h), and changing this order, the two groups correspond uniquely (s). etc. So. i '. If two natural numbers are the same units they correspond uniquely (ie final. II, 46). I. Two groups correspond uniquely natural day represent the same number (geh). I '. If the units of two numbers a and b correspond uniquely, the two numbers are equal. m. b The sum of the number to the number does not change if you change the order of two numbers ( commutative law). Dim 1. The number to be represented by the group (A) = ABC ... M and the number b from the group (A ') = A' # 7 ... N '; the sum a-f - b is represented by the group [(A) (AJ] = ABCD ... MACN '(oss. I, 47). It has another group (B) which corresponds uniquely to the group [(A) (A)]. If the first b of the second elements are made to correspond the last b elements of the first at the remaining elements correspond uniquely (), and therefore must be in am-bidue groups (I). But the two groups (B) and [( A) (A ') ~ \ represent the same num-ber (I) thus: a-fb = b + a Size 2. The group [(A') (A)] has all the elements of the group [(^ 1) (A ')] as this has all the elements of the first, because each element of the first or the second belongs to (A) or (A) (li, 29); and then the two groups differ only for the scono 'order and therefore correspond uniquely (b) and repre-senting the same numoro (I). Size 3. Suppose first that A is an element joined a group AI A2 A3 ... I AW + m-f- 1 elements. We match the A element to the element Al, Al element A2ì etc.. the element the element-Am Am ​​Am ​​^ to 4m-Hi, ie each element in its row following in the Series A At Ay-M .. Am. Groups A to A ^ ... A ^ Am, A2 ... Am + \ is one-way match

Page 36 Page 36

36 vocamente e nel medesimo ordine (a, 42), e quindi corrispondono allo stesso numero (J), cioè: 1 + m = m + I (1) Ammettiamo che il teorema sia vero per m ed n, m + n = n + m (2) Si ha (d, f, 47): w+ (n+1) = O+n) +1= (n+w*) +1= + (m+1) = (n+1) + w. Ing and quantifying 36 and in the same order (a, 42), and then correspond to the same number (J), ie: 1 + m = m + I (1) Let us assume that the theorem is true for m and n, m + n = n + m (2) It has (d, f, 47): w + (n +1) = W + n) +1 = (n + w *) + 1 = + (m +1) = (n +1) + w. Ma il teorema è vero per w + 1 (1), dunque il teorema vale in generale (e', 46; d. 39 Z, 39)1). But the theorem is true for w + 1 (1), therefore the theorem holds in general (and ', 46 d. Z 39, 39) 1). 3 Concetto di un numero maggiore o minore di un altro. 3 Concept of a greater or lesser number of another. Altre proprietà, dei numeri. Other properties of numbers. 49. 49. Def. Def. I. I. Se due gruppi naturali ABCD... If two natural groups ABCD ... N, A' CD'...N' non hanno lo stesso numero, nella corrispondenza univoca dei loro elementi consecutivi a cominciare dai primi cioè A e A, B e B', C e (7 ecc. vi sono elementi del- Tuno ad es. del primo a cui non corrispondono elementi del secondo, perché altrimenti rappresenterebbero lo stesso numero (h, 48). Si dice perciò che il pri- mo contiene più elementi del secondo, ed il secondo meno elementi del primo; oppure che il primo è maggiore del secondo e il secondo è minore del primo. Def. IL I numeri aeb che corrispondono ai due gruppi non essendo uguali si chiamano disuguali, e quello che corrisponde al primo dicesi mag- giore di quello che corrisponde al secondo, e questo minore del primo. Si scrive: a. Ogni gruppo ed ogni numero naturale è m iggiore di ogni sua parte (def. I, II; fé h, 48). 50. a. Se a numeri dati sommando numeri uguali si ottengono numeri uguali^ i numeri dati sono uguali. Siano (A) e (B) i gruppi corrispondenti ai numeri dati aeb, e si uni- scano rispettivameate ad essi i gruppi (A) e (J?% che rappresentano i due nu- meri a' e ì) uguali, che vengono sommati ad ae b. Si hanno i gruppi [(A) (A')] [(B) (#)] che rappresentando per ipotesi numeri uguali si corrispondono uni- vocamente (i, 48). Ma si corrispondono univocamente per la stessa ragione i gruppi (Ar) e (#), dunque si corrispondono anche univocamente i rimanenti gruppi (A) e (B} (d, 48); e quindi i loro numeri corrispondenti aeb sono uguali (/i, 48, e 6, 47). a. Se a numeri uguali sommando numeri dati si ottengono numeri uguali , i numeri dati sono uguali. Se aea' sono numeri uguali ebeb' i numeri aggiunti, eee' i risul- tati, si ha: ma si ha pure: (m, 48) i) La legge commutativa come si vede facilmente vale aqcbe per un numero qualunque flato U som m and i (2, 39). N, A 'CD' ... N 'have the same number, in the unique match of their consecutive elements starting from the first that A and A, B and B', C (7 etc.. There are elements of-priate eg. of the first to which do not match elements of the second, because otherwise represent the same number (h, 48). It is said therefore that the pri-mo contains more elements of the second, and the second less elements of the first, or that the first is greater than the second and the second is less than the first. Def. THE The numbers a and b which correspond to the two groups not being equal is called unequal, and that which corresponds to the first is called May-greater than that which corresponds to the second, and this less than the first. You write: a. Each group and each natural number m is iggiore its parts (def. I, II, h fe, 48). 50. a. If the given numbers are obtained by adding equal numbers equal numbers ^ the numbers given are the same. Let (A) and (B) the groups corresponding to the numbers a and b data, and joined to them rispettivameate Scano-groups (A) and (J?% which represent the two nu-mers to ' and i ') the same, which are summed to a and b. We have groups [(A) (A')] [(B) (#)] that for hypothesis representing the same numbers correspond to uni-ing and quantifying (i, 48). but is uniquely correspond to the same reason the groups (Ar) and (#), therefore it also correspond uniquely the remaining groups (A) and (B} (d, 48); and therefore their corresponding numbers a and b are equal (/ i, 48, and 6, 47). a. If at the same numbers are obtained by summing numbers given identical numbers, the numbers given are the same. If a and a 'are numbers equal ebeb' numbers added, eee 'the result-ments, it is has: but it also has: (m, 48) i) The commutative law as can be seen easily aqcbe applies to any number Flato U m and the sum (2, 39).

Page 37 Page 37

37 e quindi si ricade nel teorema et. 37 and then falls in the theorem et. b. b. Se #= , 6 c si ha ac a=b, bca ce Se , bcoc Se a 0; ' si ha : e se ' ; b JJ + d -f 6' O'-fb Per dimostrare che se a a', ' si ha -4- b ' -4- ' si procede nel seguente modo. If # =, ac 6 c we have a = b, if there bca, bcoc If 0, 'we have: and if' b + d-f 6 J 'O'-fb To prove that if a', 'you have -4 - b' -4 - 'we proceed as follows. Siano (A) = A! Are (A) = A! -42...^o , (B)= Bl B2...B6 i gruppi che rappresentano i numeri ae ; il numero a-\-b è rappresentato dal gruppo [(A) ( )] = Aj 42...Aa Bl B2...Bb (oss. I, V, e, 47). -42 ... ^ Or, (B) = Bl B2 ... B6 groups which represent the numbers ae; the number a-\-b is represented by the group [(A) ()] = Aj 42 ... Aa Bb Bl B2 ... (oss. I, V, and, 47). Siano (A')= A'T A '2...A'a , (5')= ^ B'y..Btj) i gruppi rappresentanti i numeri a' e 6' ; il numero a' -{- 6' è rappre- sentato dal gruppo [(A') (JB')] = A'1 A'2...A'a B\ 2... Are (A ') = A A'T '2 A'a ..., (5') = ^ B'y .. BTJ) groups representing the numbers a 'and 6'; the number to '- {- 6 'is repre-sented by the group [(A') (JB ')] = '1 A'2 ... A'a B \ 2 ... B'i, . B'i,. Ma per ipotesi a a', 6 '; e se consideriamo i primi a' elementi del gruppo (A) ei primi b' ele- menti del gruppo (5), sia nell'uno che nell'altro rimangono altri elementi (def. I e II, 49) che non hanno in corrispondenza univoca elementi corrispon- denti in (A' , (#), e perciò nel gruppo [(A) (B)] vi sono elementi che in corri- spondenza univoca con [(A')(#)] non hanno in questo gruppo elementi corri- spondenti (II, 29); e perciò + ' 4- b' (def. I e II, 49). Analogamente si dimostrano le altre relazioni b, e, de Se a=a'9 bb' si ha a -fba -hb' Ossia: Se a numeri uguali (disuguali) si sommano numeri disuguali (uguali) si ottengono numeri disuguali. Questo teorema si dimostra in modo analogo al precederne. f. I numeri della serie (/) sono tutti disuguali. Nessuno di essi è maggiore degli altri. Considerando difatti un numero a determinato della serie dei numeri na- turali (e, def. HI, 46} i numeri che precedono a sono minori di a, perché i gruppi corrispondenti a questi numeri contengono meno elementi di quello corri- spondenti ad a (e, 46, def. I, e II, 49), sono invece maggiori quelli che seguono a. I numeri di (I) costituiscono così due classi di numeri rispetto ad , quelli mi- nori e quelli maggiori eccettuato a. L'ultima proprietà deriva dall'essere la serie (/) illimitata (def. II, 32 e def. I, II; e, 46). g. Se aa' vi è un solo numero x tale che a' 4- oc = a 1). I numeri aea' devono occupare in (I) due posti determinati (def. I, 20), 1) I teoremi di questo numero specialmente e, g come o, ci, 47 non è necessario darli con as- siomi speciali o con definizioni dei segni stessi. But by hypothesis to a ', 6', and if we consider the first to 'elements of the group (A) and the first b' elements of the group (5), both in the one that remains in the other elements (final I and II, 49) that do not have unique match elements corresponding in (A ', (#), and therefore in the group [(A) (B)] there are elements that in correspondence with unique [(A ') (#)] in this group do not have corresponding elements (II, 29), and therefore +' 4 - b '(def. I and II, 49). Similarly, other reports show b, c, de if a = a'9 bb 'it has a-FBA-hb' That is: If in equal numbers (unequal) are added unequal numbers (equal) are obtained unequal numbers. This theorem is demonstrated in a similar manner to precederne. f. I numbers of the series (/) are all unequal. None of them is greater than the others. Considering fact a number of specific serial numbers of the na-tural (and final. HI, 46} in the numbers above are smaller than a, because the groups corresponding to these numbers tend to be less than that corresponding to a (and, 46, def. I and II, 49), are greater than those which follow. The numbers of (I) thus constitute two classes numbers than those I-nori and those further exception to. The last property follows from the series (/) unlimited (def. II, 32, and def. I, II, and 46). g. If aa 'there is only one number x such that a' 4 - c = 1). numbers and a 'must fill in (I) two specific places (def. I, 20), 1) The theorems of this issue and especially , or g as, us, 47 is not necessary to give special axioms or definitions of the signs. Essi derivano dal principio di corrispondenza univoca dei gruppi rapp rasentativi. They derive from the principle of unique match of Rep. rasentativi groups.

Page 38 Page 38

38 ea' deve precedere a (/*; e, 46). And 38 'must precede a (/ *; and, 46). Il numero a sì ottiene da d unendo a questo numero altre unità, cioè le unità di un altro numero (cr, 46 eg, 39). The number so obtained by combining this number of other units, ie units of another number (cr, 46 g, 39). Non vi possono essere due numeri xex (oc'^ cc) che godano questa proprietà. There may be two numbers x and x (c '^ cc) which enjoy this property. Difatti si deve avere od anche co + d = , a? In fact you should have and also co + d =, a? + #' = a (w, 48) e quindi x = od (a) Oss. + # '= A (w, 48) and so x = or (a) Oss. Se indichiamo la somma a + b con e si ha : a + = c (1) ove e è uà numero dato della serie (I). If we denote the sum a + b with and we have: a + = c (1) where e is the serial number given UA (I). L'uguaglianza (1) va considerata sotto due aspetti: oe è usato per indicare il nuovo numero a + b non avendolo fatto prima, come ad es. The equality (1) should be considered in two ways: either it is used to indicate the new number a + b, not having done it before, eg. col segno 2 abbiamo indicato la somma 1 + 1, con 3 la somma I + 1 + 1 ecc. 2 we have indicated with the sign of the sum 1 + 1, with the sum of the 3 + 1 + 1 etc.. ; oppure e è un numero già noto adoperato quale simbolo di un* altra operazione, per es. ; Or already known and is a number used as a symbol of a * other operation, eg. di un'altra somma ' + ', ed allora bisogna provare l'esattezza dell'ugua- glianza (I). any other sum '+', then we must prove the accuracy dell'ugua-lance (I). Es. Nell' uguaglianza: ll+l=i:12 il 12 indica il numero risultante da ir addizione di 1 al numero lì, e nulla vi è da dimostrare; bisogna invece dimostrare che 7+5-12 la quale ci da una proprietà fra i numeri 7, 5 e 12. Eg In 'Equality: ll + l = i: 12 on 12 shows the resulting number by adding 1 to the number ir there, and there is nothing to prove; instead must demonstrate that 7 +5-12 which gives us a property between the numbers 7, 5 and 12. E perciò basta scomporre i tre numeri nelle loro unità, e riflettere che le unità del numero 11 + 1 corrispondono ad una ad una a quelle del numero 7 + 5 (i9 48). And therefore enough to break down the three numbers in their units, and to reflect that the units of the number 11 + 1 correspond, one by one to those of the number 7 + 5 (i9 48). Difatti sia (A) ABCDEFG il -gruppo corrispondente al numero 7 e (A')~A'BCD'E quello che corrisponde al numero 5. In fact, both (A) the ABCDEFG-group corresponding to the number 7 and (A ') ~ A'BCD'E one that corresponds to the number 5. Il primo elemento di (A1) unito con (^4) da il gruppo corrispondente al numero 7 + 1 = 8 Rimane di (A') un gruppo (A")=.B'C'D'ff formato cogli elementi rimanenti di (-4'). Il primo elemento di (.4'') unito al gruppo (-4) ci da il numero 8+1 9. Del gruppo (A") gli elementi rimanenti formano un gruppo (A')^C'D E' il cui primo elemento (7 unito al gruppo ((A) A') B' = (A) (AB') (a, 40) da il numero 9 + 1 = 10. E così unito il penultimo elemento D' di (A1) al gruppo (-4) (A'ffC')si ha il nu- mero 10+1 = 11. E finalmente unendo l'ultimo elemento E' di (A') al gruppo (4) (ABffD') si ha il numero 11 + 1 = 12 che corrisponde al gruppo [(A) (A'ì\=ABCI EFGA'B'(fffE il quale rappresenta an- che il numero 7+5 (oss. I, e, 47), dunque 12=7+5. La dimostrazione del teorema pei numeri dati qualunque di (I) si fonda eviden- temente sulla regola di segnatura dei numeri o numerazione* la più comune delle quali è quella decimale. Ad es. si pone in questo sistema: dove x prende successivamente i segni 1, 2, 3, 4, 5, 6, 7, 8 e 9. Il numero succes- sivo al 19 si indica con 20 che si ottiene dall' unione di due gruppi di dieci elementi (decine) Così: 2# =20+cc (a?,=l, 2, 3, ____ 9). The first element of (A1) combined with (^ 4) from the group corresponding to the number 7 + 1 = 8 remains of (A ') a group (A ") =. B'C'D'ff format with the elements of the remaining (-4 '). The first element (.4'') joined the group (-4) gives us the number 8 +1 9. of the group (A ") the remaining elements form a group (A') ^ C 'D E' of which the first element (7 joined to the group ((A) A ') B' = (A) (AB ') (a, 40) by the number 9 + 1 = 10. And so united the penultimate element D 'of (A1) to the group (-4) (A'ffC') there is document number 10 +1 = 11. And finally joining the last element E 'of (A') to the group (4) ( ABffD ') it has the number 11 + 1 = 12 which corresponds to the group [(A) (A'ì \ = ABCI EFGA'B' (FFFE which represents an-that the number 7 +5 (oss. I, and , 47), then 7 +5 = 12. The proof of the theorem pei numbers given any of (I) is based on eviden-temente rule marking of numbers or numbers * the most common of which is the decimal. Eg. you arises in this system: where x takes successively the signs 1, 2, 3, 4, 5, 6, 7, 8 and 9. The number following that to 19 is denoted by 20, which is obtained by 'union of two groups of ten elements (dozens) So: # 2 = 20 + cc (a?, = l, 2, 3, ____ 9).

Page 39 Page 39

39 Analogamente un numero compreso fra quello corrispondente al gruppo compo- sto di dieci gruppi di 10 elementi (centinajo) e quello composto di due decine si in- dica con dove xy è un numero che precede il 100 nella serie (I). 39 Similarly a number between that corresponding to the group I-component of ten groups of 10 elements (centinajo) and the tens are composed of two in-say with where xy is a number that precedes the 100 in the series (I). Per dimostrare che 41+53=94 si osservi che 41 40+1, 53=50 + 3 e quindi 41 + 53=140 + 50+4 90+4=94 1). To demonstrate that 41 +53 = 94 it is noted that 41 40 +1, 53 = 50 + 3, and then 41 + 53 = 140 + 50 +4 90 +4 = 94 1). 4. 4. Sottrazione Moltiplicazione Divisione. Subtraction Multiplication Division. Numero zero. Number zero. 51. 51. Sottrazione. Subtraction. Def. Def. I. I. Se si ha a + == e (I) il primo numero a si dice differenza del se- condo b dal terzo e, e l'operazione colla quale si determina il numero a dai numeri ee si chiama sottrazione. If you have a + == and (I) the first number tells you the difference if-b from the second and third, and the operation by which it determines the number to the number e is called subtraction. Oss. Oss. I. I. Il numero a si ottiene evidentemente togliendo il numero b dal numero e (def. I. 7; def. Ili, oss. I e II, 31). The number is obtained by removing the course number and the number b (def. I. 7; final. Ill, pers. I and II, 31). Def. Def. IL II numero e, si chiama minuendo, b sottraendo, ea si chiama anche resto della sottrazione. THE number and II, called minuend, b subtracting, and is also called the rest of the subtraction. Possiamo anche dire: Def. We can also say: Def. /. /. La sottrazione di un numero b da un altro numero e maggiore di b significa trovare un numero a tale che sommato ab dia ea La sottrazione è V operazione inversa dell'addizione (12, def; I). The subtraction of one number by another number and b greater than b means finding a number that gives added pop and V is the inverse operation of addition subtraction (12, def, I). Jnd. JND. I. I. La sottrazione di b da e da per risultato e si indica nel se- guente modo: a^cb (2) essendo il segno di questa operazione. The subtraction of b from and for the result and it shows in the following way-if a ^ cb (2) being the sign of this operation. 1) m questa genesi del numero ci stacchiamo ad es. 1) m we separate this genesis of the number eg. dai sig. by Mr. Helmoltz, KronecKer e nedekind i quali (1. e), trattano prima del numero come puro segno (Zahl), e poi del numero come Anzahl cioè del numero degli oggetti di un gruppo. Helmholtz, Kronecker and nedekind which (1. S), treat as a pure sign before the number (Zahl), and then the number as Anzahl ie the number of objects in a group. Essi lavorano con questi segni stabilendo con annotazioni spe- ciali le loro leggi. They work with these signs with annotations by establishing spe-cial to their laws. Pur riconoscendo l'acutezza e l'importanza dei lavori dei tre valentissimi mate- matici, mi permetto di osservare che prima ancora di parlare di Anzahl essi usano continuamente nel discorso la parola uno (ad es. un oggetto A) la quale corrisponde ad un concetto fondamentale determinato e che da precisamenter Anzahl dell'oggetto A (def. 1,11,45)- L'Anzahl dell'oggetto A non è secondo me un segno o nome arbitrario scelto a caso per indicare il primo posto od oggetto di una serie (16, 20), ma è uno intendendo con questa parola il concetto che vi è legato. While recognizing the importance of the sharpness and valiant work of the three mathematicians, I would note that before you even talk about Anzahl they continually use the word in a discourse (eg. An object A) which corresponds to a fundamental concept and determined that precisamenter Anzahl object A (def. 1,11,45) - The Anzahl object A is not in my opinion a sign or arbitrary name chosen at random to indicate the first place or object of a series (16, 20), but is one which we intend the concept that there is linked. E in questo concetto non vi è l'indicazione dell'oggetto ad es. In this concept there is an indication of the object eg. Paolo, albero ecc. Paul, tree etc.. ina il giudizio che esprime la nostra mente, che è cioè uno anziché più oggetti (2). ine the judgment that expresses our mind, which is that one instead of multiple objects (2). L'addizione in Dedekind perde il suo significato del- l'unione successiva dell'unità ripetuta all'unità data (1. e, 44); o un'annotazione colla quale dal segno di un elemento di una serie (secondo noi illimitata dì i. specie) si ottengono per mezzo di ele- ganti teoremi i segni degli altri elementi seguenti, ci stacchiamo poi maggiormente dal sig. Addition in Dedekind loses its meaning-the union of the next unit on repeated unit (1. And 44), or a record with which the sign of an element of a set (in our day unlimited the. species) are obtained by means of high-binders theorems following the signs of the other elements, then we separate more from Mr. Peano (Arithmetices principia, nova methodo exposita. Torino 1889). Peano (Arithmetices principia, nova methodo exposita. Torino 1889). Fatta astrazione dal sistema di segni in- trodotto per meglio scindere e indagare le parti semplici di un gruppo di proprietà o di dimostrazioni matematiche quando però è possibile ridurle nel segni finora conosciuti nell'ordine che si crede mi- gliore, ma senza che sìa necessario, egli considera più che gli altri l'aritmetica come un sistema di segni assoggettati a certe definizioni, che per chi non conosce l'aritmetica sono scelte ad arbitrio (vedi pref. e appendice). Abstracting from the system of signs in-troduced to better investigate and separate the parts of a simple set of properties or mathematical proofs, but when you can reduce the signs so far known in the order that I believe-gliore, but without the need He sees more than other arithmetic as a system of signs subject to certain definitions, which for those unfamiliar with the arithmetic is arbitrarily chosen (see pref. and Appendix).

Page 40 Page 40

40 b. 40 b. Il sottraendo è il resto della sottrazione del resto primitivo dal minuendo* Si ha infatti da (2) la (1), e la (1) ci da b+a=*c (m, 48) da cui 6= ea (3;. Dalla definizione stessa si ha: e. Per la sottrazione non vale la legge commutativa* Non si ha cioè bc=# perché è ce non si può togliere pel concetto di numero fin qui considerato un numero maggiore da un numero minore. d. La sottrazione è un'operaziene a senso unico. Vale a dire la sottrazione di un numero b da un numero e si eseguisce in un solo modo e da un solo risultato (def. II, 11). Si abbia infatti eb ss aeb = a' si avrà per la definizione stessa vale a dire a' è uguale ad a (a, 50). e. Se da numeri uguali si sottraggono numeri uguali si ottengono numeri uguali. Se 6=6', c=c', c si ha: eb=3c' b' Difatti ponendo cb=sa, c' b' =a' si ricava #4- =c, a'4-6'=c (def. I e ind.; ma b = b', c=ic' dunque a=#' (a, 50). f. Se da vi è un solo numero x tale che a oc = d. Vale a dire #'-{-#=# Per un altro numero a/ tale che ax' = a', sa- rebbe a' -f oc =2 a, e perciò a?' = x (a1, 50). g. Se da due numeri uguali si sottraggono numeri disuguali si hanno nu- meri disuguali. Sia aa? == 6, a oc == 6', af ^ x si ha b 4- x = a, b' -fx = a (def. I e ind.). Non può essere = ' altrimenti a? sarebbe uguale ax' contro l'ipotesi (a1, 50), dunque ecc. h. Togliendo da un gruppo di a elementi prima b elementi e poi e dal gruppo rimanente (ba, e ^ ab) è lo stesso che togliere (e -fb) elementi dal gruppo a. Siano C C'... B'ff... gli ultimi c + elementi del gruppo (X), e A' A"... gli elementi che li precedono in questo gruppo. Indicando con (A), (B), (C) i tre gruppi di (X), si ha: [(A)(C)1(B)=(A)[(C)(B)] = (X) (a, 40) dunque togliere gli ultimi b elementi (B), e dal gruppo rimanente [(^)(C)] gli ultimi e elementi (C), equivale a togliere gli ultimi e -f- b elementi [(C) (B)} dal gruppo (X), poiché il risultato in ambedue le operazioni è il gruppo (A)(d.) ti* 0 (c-|-6) = (a è) ?=( e) b (I; m, 48). Ind. IL II numero ( ) e lo indicheremo anche col simbolo a 6 ?. The subtrahend is the remainder of subtraction of the remainder primitive from the minuend * It has in fact from (2) the (1), and (1) there from b + a * c = (m, 48) from which 6 = and (3 ;. From the definition we have: and. For subtraction is not commutative law * You do not have that bc = # because there can not be removed PEL number concept hitherto considered a larger number from a smaller number. d. The subtraction is un'operaziene-way. That is the subtraction of a number b of a number and executes it in one way and only one result (def. II, 11). It has indeed b ff b = a 'there will be for the same definition that is to say a' is equal to a (a, 50). and. If equal numbers are subtracted by the same numbers are obtained by the same numbers. If 6 = 6 ', c = c', c is has: b = 3c 'b' = sa fact putting cb, c 'b' = a 'we get # 4 - = c, a'4-6' = c (def. I and ind., but b = b ' , c = ic 'then a = #' (a, 50). f. While there is only one number x such that a or c = d. That is to say # '- {- = # # To another number on / such that x '= a', know-would be to 'f-c 2 = a, and so on?' x = (a1, 50). g. If you subtract two numbers equal numbers are unequal is unequal nu-mer . Both aa? == 6, or c == 6 ', f ^ x we ​​have b 4 - x = a, b' = a-fx (def. I and ind.). can not be = 'otherwise? would be equal to x 'against the hypothesis (a1, 50), therefore, etc.. h. removing from a group of elements at first and then b elements and the remaining group (ba, and ^ ab) is the same as remove (and - fb) elements from group a. Let C C '... ... B'ff the last c + elements of the group (X), and A' A "... the elements that precede them in this group. Indicating with (A), (B), (C) the three groups of (X), we have: [(A) (C) 1 (B) = (A) [(C) (B)] = (X) ( a, 40) thus removing the last elements of b (B), and the remaining group [(^) (C)] and the last elements (C), the equivalent of removing the last b-and f-elements [(C) ( B)} from the group (X), since the outcome in both operations is the group (A) (d.) ti * 0 (c-| -6) = (a is)? = (s) b (I; m, 48). Ind. IL The number () and also referred to by the symbol 6?.

Page 41 Page 41

41 h". ab cesa e è (o, d; ìnd.). Oss. II. La proprietà (ab) . e = a (b -f- e) si può chiamare legge associati va dalla sottrazione. i. (a 6)-r-(a' 6') = (a + a') (6 + 6') (a 6, a' ') Se si ha infatti un gruppo di elementi composto di due sottogruppi ae a'9 togliere da essi rispettivamente i sottogruppi 6 eb' è lo stesso che togliere il sottogruppo 6-f-6' dal gruppo dato -}- ' poiché i due gruppi risultanti si corrispondono univocamente (cT, ?, 48). 52. Moltiplicazione. Oss. L Dato un gruppo di a elementi, come nuovo elemento possiamo conside- rare il gruppo stesso, e quindi la nuova unità sarà il numero corrispondente al gruppo (def. I, 45). E come ripetendo Punita e unendo questa air unità già data abbiamo ot- tenuto i numeri della serie (I), così ripetendo la nuova unità si ottiene un'altra serie di numeri. Ma evidentemente ciascuno di questi numeri è un numero della serie (I), Invero consideriamo il numero b rispetto alla nuova unità a ; esso non è che la somma del numero a ripeluto b volte o come si dice anche tante volte quante sono le unità di b. Def. I. L'operazione colla quale il numero a viene sommato tante volte quante sono le unità di un altro numero 6 si chiama moltiplicazione. Oss. IL La moltiplicazione non è dunque che un'addizione abbreviata. Def. II. Il risultato della moltiplicazione si chiama prodotto, e si indica con a X ; # e 6 i fattori, a moltiplicando, 6 moltiplicatore, essendo X il segno di questa operazione. Il prodotto si indica anche con ab o con ab. a. La moltiplicazione del numero a pel numero 6 è uri operazione a senso unico. 6. Il prodotto non cambia mutando l'ordine dei fattori. e. Se a X = e non vi è un altro numero b'^b tale che a X ' = e. e'. Se i prodotti di due numeri aeb per un terzo o per numeri uguali sono uguali, aeb sono uguali. d. Per la moltiplicazione vale la legge associativaf cioè Ind. I. Il prodotto (a X 6) X c si indica perciò anche col simbolo a XX c Queste proprietà, come altre, della moltiplicazione derivano dai teoremi analoghi dell1 addizione. e. (a'" a") b = a' b + a* b (legge distributiva). Se a1 + a"=za si ha evidentemente (m, e nota 3*, 48). 41 h. "Ab cesa and is (or, d; Ind.). Oss. II. The property (ab). E = a (b-f-e) can be called law associated goes from the subtraction. I. (A 6)-r-(a '6') = (a + a ') (6 + 6') (to 6, '') If there is indeed a group of elements consisting of two subgroups to and remove from a'9 these subgroups, respectively, 6 and b 'is the same as removing the sub-6-f-6' from the given group -} - 'because the two resulting groups correspond uniquely (cT,?, 48). 52. Multiplication. Oss. L Given a group with elements such as rare new element we considered the group itself, so the new unit will be the number corresponding to the group (def. I, 45). And Punished as repeating and combining this with air units have already given ot - given the numbers of the series (I), thus repeating the new unit gets another set of numbers. But obviously each of these numbers is a number of series (I), Indeed, consider the number b with respect to the new unit; it is not that the sum of the number b to ripeluto times or as it is also said many times as are the units of b. Def. I. The operation by which the number is added to many times as are the units of another number 6 is called multiplication. Oss. THE The multiplication an addition that is not so short. Def. II. The result of multiplication is called product, denoted by X, and # 6, the factors, multiplying, multiplying 6, X being the sign of this operation. The product is indicated with ab or ab. to. Multiply the number for the number 6 is uri-way operation. 6. The product does not change by changing the order of the factors. and . If X = and there is another number b '^ b such that X' = e. and '. If the products of two numbers a and b for a third or equal numbers are equal, and b are equal. d. This multiplication is the law that associativaf Ind. I. The product (X 6) X c is therefore also indicates the symbol c to XX These properties, like others, resulting from the multiplication theorems similar dell1 addition. and. (a ' "a") b = a 'b + a * b (distributive law). If a1 + a "= za is evidently (m, and note 3 *, 48). e perciò Pel segno basta applicare la formula i, 51 tenendo conto dei teoremi d, f, 47. Pel and therefore the sign just apply the formula, 51 taking into account the theorems d, f, 47.

Page 42 Page 42

42 Def. 42 Def. III. III. Il numero ab sì chiama multiplo di a secondo il numero è, e ò è multiplo di 6 secondo il numero a; ae 6 si chiamano multipli di 6 o ba. The number so called ab multiple of the number is in seconds, and o 'is a multiple of the number to 6 seconds, a and 6 are called multiples of 6 or ba. Ind. IL II prodotto di a per si scrive anche col simbolo a2, il prodotto di az per a con a3; e in generale il prodotto di an~l per a si indica con an. Ind. II THE product for you to also writes under the symbol a2, az to the product of a with a3, and in general the product of an ~ l to n is denoted by. Def. Def. IV. IV. Il numero an si chiama potenza nma di a, w I1 esponente della potenza, ea la base. The number n is called nma power of a, w I1 exponent of the power, and the base. 53. 53. Divisione. Division. Def. Def. I. I. L1 operazione inversa della formazione di un gruppo con più gruppi uguali, equivale a quella di scomporre un gruppo in sottogruppi uguali, cioè di ugual numero di elementi quando ciò sia possibile. L1 reverse operation of the formation of a group with more equal groups, equal to that of decompose a group into subgroups equal, ie of the same number of elements when this is possible. (12, 31). (12, 31). Essa ci conduce all'operazione inversa della moltiplicazione che si chiama divisione. It leads us to the reverse operation of multiplication is called division. Vale a dire dato il prodotto a X b = oe il fattore , la divisione è queir operazione colla quale si determina l'altro fattore a. That is to say given the product to X b = o and the factor, the division is queir operation with which it is determined at the other factor. Def. Def. IL II risultato dicesi quoziente, e dividendo, b divisore, e si scrive c:be=*a essendo: il segno della divisione. IL The result is called the quotient and the dividend, b the divisor, and write c: = b and a * being: the sign of division. Def. Def. I'. I '. Si può anche dire: Dividere un numero e per un altro b significa trovare un n amere a tale che il prodotto di esso col numero b sia uguale a ?, o il numero delle volte che b è contenuto in e. You can also say: Divide one number and another to find a n ooms b means that the product of it with the number b is equal to?, Or the number of times b is contained in e. Da ciò risulta che e deve essere multiplo di b secondo il numero aa La divisione è un'operazione a senso unico. It follows that it must be a multiple of b y The second division is the number one way operation. Supponiamo si abbia: as=c: , a' = c:b si deve avere aXb = c, a'X = c (def. I), oppure X = e, bXa'~c (b, 52). Suppose we have: s = c:, a '= c: b is must have axb = c, c = a'X (def. I), or X = e, BXA' ~ c (b, 52). da cui a=a' (e, 52). from which a = a '(and 52). b. b. Numeri uguali divisi per numeri uguali danno numeri uguali. Like numbers divided by equal numbers give equal numbers. Difatti se a: = c, a':b' = cf, a = a', = ' si ha cb = c'.b' da cui e = e' (e', 52). For if a: = c, a ': b' = cf, a = a ', =' we have cb = c. 'B' where e = e '(e', 52). e. and. Per la divisione non vale la legge commutativa (def. I). For the division is not worth the commutative law (def. I). d. d. Se due numeri divisi per numeri uguali danno quozienti uguali i due numeri sono uguali. If two numbers divided by equal numbers give equal quotients of the two numbers are equal. Cioè se a:b =a' : b' e = ' si ha: a = a\ Difatti si ponga a: = c, ':#' = e (def. I) da cui a = .c, a' = '.e. That is, if a: b = a ': b' = and 'we have: a = a \ In fact, we put a: = c,': # '= e (def. I) where a =. C, a' = '. and. Ma essendo b = b' si ha a~a' (d, 47 e def. II 52). But since b = b 'has a ~ a' (d, 47 and def. II 52). eab : b = a. eab: b = a. Difatli ponendo ab:b=c si ha ab=cb (def. I), da cui ae (c\ 52). Difatli placing ab: b = c we have ab = cb (def. I), from which a and (c \ 52). f. f. (ac):(bc)=:a:b. (Ac) (bc) = a: b. Difatti si ponga (ac):(bc) = d, si ha ac = d. In fact, it puts (ac) (bc) = d, we have c = d. (bc) = (bd).c (6, d, 52). (Bc) = (bd). C (6, d, 52). da cui a = db ( , e', 52), e quindi a:b = d (def. I) e perciò anche a : b = (ac) : (bc) (d, 47 e def. II, 52) g. from which a = db (, e ', 52), and then a: b = d (def. I) and therefore also a: b = (ac): (bc) (d, 47 and final. II, 52) g. (a:c):(b:c) = a:b. (A: c): (b: c) = a: b.

Page 43 Page 43

43 Sì ponga dc , ec *= è (def. I), si ha (dc) t (ec) = a:b (b) ed anche (dc) : (ec) d: e (p. Ma d = : e, e= :c (def. I) dunque (a: e): ( :e) = a: 6 (6) Ti. Per la divisione non vale la legge associativa. Non è cioè a:(b:c) = (a: b):c perché si ha a: (b : e) *= (ac) : be (a:b):ca:(cb) (f), mentre in generale non è (ac)ib = a:(cb). i. Per la divisione vale la legge distributiva. Difatti si ha (a : e db 6 : e) e = a ifc 6 (e, 52; def. I), e quindi dividendo per ei membri dell'uguaglianza si ha: (a3=b):c=a:c- b:c (Ti; 2, 8). Oss, Qui si suppóne che aeb siano divisibili per e (def. I). 54. Numero zero. a. I numeri della serie (2) si possono ottenere colla sottrazione di un nu- mero da un altro. Difatti se a è un numero qualunque di (I) e si unisce ad a un altro nu- mero -b si ha : a -f- b = e, da cui a = e b. Oss. I. Qui si presenta un caso particolare degno di nota che ci induce a intro- durre un nuovo numero. Se si toglie un numero da un altro numero ad esso uguale vale a dire se facciamo astrazione da esso (7), non si ottiene alcuno dei numeri della serie (I) ; si ha cioè che il gruppo corrispondente è un gruppo nullo o di nessun ele- mento (def. I, 31). Ma siccome ogni sottrazione da un numero di (1), non volendo fare rispetto a questa operazione, oppure rispetto alla corrispondenza coi gruppi, al- cuna eccezione conveniamo di dire che la sottrazione aa ci da un nuovo numero. Def. I. Il numero aa (oss. I) si chiama numero zero, e lo si indica col segno o, vale a dire aa=o (b, 9). b. aa = bb = o9 dove aeb sono numeri qualunque di (/). Difatti se al gruppo nullo che si ottiene togliendo b elementi da un gruppo di b elementi si aggiungono a elementi si ottiene un gruppo di a elementi, che altrimenti il gruppo nullo dovrebbe contenere esso stesso degli elementi contro l'ipotesi (II, 29). Dunque si ha pei numeri corrispondenti b b-\~a=a. Ma togliendo dal gruppo risultante il gruppo di a elementi si ottiene il gruppo primitivo, essendo l'operazione del togliere a senso unico (a, 11), quindi si ha bb -=.a a. Oss. IL Osserviamo che il segno o ha un significato ben diverso da quello che ha quando entra nel simbolo di un numero, come ad es. nel numero i 0, perché in tal caso viene posto di seguito ali9 unità per comodità di segnatura o di numerazione. e. Il numero zero è minore di tutti i numeri della seme (I). Perché è rappresentato da un gruppo che non ha elementi (def. I, e II, 49). 055, IH. Volendo ordinare tutti i numeri in una nuova serie mantenendo in essa la proprietà della (I), che i numeri precedenti un numero a sono minori di a, e quelli che lo seguono sono maggiori di a (cf, 46; f, 50), il numero o dovrà occupare il primo posto, e si avrà la serie Yes put 43 dc, and c * = you (def. I), we have (dc) t (c) = a: b (b) and also (dc): (c) d: e (p. But d =: and e = c (def. I) then (a: e): (: e) = a: 6 (6) Ti. For the division does not apply the law of association. It is not that is: (b: c) = (a: b): c because you have to: (b: s) * = (ac) b and (a: b): c: (cb) (f), while in general is not (ac) = ib to: (cb). i. For the division is the distributive law. In fact, it has (a: and db 6: e) and in ifc = 6 (and, 52; final. I), and then dividing by and members of 'equality we have: (a3 = b): c = a: b-c: c (I, 2, 8). Oss, The theory here is that a and b are divisible by e (def. I). 54. number zero. a. The numbers of the series (2) can be obtained with the subtraction of a nu-mer from another. In fact, if a is any number of (I) and joins to another nu-mer-b we have: at -f-b = e, where a = and b. Oss. I. Here we present a special case worthy of note that leads us to introduce a new number. If you remove a number from another number to it equals ie if we make abstraction from it (7), do not get any of the terms of the series (I); you namely that the corresponding group is a group of zero or no ele-ment (def. I, 31). But As each subtraction by a number (1), not wanting to do about this, or with respect to correspondence with the groups, cradle-to agree except to say that the subtraction aa us a new number. Def. I. The number yy (oss. I) is called the number zero, and is to be indicated with the sign or, namely aa = or (b, 9). b. aa = bb = o9 where a and b are numbers any of (/). In fact, if the group which is obtained by removing b zero elements from a group of b are in addition to the elements is obtained in a group of elements, which otherwise the null group should contain itself against the hypothesis of the elements (II, 29). Therefore it has pei numbers corresponding b-b \ ~ a = a. But removing the resulting group to group items then the primitive group, being the operation of removing one-way (a, 11), then you bb - =. a a. Oss. THE observe that the sign or have a very different meaning from what he has when he enters the sign of a number, eg. in the number 0, because in this case is placed below ali9 units for ease of signature or numbering. and. The number zero is less than the numbers of seeds (I). Why is represented by a group that has no elements (def. I and II, 49). 055, IH. Wanting to order all the numbers in a new series keeping in it the properties of (I), that the numbers a previous number are smaller than a, and those that follow are more of a (cf, 46 f, 50), the number or will occupy the first place, and the series will

Page 44 Page 44

44 a') o, i, 2, 3 ..... 44 to ') o, i, 2, 3 ..... io, .... I .... 20 .... 20 .... 100 .... 100 .... m ..., d. m ..., d. adzos=a, o-\-a = a Di fatti le due relazionisi possono scrivere così: a (a à)=a,(a #) Il primo membro della prima uguaglianza riferendoci ai gruppi ci dice che al gruppo a non si è aggiunto alcun elemento; o dal gruppo di a elementi non si è tolto alcun elemento; nell'uno e nell'altro caso si ha dunque per ri- sultato il gruppo di a elementi. adzos = a, o-\-a = a relazionisi In fact the two can be written as follows: a (a a) = a, (a #) The first member of the first equality by referring to the groups tells us that the group has not add any factor, or by a group of elements has not taken any part, in either case is therefore to re insulted a group of elements. Il primo membro della seconda uguaglianza ci dice invece che dal gruppo a fu tolto lo stesso gruppo, il che ci da per risultato nessun elemento (def. I, 31), e che a questo risultato fu aggiunto un gruppo di a elementi. The first member of the second equality tells us that the group was taken from the same group, which gives us the result for any element (def. I, 31), and that this result was added to a group of elements. Anche in questo caso il risultato finale è un gruppo di a elementi (li, 29). Also in this case the end result is a group of elements to (li, 29). e. and. oX#=0X =0. oX # = 0X = 0. Perché ripetendo un gruppo che non ha elementi tante volte quante sono le unità contenute nel numero #, si ha sempre un gruppo senza elementi (15; oss. I, 52; 11,29). Because repeating a group that has no elements many times as the number of units contained in #, you always have a group without elements (15; oss. I, 52; 11:29). Perché ripetere un gruppo a nessuna volta significa che non si considera affatto (7, e 31). Why repeat a group at any time means that it is not considered (7, and 31). Oss. Oss. IV. IV. Se un gruppo nullo si considera nessuna volta, il che vuoi dire che non si considera, in questo senso non si ha alcun risultato (def. I, 31), e si ha: 0X0=0, f. If a group is considered null and void any time, which means that no one considers, in this sense does not have any results (def. I, 31), and has: 0X0 = 0, f. o : a = o : b = o Ciò risulta dalla definizione della divisione (53) e da eg 0:0 = a, o : os=6; o : 0 = o, o in parole: La divisione di o per o non è un'operazione a senso unico *). or: or a = b = or This follows from the definition of the division (53) and by g = 0:0 to, or: os = 6; or: 0 = or, or in words: The division of, or to or not is an one-way *). Ciò risulta analogamente da e' e dall'oss. This is similar to and 'and the OSS. IV. IV. Il teor. The theorem. e1 basta a dimostrare il seguente principio: h. e1 is enough to prove the following principle: h. Se con forme date eseguendo una data operazione si ottengono risultati uguali non deriva da ciò solo che le due fórme siano uguali se si fa astrazione nei risultati dalle forme date. If given forms with performing a given task does not derive the same results are obtained by the mere fact that the two forms are equal if we abstract from the forms given in the results. Oss. Oss. IV. IV. Non ci diffondiamo ulteriormente nelle operazioni dei numeri della se- rie (I) perché ne faremo pochissimo uso nei fondamenti della geometria, nostro scopo principale, e d'altronde le proprietà qui svolte sono le proprietà fondamentali di questi numeri. There we spread further into the operations of the numbers of the se-ries (I) because we will make very little use in the foundations of geometry, our main purpose, and besides, the properties are held here the fundamental properties of these numbers. Così faremo pei numeri che introdurremo in seguito. So we will introduce later pei numbers. 1) Si badi che g non è in contraddizione colia proprietà 6 ee del n. 1) is taken so that g is not in contradiction colia properties of n e and 6. 8, perché qui o ; o è un se- gno che non rappresenta una sola cova, ma da e risulta invece che rappresenta numeri, e quindi anche concetti (4), diversi. 8, because here or, or is a mark that does not represent a single hatching, but from and it appears that represent numbers, and therefore also concepts (4), different.

Page 45 Page 45

CAPITOLO IV. CHAPTER IV. Dei sistemi di elementi e in particolare di quelli ad una dimensione. Systems of elements, and in particular those at one dimension. 1. 1. Considerazioni empiricbe sul continuo intuitivo rettilineo *). Empiricbe intuitive considerations on continuous straight *). 55. 55. Che cosa è il continuo? What is constant? Ecco una parola il cui significato senza biso- gno di alcuna definizione matematica tutti intendiamo, perché intuiamo il con- tinuo nella sua forma più semplice come contrassegno comune a più cose con- crete, quali sono, per dar esempio di talune fra le più semplici, il tempo e il luogo occupato nell'ambiente esterno dall'oggetto qui tracciato, od a quello di un filo a piombo, di cui non si tenga conto delle sue qualità fisiche e della sua grossezza (in senso empirico 2)). Here is a word whose meaning without re-port of any mathematical definition we mean all, because we sense the con-tinuous in its simplest form as a marker common to most things con-crete, which is, to give example of some of the most simple , the time and the place occupied by the object in the external path here, or that of a plumb line, which does not take into account its physical qualities and its thickness (in the empirical sense 2)). Rilevando le partico- flg. Noting the particular fig. i,0- aic- M cx **y larità di questo continuo intuitivo dobbiamo cercare una definizione astratta del continuo, nella quale non entri più come elemento necessario l'intuizione _________ o la rappresentazione sensibile, in modo che inver- flg. i, 0 - aic-M ** y cx polarity of this input we continuously seek an abstract definition of the continuum, which does not come more as a necessary element of intuition or representation _________ sensitive, so that winter-fig. 3, e 3. 3, and 3. X a1 samente questa definizione possa servire astratta- X' mente con pieno rigore logico alla deduzione di al- tre proprietà delio stesso continuo intuitivo. X a1 samente this definition can serve as abstract-X 'mind with the full rigors of logical deduction of the three-intuitive properties delio same continuum. Che que- ta definizione matematicamente astratta si possa dare, vedremo in seguito. What this ta-definition can be given mathematically abstract, we will see. D'altra parte se la definizione del continuo non è puramente nominale e vo- gliamo invece corrisponda a quello intuitivo suddetto, deve evidentemente sca- turire dall'esame di questo, anche se poi la definizione astratta in conformità a principii matematicamente possibili comprenderà questo continuo come caso particolare. On the other hand, if the definition of the continuum is not merely nominal, and vo-mend instead that corresponds to the intuitive, must evidently Turire sca-examination of this, even though the abstract definition in accordance with principles mathematically possible this will include continuous as a particular case. L'oggetto della fig. The object of Fig. 1, a si chiama rettilineo. 1, is called rectilinear. Esaminando dunque il con- tinuo (fig. 1, a) vediamo che si può ritenere composto di una serie di parti consecutive identiche , , c, d ecc. Examining the thus-with continuous (fig. 1, a) we see that it can be considered composed of a series of identical consecutive parts,, c, d etc.. disposte da sinistra verso destra, e che ciò vale entro certi limiti dell' osservazione. arranged from left to right, and that this is true within certain limits of 'observation. Le parti sono separate dalle croci segnate sull'oggetto stesso, e sono pure continue. The parts are separated from crosses marked on the object itself, and are also continuous. Inoltre scorrendo coll'occhio da sinistra verso destra osserviamo che le parti a, b, c, d come pure ab, bc, ed, ecc. Furthermore, with the eye scrolling from left to right we observe that the parts a, b, c, d as well as ab, bc, and, etc.. ; abc, bcd ecc. , Abc, bcd etc.. ecc. etc.. sono identiche da sinistra verso destra, e che que- ste particolarità hanno pure luogo da destra verso sinistra. are identical from left to right, and that this particularity-ste have also takes place from right to left. Si ha ancora che fra due parti consecutive aebec della serie abcd ecc. It still has that in two consecutive parts aebec series abcd etc.. non vi è altra parte, mentre ad es. there is no other part, while eg. fra le parti aec vi è la parte b\ 1} Per stabilire i concetti matematici possiamo benissimo ricorrere a nozioni acquistate empi- ricamente, senza poi che nelle definizioni stesse e nelle dimostrazioni dobbiamo farne alcun uso. between the parties is part b and c \ 1} To establish the mathematical concepts may very well resort to empirical knowledge acquired historically, no later than in the same definitions and proofs we make no use. 2) Vedi oss. 2) See oss. emp. emp. n. No. 1, parte I 1, Part I

Page 46 Page 46

46 e se si fa astrazione dalla parte b, l'oggetto rettilineo non è più continuo. 46 and if we abstract from part b, the object straight is not as seamless. Ciò che vale per le parti aeb 1' osservazione ci assicura che vale fra due parti consecutive qualunque di una qualunque di esse, o in altre parole non vi è altro tutto colle stesse proprietà deJP oggetto rettilineo le cui parti separino due parti consecutive dell'oggetto stessono meglio del luogo da esso occupato (23 e def. II, 25). What is true for parts a and b 1 'observation assures us that any two consecutive parts of any of them, or in other words there is another hill all the same properties deJP straight object whose parts separating two shares consecutive object stessono better than the place it occupied (23 and def. II, 25). Oltre a ciò vediamo che tanto sperimentalmente (cioè con una serie limi- tata naturale (35) di scomposizioni), come anche astrattamente (vale a dire secondo ogni ipotesi od ogni operazione matematicamente possibile che non contraddica ai risultati dell'esperienza), noi possiamo arrivare ad una parte non ulteriormente scomponibile in parti (indivisibile), colla quale è composto il continuo (come è per il tempo un istante). In addition to this we see that both experimentally (ie with a series-limited natural (35) of decompositions), as well as abstract (namely in accordance with any hypothesis or any operation mathematically possible that does not contradict the results of the experiment), we can arrive at a party can not be further broken down into parts (indivisible), with which it is composed of the continuum (as is the time for a while). È poi la esperienza stessa che ci spinge a cercare l'indivisibile in modo da non poterlo ottenere praticamente, perché essa ci dimostra come una parte considerata indivisibile rispetto ad un'osservazione non lo sia più rispetto ad altre osservazioni eseguite con istrumenti più esatti o in condizioni diverse. It is then the same experience that drives us to seek the indivisible so that I can not get pretty, because it shows us as a party considered to be indivisible with respect to an observation is not more than other observations with instruments more accurate or different conditions. E ammessa la parte indivisibile noi vediamo che anche sperimentalmente pos- siamo ritenerla indeterminata, e perciò più piccola di qualsiasi parte data del- l'oggetto rettilineo. It allowed an indivisible part we see that we may regard it experimentally undetermined, and therefore smaller than any given part of the object straight. Occorre inoltre distinguere una parte data a del continuo dalle altre per poterla considerare indipendentemente da queste ; e se facciamo astrazione da essa, la parte rimanente bea ecc. It should also be given to distinguish one part of the continuum from the others because it can be considered independently of these, and if we abstract from it, the remainder of b and so on. nell'ordine bcd ecc., che indichiamo pel mo- mento con a, non possiamo considerarla come avente una parte comune con a. order bcd etc.., that PEL mo-ment we denote by a, we can not regard it as having a common part with a. Rimanendo la parte a al suo posto nel continuo per distinguerla dalla parte a dobbiamo immaginare qualche cosa, un segno (punto), che serva a indicare il posto di unione delle due parti, pur rimanendo inalterata la proprietà già so- pra osservata che cioè fra aea non vi è alcuna parte di altro tutto nel senso indicato. Keeping the part in place continuously in order to distinguish it from the part we have to imagine anything, a sign (dot), which serves to indicate the place where the two parties, while remaining unchanged the properties already observed that practical know-that is, between aea there is no part of another round in the direction indicated. Il segno che separa la parte a dalla parte a è dunque un prodotto della funzione di astrazione della nostra mente e di scomposizione del conti- nuo in parti, e non è parte dell'oggetto rettilineo; se fosse una parte a* di a consecutiva ad a, da sinistra verso destra potremmo ripetere fra aea la stessa considerazione. The sign that separates the part from the part of the function is therefore a product of abstraction of our minds and the continual breakdown in parts, and is not part of the object straight, if it were a part of a * in succession to to, from left to right we could repeat between aea the same consideration. Da questo punto di vista noi siamo dunque costretti ad ammettere che il segno di separazione o di unione fra aea, anche come ap- partenente al continuo non sia parte di esso. From this point of view we are therefore forced to admit that the sign of separation or union of aea, as ap-partenente the constant is not part of it. E si può ritenere come appar- tenente ad entrambe, considerate indipendentemente l'una dall'altra. And it can be considered as belonging to both lieutenant, considered independently of one another. Indicando con A, B, C ecc. Indicating with A, B, C, etc.. i segni di separazione delle parti aeb; bee; eed ecc. the signs of separation of the parts a and b; bee; eed etc.. (fig. 1, a), la parte b potremo indicarla col simbolo (AB), la parte e col sim- bolo (BC) ecc. (Fig. 1, a), part b we indicate it with the symbol (AB), the side and with the sym-(BC) etc.. Tutto ciò è suffragato dalla stessa osservazione. This is supported by the same observation. Supponiamo ad es. Suppose, for example. che la parte a dell'oggetto rettilineo sia dipinta in rosso, la parte rimanente a in bianco, supponendo inoltre che fra il bianco e il rosso non vi sia altro colore. that the straight part of the object is painted in red, the remainder in white, assuming also that between the white and red there is no other color. Ciò che separa il bianco dal rosso non può avere colore né bianco né rosso, e quindi non può essere parte dell'oggetto perché ogni sua parte è-per Ipotesi bianca o rossa. What separates the white from the red color can not be neither red nor white, and therefore can not be part of the object because each part is for hypothesis-white or red. E questo segno di separazione o di unione del bianco e del rosso si può anche considerare appartenente o alla parte bianca o alla rossa considerandole indipendentemente l'una dall'altra. And this sign of separation or union of white and red can also be considered belonging to the white or red or considering them independently. Se ora. If you now. si fa astrazione dal we abstract from

Page 47 Page 47

47 colore il segno di separazione delle parti aea possiamo supporlo apparte- nente all'oggetto stesso. 47 color of the sign to separate the parts we can suppose aea-tion belonging to the object itself. Un altro esempio. Another example. Tagliamo un filo finissimo nel posto indicato da X con la lama sottilissima di un coltello e stacchiamo le due parti aea' (fìg. 1, a\ e supponiamo che si possa poi ricomporre il filo senza che si osservi il posto ove avvenne il taglio (fig. 1, e), in altre parole come se nessuna particella del filo andasse perduta; il che si ottiene apparentemente guardando il filo così ricomposto in certa lontananza da esso. Osservando ora la parte a da destra verso sinistra come indica la freccia della fig. 1, sopra a ; ciò che si vede della parte tagliata non è certamente parte del filo, come ciò che si vede di un corpo non è parte del corpo stesso. Analogamente succede se si guarda la parte a1 da sinistra verso destra. Se il segno X di separazione della parte a da a' supposto appartenente al filo stesso fosse parte di esso, guardando a da destra verso sinistra non si vedrebbe tutta questa parte, mentre ciò che se- para la parte a da a1 è soltanto ciò che si vede nel modo suindicato, quando si suppone poi ricomposto il filo l). Cut a very thin wire in the place indicated by X with the thin blade of a knife and detach the two parts and a '(fig. 1, a \ and suppose that we can then reconstruct the wire without any note took place where the cut ( fig. 1, s), in other words as if no particle of the wire would be lost; which apparently is obtained by looking at the wire so recomposed in a certain distance from it. Observing now the part from right to left as indicated by the arrow of Fig . 1, above; what is seen of the cut part is certainly not part of the wire, as what is seen of a body is not part of the body itself. Similarly happens if one looks at the part a1 from left to right. If the X mark of separation of part of a 'supposedly belonging to the wire itself was part of it, looking from right to left as you would see all this part, but what if the para-a1 is only part of what you see as above, when they are supposed then reassembled the wire l). L'ipotesi che il punto non è parte del continuo rettilineo (e nemmeno ha parti in sé 2) vuoi dire che tutti i punti che possiamo immaginare in esso, per quanti siano, non costituiscono uniti insieme il continuo, e scelta una parte (XX') piccola quanto si vuole dell'oggetto (fig. la a) (per il tempo un istante) e per quanto indeterminata vale a dire senza che X e X' siano fissi nel nostro pensiero l'intuizione ci dice che essa è sempre continua. The hypothesis that the point is not part of the continuous linear (and even has parts in itself 2) mean that all the points that we can imagine it, for those who are, are not joined together constantly, and choice of one side (XX ') as small as you want the object (fig. the a) (for the time an instant) and indefinite as it is to say without that X and X' are fixed in our thought intuition tells us that it is always continuous . Scorrendo poi coll'occhio da destra verso sinistra, o viceversa, vediamo che ogni punto occupa una posizione determinata sull'oggetto rettilineo, ea co- minciare da un dato punto non lo incontriamo più né da destra verso sini- stra né da sinistra verso destra, vale a dire l'oggetto rettilineo non ha nodi. Then rolling his eye from right to left, or vice versa, we see that every point on the object occupies a certain position, straight, and co-ranked by a given point does not meet the more-or from right to left or from left to right strategic , ie the object has no straight nodes. Vediamo inoltre che una parte per quanto piccola ad es. We also see that a small part as such. quella indicata da un trattino X apparentemente indivisibile (fig. 1, e) è limitata alla destra e alla sinistra da parti del continuo, e quindi da due punti. that indicated by a dash X apparently separated (Fig. 1, e) is limited to the right and left sides of the continuum, and then by two points. E siccome una parte costante limitata da due punti e indivisibile rispetto ad un'osservazione, può non esserlo rispetto ad altra osservazione, così siamo indotti anche sperimen- talmente ad ammettere che ogni parte limitata da due punti che rimangono sempre gli stessi nelle nostre considerazioni, sia pure divisibile in parti. And as a constant part limited by two points and indivisible with respect to an observation, can not be compared to other observation, so we also induced experimentally to admit that each party limited by two points remain the same in our considerations, albeit divisible into parts. Di più se consideriamo l'oggetto rettilineo da A verso destra possiamo ammettere che la serie di parti àbcd ecc. More if we consider the object straight from A to the right we can assume that the number of shares abcd etc.. in questo ordine sia illimitata (def. II, 32), perché dall'esperienza ripetuta siamo indotti a ritenere che, se non l'og- getto rettilineo il luogo però da esso occupato nell'ambiente esterno sia parte di un tutto illimitato. This order is unlimited (def. II, 32), because repeated experience we are led to believe that unless the subject-straight though the place it occupied in the external part of a whole is unlimited. Così da destra verso sinistra. So from right to left. Inoltre tra due punti anche indeterminati di posizione X e X' ma che non coincidono (def. V, 8) vi è sempre una parte continua. Furthermore, between two points also indeterminate position X and X 'but which do not coincide (final V, 8) there is always a continuous part. E poiché il continuo è 1} Vediamo dunque che l'idea del punto che non è parte del continuo o tutt'altro che una pura astraz:one, che non trovi giustificazione nell'esperienza stessa. And because the constant is 1} We see that the idea of ​​the point which is not part of the continuous or anything but a pure astraz: one, that is not justified by the experience itself. Certo che facciamo uso della nostra facoltà di astrarre, ma o impossibile specialmente in matematica di non farne uso. Of course we do use our faculty of abstraction, but especially in mathematics or impossible not to use them. È quindi per lo meno inutile anche regolandosi secondo l'osservazione di ammettere che il punto sia il minimo sen- sibile dell1 empirista come fa il sig. Therefore, it is also useless By setting at least according to the observation point is to admit that the minimum sen-sible how does Mr. dell1 empiricist. Pasch (Vedi pref. e appendice). Pasch (see pref. And Appendix). 2) Noi non avremo però bisogno per lo svolgimento teorico della geometria di stabilire che il punto non ha in sé parti. 2) We will not, however, for the performance of the theoretical geometry to establish that the clause is not in itself shares. Dicendo in sé non intendiamo dire ciò che è una cosa indipendentemente da noi, ma ciò che è nella sua rappresentazione mentale (4). Telling in itself does not mean that is a thing apart from us, but what is in its mental representation (4).

Page 48 Page 48

48 determinato matematicamente dai suoi punti, siamo indotti ad ammettere che fra due punti anche indeterminati, per quanto vicini essi siano, esista sempre almeno un altro punto distinto dagli estremi (def. V, 8). 48 mathematically determined by its points, we are led to admit that between two points also undetermined, although they are neighbors, there is at least another point distinct from the extreme (def. V, 8). A questa ipotesi siamo condotti inoltre dall'osservazióne che dato un punto X sull'o'ggetto rettilineo si guò immaginare una parte di esso (AB) che contenga X e tale che A e B si avvicinino sempre più a X senza mai coincidere con X, e che quindi si possono immaginare delle parti cogli estremi indeterminati quanto piccole si crede che contengano almeno un altro punto X oltre agli estremi. In this hypothesis, we also carried out by the observation that given a point X is straight sull'o'ggetto guo imagine a part of it (AB) containing X and such that A and B are approaching more and more to X without ever coincide with X , and therefore one can imagine the parties Seize extreme indeterminate how small it is believed that contain at least one other point X in addition to the extremes. Finalmente riceviamo l'impressione che neiroggetto rettilineo (flg. 1, a) intorno ad un suo punto B vi sono due parti (BA) e (BC) tali che considerata la prima da B verso A e la seconda da B verso C esse sono identiche, e che la parte (AB) percorsa de B verso A è identica alla stessa parte percorsa da A verso B (def. Ili, 9). Finally we get the impression that neiroggetto straight line (Fig. 1, a) around its point B there are two parts (BA) and (BC) considered such that the first from B to A and the second from B to C, they are identical, and that the part (AB) traveled from B to A is identical to the same part traveled from A to B (final Ill, 9). Tutti questi contrassegni dell'oggetto rettilineo si possono essi stabilire astrattamente senza bisogno di ricorrere alla intuizione? All these marks are straight object can they determine abstractly without having to resort to intuition? Se sì, sono essi suf- ficienti per distinguere il continuo come forma astratta da altre forme possi- bili? If yes, are they suf-ficient to distinguish the continuous form as abstract as to other possible forms-able? Oppure alcuni di essi non sono conseguenza necessaria degli altri seb- bene evidenti? Or some of them are not necessary consequence of other well-seb obvious? Ecco le questioni che dobbiamo risolvere in questa introduzione ; e noi vedremo che i contrassegni suindicati sono sovrabbondanti J). Here are the questions we have to solve in this introduction, and we shall see that the signs above are superabundant J). i) Ad es. i) Eg. G. G. cantar, DedeKind nei loro pregevolissimi lavori dicono che è arbitrarla la corri- spondenza univoca a partire da un punto delia retta fra i punti delia retta stessa ei numeri reali che costituiscono il continuo numerico ottenuto mediante una serie di definizioni astratte di segni, per quanto possibili arbitrarie sempre. sing, Dedekind extremely valuable in their work say it is arbitrarla the univocal correspondence from a point Delia straight line between the points Delia same straight line and real numbers which constitute the continuous numeric obtained by a series of abstract definitions of signs, as far as possible always arbitrary. A Dedekind sembra anche (1, e. pag. XII-XIII) che. A Dedekind also seems (1, e. P. XII-XIII) that. dati tre punti A, B, C non in linea retta in modo che i rapporti delle loro distanze siano numeri algebrici, i rap- porti delle loro distanze dai punti dello spazio dai tre punti alla distanza AB possano essere soltanto numeri algebrici di modo che lo spazio a tre dimensioni e quindi anche la retta sarebbero discon- tinui. given three points A, B, C not in a straight line so that the ratios of their distances are algebraic numbers, the rela-tions of their distances from points in space by three points at the distance AB can only be algebraic numbers such that the three-dimensional space and therefore also the straight line would be discontinuous tinui. Secondo Dedekind per chiarire anzi la rappresentazione dei continuo dello spazio occorre il continuo numerico (1. e.) Secondo me invece o il continuo intuitivo rettilineo mediante l'idea di punto senza parti rispetto al continuo stesso che serve a darci le definizioni astratte del continuo, di cui quello numerico non è che un caso particolare. According to Dedekind rather to clarify the representation of continuous space, the continued number (1. And.) In my hand or the continuous straight line through the intuitive idea of ​​a point without parts to the same constant which serves to give us the abstract definitions of continuous , of which the number is merely a special case. In questo modo le definizioni non appariscono come uno sforzo della mente nostra, ma trovano la loro piena giustificazione nella rappresentazione sen- sibile dei continuo; del che bisogna certo tener conto nella discussione dei concetti fondamentali, senza uscire s'intende dal campo puramente matematico (vedi pref.). In this way, the definitions do not appear as an effort of our mind, but find their full justification in the representation of continuous sen-sible, which of course must be taken into account in the discussion of fundamental concepts, without departing from the purely mathematical means ( see pref.). E d'altronde sarebbe veramente meraviglioso che una forma astratta cosi complessa qual' è il continuo numerico ottenuto non solo senza la guida di quello intuitivo, ma come si fa oggi da alcuni autori. And besides, it would be really wonderful that so complex an abstract form which 'is the numerical constant obtained not only without the guidance of the intuitive, but as is done now by some authors. da pure definizioni di segni si trovasse poi T accordo con una rappresentaaione cosi semplice e primitiva qual1 o quella del con- tinuo rettilineo. by pure definition of signs is found then an agreement with T rappresentaaione so simple and primitive qual1 or that of the con-tinuous straight. 11 continuo intuitivo rettilineo è indipendente dal sistema di punti che noi vi possiamo immagi- nare, un sistema di punti considerato il punto come segno di separazione di due parti consecutive della retta o come estremo di una di queste parti, non può mai dare in senso assoluto tutto il conti- nuo intuitivo perché il punto non ha partì; soltanto, troviamo che un sistema di punti può rappre- sentare sufficientemente il continuo nelle ricerche geometriche. 11 intuitive continuous linear system is independent of the points that we we to imagine a system of points considered the point as a separator of two consecutive parts of the line or as an endpoint of one of these parts, can never give way absolute all-new intuitive accounts because the point has not ended; only, we find that a point system may represent sufficiently continuous in geometric research. Il continuo rettilineo non è mai com- posto dai suoi punti ma dai tratti che li congiungono due a due e che sono pur essi continui. The continuous straight line is never com-posed by his points but the figures linking them in pairs and that are themselves continuous. In questo modo il mistero della continuità viene ricacciato da una parte data e costante della retta ad una parte indeterminata quanto piccola si vuole, che è pur sempre continua, e dentro alla quale non ciò permesso di entrare più oltre colla nostra rappresentazione. In this way the mystery of continuity is driven back by a date and constant part of the straight line to a small part uncertain as desired, which is still continues, and inside which it is not allowed to enter more than glue our representation. Ed è in questo mistero che si ravvolge in fondo il concetto fondamentale di limite. And it is this mystery which wraps the full the fundamental concept of limit. Ma matematicamente, è bene rilevarlo, questo mistero non ha alcuna influenza, poiché ci basta la determinazione del continuo mediante un sistema ordinato ben definito di punti; però o altresì da osservare che la determinazione per punti o casuale perché l'in- tuizione del continuo l'abbiamo ugual mente senza di essa. But mathematically, it should detect it, this mystery has no influence, because we just continually through the determination of an ordered system of well defined points, however, and also to observe that the determination or random points because the intuition of the continuum in- we equally mind without it. Se si considera infatti il punto senza parti allora come si è detto facendo anche corrispondere a tutti i numeri reali conosciuti i punti del la retta a partire da un* origine, non otteniamo tutto il continuo. Indeed, given the point without parts then as was said by all the numbers also correspond to actual known points of the line from a * source, we do not get all the continuum. Se si considera il punto come parte quanto piccola si vuole ma costante, allora nemmeno tutti -numeri razionali sono rappresentabili sul seg- mento rettilineo a cominciare da uno dei suoi punti come orìgine ; eppure esso rimane continuo nel- If we consider the point as a small part of what you will, but constant, then not even all-rational numbers are represented on the straight line segment starting from one of his points as the origin, yet it remains constant in-

Page 49 Page 49

49 2. 49 2. Elemento fondamentale Elementi e forme differenti di posizione e coincidenti in senso assolato o relativo, Leggi di determinazione oppure di esistenza o di costruzione delle forme. An essential component elements and various forms of overlapping sense and sunny position or relative, Read or determination of the existence or construction of forms. 56. 56. Ripigliamo le nostre considerazioni sulle forme astratte. Proceeded again on our consideration of abstract forms. Conv. I. Conv I. Il gruppo ordinato abc=a(bc)~(ab)c (III, ea, 29) ha per parti , b, e; ab, bc (def. II, 27). The orderly group abc = a (bc) ~ (ab) c (III, and a, 29) has parts, b, c; ab, bc (def. II, 27). Siccome è contrassegno di questo gruppo il modo con cui è posto a rispetto a bc e perciò anche la parte ab rispetto alla parte bc (def. I, 38), così conveniamo di dire che il gruppo abc si ottiene anche unendo la parte bc alla ab anziché dire che esso si ottiene dall'unione di bc ad a (III, 29). Since it is a sign of this group the way in which it is placed in relation to bc and therefore also the part ab with respect to the bc (def. I, 38), so we agree to say that the group abc is also obtained by combining the part to the bc ab instead of saying that it is obtained by the union of bc to to (III, 29). Con questa operazione b deve essere considerato però una sola volta. With this operation, b must be considered, however, only once. Diremo che b serve di separazione o di unione della parte ab dalla o colla parte bc nel tutto. We say that b is the separation or union of the ab or glue from bc part in everything. Così se si ha una serie di forme ....abcd....mn.... So if you have a variety of forms .... abcd .... mn .... z\... z \ ... illimitata conveniamo di dire che il gruppo ordinato che ne risulta (def. I, 26 e oss. 28) si ottiene an- che dall'unione della parte illimitata o limitata (mn. .x....) alla parte limitata o illimitata (....abcd....m) (a, 40) in modo però che la forma comune alle due parti deve essere considerata una volta sola. unlimited agree to say that the resulting ordered group (def. I, oss 26 and 28). that-you get an unlimited or limited part of the union (mn.. x ....) to the limited or unlimited (abcd .... .... m) (a, 40) so that the common form, however, both parties must be considered only once. Se finalmente sì considera il punto come parte indefinitamente piccola nello stato cioè di indeter- minata piccolezza, allora ad ogni numero reale corrisponde un punto senza assioma speciale. If yes finally sees the point as infinitely small part in the state that is indeterminate undermined smallness, then every real number corresponds to a point without special axiom. L' intui- zione spaziale ci dice in fondo che se (A) è la forma astratta corrispondente al luogo occupato dal- l'oggetto rettilineo non vi è nessun'altra forma astratta (B) della stessa natura di (A) di cui una parte separi due parti consecutive di (A) (22, 24). L 'intuitive spatial tells us that if at the bottom (A) is the abstract form corresponding to the place occupied by the object-rectilinear there is no other abstract form (B) of the same kind of (A) of which a part separates consecutive two shares of (A) (22, 24). Dire che la retta potrebbe essere discontinua e data da tutti i punti considerati senza parti, che rappresentano ad es. Say that the straight line may be discontinuous and date from all the points considered without parts, which represent eg. a cominciare da una data origine tutti i numeri algebrici, è ammettere per so un fatto che ripugna all'intuizione, e cioè che la forma astratta corrispondente alla retta appartenga ad un altra forma astratta possibile che com- prende in sé tutti i numeri reali, i cui elementi (che in essa sono parti, a, 27) separino quelli della prima. starting from a given source all algebraic numbers, is to admit I know for a fact that offends the intuition, namely that the abstract form corresponding to the line belongs to another abstract form possible that comprises in itself all the real numbers, whose elements (which are parts in it, a, 27) separating the first ones. E non solo in conformità a questo principio siamo costretti ad ammettere che a cominciare da un punto della retta tutti gli altri punti rappresentino i numeri reali, ma ad ammettere altresì vi siano in essa punti che corrispondano eventualmente ad altri possibili numeri compresi fra i nu- meri reali, rimanendo intatte le altre proprietà caratteristiche della retta. And not only in accordance with this principle we are compelled to admit that starting from a point on the line all the other points represent real numbers, but also to admit that there are points in it correspond to any other possible numbers between the nu- mere real, remaining intact other properties characteristic of the line. Osservo ancora che noi consideriamo la parte indefinitamente piccola indipendentemente dalla distinzione di numeri razio- nali e irrazionali, e che sarebbe per noi molto più arbitraria e incerta l'ipotesi che non tutte que- ste parti contengano almeno un punto oltre gli estremi. I also note that we consider the infinitely small numbers, regardless of the distinction of rational and irrational-tions, and that we would be much more arbitrary and uncertain hypothesis that not all of these these parts contain at least one point beyond the extremes. Di più. More. se si ha un proiettile che dal punto A vada a colpire il punto B in linea retta, dividendo il cammino di esso nella serie di parti JL _L+ _L JL + JL +JL 2' 2 ^ 22' 2 "^ 22 ^ 23' e se noi l'accompagniamo nella serie di queste parti non vediamo col pensiero uscire mai la punta del proiettile dalla serie stessa. Ma abbiamo però d'altra parte la rappresentazione del fatto che il proiettile colpisce il punto B, il quale è il limite a cui giunge la punta del proiettile, e (AB) è il limile della serie suddetta, nel senso cioè che finché la punta X del proiettile rimane nella serie si avvi- cina indefinitamente al punto B, ossia (XB) diventa piccola quanto si vuole. Cosi se si ha una serie di parti consecutive sempre crescenti sulla retta stessa, senza che essa a partire da un punto A oltre- passi un dato punto B nel campo della nostra osservazione, per rappresentarci tutta questa serie ab- biamo bisogno di uscire colla rappresentazione dalla serie e di rappresentarcela limitata ad un altro punto e compreso fra A e B ma fuori della serie, se (AB) stesso non è il limite della serie. E anche in questo caso ripugnerebbe all'intuizione l'ipotesi contraria. Si noti inoltre che l'intuizione è certo essenziale per la geometria, sebbene essa non debba entrare come elemento necessario sia nell'enun- ciato delle proprietà o delle definizioni sia nelie dimostrazioni (vedi pref.). Che vi siano sistemi discontinui di punti i quali soddisfino a tutte le proprietà dello spazio date dall'esperienza a quanto sappiamo non è stato ancora dimostrato; ma in ogni caso ciò non direbbe ancora nulla contro la continuità delle spazio. Per quali ragioni poi non si abbia a porre a base dei fondamenti della geometria il continuo nu- merico veggasi la prefazione e l'appendice e il n. Ii3 di questa introduzione. (Vjdi anche 2 nota nf 97 e 2 nota n. 96). 4 If you have a bullet from point A goes to hit the point B in a straight line, dividing the path of it in the number of shares JL _L + _L JL + JL + JL 2 '2 ^ 22' 2 "^ 22 ^ 23 'and if we accompany in the number of such shares does not see the thought ever leaving the tip of the bullet from the same series. But though we have representation on the other hand the fact that the bullet striking the point B, which is the extent to which reaches the tip of the projectile, and (AB) is the limile series above, in the sense that X until the tip of the projectile remains in the series will start to-china indefinitely to point B, ie (XB) becomes small as desired. Thus If you have a series of consecutive parts growing on the same line, without it starting from a point A over-pass a given point B in the field of our observation, to represent this whole series ab-biamo need to go out with the representation from series and rappresentarcela limited to another point and between A and B but outside of the series, if (AB) itself is not the limit of the series. And also in this case the hypothesis is contrary to intuition repugnant. Note also that intuition is certainly essential to the geometry, although it should not come as a necessary element is nell'enun-ciato properties or definitions is Nélie demonstrations (see pref.). That there are points of discontinuous systems that comply with all the properties of space as we know from experience to date has not yet been demonstrated, but in any case this does not even say anything against the continuity of space. For such reasons, then you do not have to lay the foundations of geometry based on continuous nu - Merico the preface and appendix compare p and n. II3 of this introduction. (2 Vjdi also known nf 97 and footnote 2. 96). 4

Page 50 Page 50

50 57. 50 57. Def. Def. I. I. Per elemento fondamentale o per elemento intendiamo una prima forma qualunque data, e chiameremo elementi fondamentali tutte le forme ad essa identiche (def. Ili, 9) *). For essential element or any form we mean a first date, and call all the fundamental elements of identical shape to it (def. Ill, 9) *). Def. Def. IL Considerando più elementi dati distinti (def. V, 8) diremo anche che hanno una posizione diversa (oss. Ili e def. VI, 9). Considering THE most distinct data items (def. V, 8) we shall also have a different position (oss. and Ill def. VI, 9). Oss. Oss. I. I. In generale dunqne dovremo tener conto del modo con cui sono posti gli elementi (oss. I e def. I, 38). In general dunqne we take into account the manner in which are placed the elements (I and final oss.. I, 38). Def. Def. IIL Anziché dire un elemento diremo anche due o più elementi coin- cidenti 2). Rather than say an IIL say two or more elements involved cidenti 2). Due elementi invece che non sono lo stesso elemento ma potranno essere considerati in qualche modo come un solo elemento, si diranno coinci- denti rispetto al modo anzidetto. Two things however that are not the same element but may be considered somehow as a single item, you will say about the way the teeth coincide aforesaid. Se dovremo distinguere l'un caso dall'altro, di- remo che nel primo caso coincidono in senso assoluto o assolutamente, mentre nel secondo caso diremo che coincidono in senso relativo o relativamente. If we distinguish the case a second, to-oar in the first case in an absolute sense or absolutely coincide, while in the second case we will say that coincide in relative or relative. E se coincidono in senso relativo in diversi modi bisogna dire rispetto a quale di questi modi coincidono. And if they coincide in a relative sense in different ways than we must say which of these modes coincide. Oss. Oss. II. II. In generale però quando parleremo di due o più elementi intenderemo che non siano lo stesso elemento e quindi siano distinti. In general, however, when we speak of two or more elements shall understand that they are not the same element, and then are distinct. E se diremo due o più ele- menti qualunque intenderemo elementi distinti, qualunque siano le loro relazioni di posizione (def. Vili, 13), eccetto che non si dica diversamente. And if we say two or more elements shall understand any distinct elements, regardless of their positional relationships (def. VIII, 13), except that you do not say otherwise. Def. Def. IV. IV. In generale per foivna intenderemo in seguito un sistema deter- minato da elementi (def. 1, 11), sehbene anche l'elemento sia una forma (def. I). In general for foivna shall understand after a system deter-mined by elements (def. 1, 11), sehbene also the element is a form (def. I). Def. Def. V. V. Forme determinate da elementi differenti saranno dette forme di diversa posizione anche se identiche (oss. Ili e def. VI, 9); e coincidenti se i loro elementi coincidono (def. IH). Forms determined by these different elements are different forms of position even if identical (oss. and Ill def. VI, 9), and coincident if their elements coincide (def. IH). Ind. Indicheremo generalmente gli elementi con lettere maiuscole e le for- me con lettere minuscole. Ind. usually denote elements with uppercase and lowercase letters for-me. 58. 58. Def. Def. I. I. L'insieme dei contrassegni comuni di una forma che sono suffi- cienti a distinguerla dalle altre forme (def. I, 9 ed es. 10) e sono indipendenti fra loro, dicesi legge di determinazione della forma. The set of marks of a common form that they are sufficient to distinguish it from other forms (final I, 9 and eg. 10) and are independent of each other, is called the law for the determination of the shape. Def. Def. IL Se la forma si considera come data, la legge di determinazione si chiama legge di esistenza, se si considera invece come costruita (def. II, 10) dicesi legge di costruzione o di generazione della forma. IL If the form is considered as the date, the law of determination is called the law of existence, if we consider instead as built (def. II, 10) is called the law of construction or of form generation. Oss. Oss. I. I. Se gli elementi di una forma sono costruiti prima colla legge di costru- zione possiamo supporli poi dati (I, 18), e la legge di costruzione diventa legge di esistenza; se invece sono dati e si vuole costruirli, la legge di esistenza diventa legge di generazione. If the elements of a form are constructed with the first law of construc-tion can supposing then given (I, 18), and construction law becomes the law of existence, but if you have data and want to build them, the law of existence becomes law generation. Def. Def. III. III. La rappresentazione in parole della legge di determinazione di una forma dicesi definizione della forma. The representation in words of the law for the determination of a shape is called the definition of the shape. Oss. Oss. IL Possono forme diverse avere una comune proprietà, ma allora questa proprietà se serve a definire il loro tutto o insieme, non serve a determinare nes- suna di esse singolarmente, e oltre alla comune proprietà occorreranno altre pro- prietà speciali per determinare ciascuna di esse. THE different forms may have a common property, but then this property if it serves to define them all together or not used to determine nes-suna of them individually, and besides the common property will require further, special pro-property to determine each . Def. Def. IV. IV. Riferire una forma ad altre forme significa considerare il gruppo dato dalla prima colle forme date. To report a form other shapes means considering the group with the forms given by the first date. Queste si chiamano forme di riferimento. These are called forms of reference. 1) Qui non intendiamo dunque che l'elemento non abbia in sé parte alcuna. 1) Here, therefore, does not mean that the item is not in itself has no part. 2) Vedi anche def. 2) See also final. V, 8. V, 8.

Page 51 Page 51

Oss. Oss. III. III. Siccome nelle forme identiche non possiamo tener conto della loro di- versità di posizione rispetto ad altre forme, non già però nei gruppi di forme iden- tiche (def. Ili, oss. Ili, 9 e oss. e def. I, 38; 41) ne consegue che, considerate in sé, la loro legge di determinazione è la medesima, ma non è generalmente più la medesima se si riferiscono ad altre forme, perché indicate le due forme identiche con aebe con e una forma di riferimento può essere che la forma ac non sia identica alla forma bc. Since the forms are identical, we can not take account of their di-versity of position relative to other forms, but not in groups of identical policies forms (def. Ili, pers. Ill, 9 and oss. And def. I, 38; 41) it follows that, considered in themselves, their law of determination is the same, but it is not generally the same if they relate to other forms, because the two identical shapes indicated with a and b and with a form of reference that can be the ac form is not identical to the shape bc. Def. Def. V. V. Invece di dire che gli elementi di una forma sono dati o costruiti con una data legge diremo anche che in virtù di questa legge, da uno o più elementi della forma 'nascono o si ottengono gli altri elementi. Instead of saying that the elements of a form or data are constructed with a given law will say that even in virtue of this law, by one or more elements of the form 'arise or are obtained other items. Def. Def. VI. VI. Dicesi anche di ogni forma che è la rappresentazione della sua legge di determinazione. It is said also that every form is the representation of his law determination. 3. 3. Determinazione delle forme Corrispondenza, d'identità, delle forme Concetto di maggiore e di minore. Determination of forms of correspondence, identity, the concept forms of major and minor. 59. 59. a. a. Si possono immaginare delle forme indipendenti che contengano un elemento dato qualunque e soltanto questo elemento. You can imagine the independent forms that contain a given element whatsoever and only this element. Dato un elemento A si possono immaginare più forme che abbiano in comune il solo elemento A (def. VII, 13) perché data una forma f che contiene A, si possono immaginare altri elementi fuori di fe indipendenti da f (a, 37), i quali con A danno un' altra forma f indipendente da f (def. IV, 57 e def. II, 10). Given an element A can be imagined more forms that have in common only the element A (final VII, 13) because given a form that contains f A, one can imagine other elements outside of f and independent from f (a, 37), with which to make an 'other form independent of f f (def. IV, 57, and def. II, 10). Si può supporre che A non determini da solo altri elementi distinti da A in modo che ogni forma che contiene A contenga anche gli altri, perché in tal caso come elemento si potrebbe considerare il gruppo di questi elementi (defì- niz. I, 57). It can be assumed that A does not result from only other distinct elements from A so that any form that contains A contains also the other, because in that case as an element one could consider the group of these elements (defined Niz. I, 57) . a'. to '. Gli elementi di una forma, e quindi la forma sfessa sono detemiùuiti dalle forme indipendenti die li contengono. The elements of a shape, and therefore the shape sfessa detemiùuiti shapes are independent die containing them. Ho detto anche la forma, perché essa è determinata dai suoi elementi ( lef. IV, 57). I also called the form, because it is determined by its elements (lef. IV, 57). Oss. Oss. Le forme si possono ritenere dunque determinate da altre forme (def. I, 11). The forms can be considered, therefore, determined by other forms (def. I, 11). 60. 60. a. a. Forme date, determinate da forme identiche, sono identiche. Given forms, determined by identical shapes are identical. Oss. Oss. I. I. L'ordine e il modo con cui sono poste alcune delle forme determinatrici Cdef. The order and the manner in which they are located some of the forms determinatrici CDEF. I, 38) si possono ritenere determinati dalle altre forme determinatrici (a', 59,). I, 38) can be considered as determined by other forms determinatrici (a ', 59,). ci. there. Se forme identiche determinano altre forme, queste forme sono identiche. If the same result in other forms, these forms are identical. Difatti le due forme risultanti sono determinate da forme identiche ( ). In fact, the two resulting forms are determined by identical shapes (). a". Se forme determinate da altre forme non sono identiche, le seconde forme non sono identiche. Se lo fossero, determinerebbero forme identiche (a). a'". a. "If certain forms from other forms are not identical, the latter forms are not identical. If they were, would result in identical shapes (a). to '". Forme costruite colla stessa operazione mediante forme identiche sono identiche. Forms constructed with the same operation using identical shapes are identical. Oss IL Neir operazione riteniamo compreso anche l'ordine delle forine genera- trici e il modo con cui sono poste (def. 1, 38) se ad essi non si accenna esplicita- mente. Oss THE Neir operation we also included the order of forine generates-ric and the way in which they are located (def. 1, 38) if they fail to mention it explicitly. È inutile anche dire che l'operazione è a senso unico (def. Il, 11) perché se desse i risultati Y} Y1, Y' ecc. Needless to say also that the operation is one-way (def. Il, 11) because if it gave the results Y1} Y, Y ', etc.. sarebbe a senso unico rispetto a tutto il risultato Y, Y,Y" ecc. would be one way than all the result Y, Y, Y ', etc..

Page 52 Page 52

52 Se non lo fossero non lo sarebbero neppure le forme risultanti (alv). 52 If they were not would not the resulting forms (alv). I principi ae a'" sono conseguenza immediata della definizione d'iden- tità (def. VI, 8; def. Ili e oss. Ili, 9) perché da ao da a'" segue che le condi- zioni di determinazione delle forme sono tutte uguali (def. I, 11) e quindi an- che tutti i contrassegni che servono a distinguere le due forme dalle altre (def. I, 9); e perciò queste forme sono identiche (def. Ili, 9). The principles and a '"is an immediate consequence of the definition of identities (def. VI, 8, def. Ili and oss. Ill, 9) or because of a'" it follows that the conditions of determination of the forms are all the same (final I, 11) and then an-that all the marks which serve to distinguish the two forms from the other (final I, 9), and therefore these forms are identical (final Ill, 9). Oss. Oss. III. III. Nel principio a le forme si considerano come date, in a"r si considerano come costruite. I principii aea* sono in fondo un solo principio riguardato sotto aspetti diversi, in quanto che anche l'operazione con cui si ottiene un dato risultato si può ritenere data dalle forme (condizioni, 10) che determinano le forme costruite (a, 59 e I, 18). 7IV. Forme non identiche colla stessa operazione danno forme non identiche. Perché le condizioni di determinazione delle forme risultanti non sono tutte identiche (def. Vili, 8; def. I, 11). #v. Se da forme date colla stessa operazione si ottengono forme identiche, le forme date sono identiche. avl. Se da forme date colla stessa operazione si ottengono forme non iden- tiche, le forme dette non sono identiche. Difatti se lo fossero lo sarebbero anche le forme risultanti ( '"). In principle forms are considered as given in to "r are considered as built. Aea * The principles are basically one principle involved in different aspects, as also the process by which we obtain a given result can be believe date from the forms (conditions, 10) which determine the forms constructed (a, 59 and I, 18). 7IV. Forms not identical with the same operation give forms not identical. Because the conditions of determination of the resulting forms are not all identical ( final. VIII, 8; final. I, 11). # v. If forms by dates with the same operation is obtained identical shapes, the shapes dates are identical. avl. If forms by dates with the same operation are obtained forms not identical policies , these forms are not identical. In fact if they did they would also be the resulting forms ('"). flvi1. flvi1. Se da forme identiche con date operazioni si ottengono forme identi- ci le, le operazioni sono identiche. While identical shapes with given operations are identical we get the forms, the operations are identical. Difatti se non lo fossero le condizioni di determinazione non sarebbero le stesse (def. II, 10), e le forme risultanti non sarebbero identiche (def. Vili, 8). In fact, if they were not the conditions for the determination would not be the same (final II, 10), and the resulting forms would not be identical (final VIII, 8). Oss. Oss. IV. IV. È da osservare come abbiamo fatto altrove (0, 54) che non risulta da v che due forme non identiche non possano determinare colla stessa operazione forme identiche quando però queste si considerino indipendentemente dalle forme generatrici; né in ciò vi è alcuna contraddizione con aiv. It should be noted that we have done elsewhere (0, 54) which is not to see that two forms are not identical with the same operation can not create identical shapes but when you consider these forms regardless of the generators, nor in that there is no contradiction with aiv. (oss. V, 9). (Oss. V, 9). b. b. Alle forme di ima forma data si possono far corrispondere univocamente e nello stesso ordine forme identiche di un' altra forma identica alla data. To the forms of ima given shape can be made to correspond uniquely and in the same order identical shapes of a 'other form identical to the date. Difatti se due forme aeb sono identiche esse corrispondono allo stesso concetto e rispetto a tutti i loro contrassegni, considerate ciascuna in sé (def. VI, 8; 4; oss. Ili, 9; oss. II, 58). In fact, if two forms a and b are identical and they correspond to the same concept with respect to all their marks, each considered in itself (def. VI, 8, 4, oss. Ill, 9; oss. II, 58). Ad ogni elemento A di a corrisponde una rappre- sentazione Cin e, o un elemento di e, ea questo I1 elemento A come anche un elemento B di b (es. 2,42). For each element of A corresponds to a representation Cin and, or an element and, I1 and this element A as well as an element B of b (eg 2.42). Le forme aeb, che sono date da gruppi di elementi (def. IV, 57) corrispondono cosi univocamente ae, e quindi anche fra loro (e, 42). The shapes and b, which are given by groups of elements (final IV, 57) correspond to and so uniquely, and thus also between them (and 42). Di più se è data una serie di elementi di a ad essa corrisponde una serie di elementi di e che corrispondono ai primi univocamente e nello stesso ordine (es. 2, 42). More if it is given a set of elements to it corresponds to a series of elements and that uniquely correspond to the first and in the same order (eg 2, 42). Alla serie di e corrisponde nello stesso modo una serie di elementi di b; dunque gli elementi delle due serie aeb si corrispondono univocamente e nello stesso ordine (/", 42). È in questo senso che alle forme di a corrispondono univocamente e nello stesso ordine le forme di b. Si può dire anche cosi: siccome fra le forme aeb non si tien conto della diversità di posizione rispetto ad altre forme (oss. Ili, 9; oss. Ili, 58), nella relazione di identità possiamo considerare, fatta astrazione da questa diversità, che ogni elemento dell'una coincida con un elemento dell'altra, e viceversa ; vale a dire che sia un elemento dell'altra (def. Ili, 57). Def. L Fra gli elementi e le forme di due forme identiche si stabilisce And corresponds to the series of in the same way a number of elements of b; therefore, the elements of the two series a and b correspond uniquely and in the same order (/ ", 42). Is in this sense that the forms of uniquely correspond to and at the same Order forms b. One can also say so: as between forms a and b do not we take into account the different position compared to other forms (oss. Ill, 9; oss. Ill, 58), we consider the relation of identity, quite apart from this difference, that each element of one coincides with an element of the other, and vice versa, that is to say that it is an element of the other (final Ill, 57). Def. L Among the elements and the forms of two identical shapes is established

Page 53 Page 53

53 così una corrispondenza unìvoca e dello stesso ordine mediante il concetto e, che si chiama corrispondenza d'identità o di uguaglianza. 53 is a unique match of the same order and using the concept, which is called identity or equality matching. Oss. Oss. V. V. Non è escluso che una tale corrispondenza fra due forme si possa sta- bilire in più modi. It is possible that such a correspondence between two shapes can bilire-is in many ways. Oss VI. Oss VI. Le forme corrispondenti di due forme identiche sono identiche, come deriva da e dalla def. The corresponding forms of two identical shapes are identical, and as a result of the final. I. I. b'. b '. Se in forme identiche con forme corrispondenti si eseguisce la stessa ope- razione le forme risultanti sono identiche. If forms are identical with corresponding forms will be made to the same opera-tion the resulting forms are identical. Se da forme corrispondenti di due forme identiche con la stessa opera- zione si ottengono altre forme queste sono identiche (oe a'"). b". If on the corresponding forms of two identical shapes with the same opera-tion are obtained these other forms are identical (to herself. '") B". Se le parti di una forma disposte in una serie illimitata corrispondono univocamente e nello stesso ordine a parti di un'altra forma ordinatamente identiche alle prime, le due forme sono uguali relativamente alle serie di parti date. If the parts of a shape arranged in an unlimited series correspond uniquely and in the same order to parts of another form neatly identical to the first, the two forms are equal regard to the series of given parts. Invero se si considerano due serie di parti identiche corrispondenti delle due forme: ....ABCDEF.... Indeed if we consider two sets of identical parts of the corresponding two forms: ABCDEF .... .... in modo che A=A', B=B', AB=A'B', AC A'C,.... so that A = A ', B = B', AB = A'B ', AC A'C, .... ecc. etc.. ABC^A' C', ....ABCD=A'B'C'D'..., le due serie determinano due forme uguali perché queste vengono determinate nello stesso modo da forme ordinatamente identiche, o meglio dalle due se- rie (a). ABC ^ A 'C', ABCD = A'B'C'D .... '..., the two series lead to two forms of the same because these are determined the same way by identical forms neatly, or better if the two- Rie (a). Abbiamo detto uguali relativamente alla serie di parti (def. IV, 9) perché date le forme indipendentemente dalle serie, esse possono essere non identi- che nel senso che una di esse sia parte dell'altra senza essere cioè tutta que- st'altra, vale a dire senza che ogni elemento della seconda sia anche elemento della prima (def. II, 27, oss. II, 9). We said the same relation to the number of shares (def. IV, 9) because given the forms independently of the series, they may not be identical in the sense that one of them is a party without the other-that is, all this st'altra , that is to say, without any element of the second element is also the first (final II, 27, obs. II, 9). 05 . 05. VII Se una o ciascuna delle forme è composta di una serie limitata di parti contenente come parte una serie illimitata di parti ( , 37; def. II, 27 e def. I. 38,) nelle condizioni del teor ", allora l'uguaglianza ha luogo soltanto rispetto alle serie di parti uguali (def. Ili, IV, 9). e. Forme identiche ad una terza sono identiche fra loro (e, 8; def. Ili, 9; def. I, 38). Oss. V. Questi principi valgono evidentemente anche nel caso dell' uguaglianza in senso relativo, quando essa riguarda i soli contrassegni comuni delle forme che sì confrontano (def. II, 9), poiché in questo caso sono sostituibili rispetto a questi contrassegni nella relazione di uguaglianza (def. IV, 9). Oss. VL È chiaro che i principi suddetti danno l'identità di due forme mediante l'identità di altre forme, e quindi se dovessero servire per stabilire Videntilà di tutte le forme conterrebbero una petizione di principio. Vedremo al n. 71 come possano servire colla considerazione della forma fondamentale. Veggasi le parti I, II; ad es.: cap. I, 14. VII If one or each of the forms is composed of a limited number of parts containing as part of an unlimited series of parts (37; final. II, 27 and final. I. 38,) under the conditions of the theorem ", then the equality takes place only with respect to number of shares equal (def. Ill, IV, 9). and. forms identical to a third are identical to each other (and, 8, def. Ill, 9, def. I, 38). Oss. V. These principles are also clearly in the case of 'equality in a relative sense, when it affects only the markings of the common forms that yes compare (def. II, 9), since in this case are replaceable with respect to these markers in relation to equality (def. IV, 9). Oss. VL is clear that these principles provide the identity of two ways using the identities of other forms, and then if they were used to determine Videntilà of all forms contain a statement of principle. We will see at n. adhesive 71 may serve as a fundamental form of consideration. compare p Parts I, II, for example.: Ch. I, 14.

Page 54 Page 54

54 61. 54 61. Def. Def. I. I. Se sì ha una forma e ottenuta coli* unione di una forma b ad una forma a (def. I, 26), la forma e (tutto) si dice maggiore di e (parti), e che aeb sono minori di e ; e si scrive : c ossia ac ; c ossia c (1) i). If yes has a form and obtained coli * b union of a form to a form in (final I, 26), and the shape (round) is said greater than and (parts), and that a and b are smaller than and; and you write: ie c c c c ie (1) i). De/". IL Così se e' si ottiene da d unendo ad essa V nello stesso modo che b è unito ad #, essendo a=#, = ' (2) si ha CEEC' (aiv 60) . (3). Diremo che e è maggiore di ' e di b'; e ft', ' minorici e; e scriveremo: ca' ossia ' e ; c ' ossia ' c (4). Oss. 7. Per la stessa ragione aeb sono minori di e' e quindi c' a, ossia a cf, ; cr ossia bc' (5). . IZ concetto di maggiore e di minore fra le forme è indipendente dalla relativa posizione delle forme fra loro. Difatti secondo (1), (2), (3), (4) nella relazione c ossia ac possiamo sostituire aeo ad a una forma identica qualunque (oss, III, 58) e' od (def. Vili, 13). u. Se oab non è a = b (j\ 8). b'. Se a=b non è a^b 2) perché se fosse a^b non potrebbe essere a=b (b). e. Se a^b non è a^b. Difatti a si ottiene nel primo caso dall' unione di una forma y alla forma bo ad una forma identica ab (def. I o II), e se fosse , b si otterrebbe dal- l'unione di una forma x alla forma ao ad una forma identica ad a, dunque b si otterrebbe dall' unione della forma x alla forma (by), e quindi si avrebbe ( /#)= ( , 40) ciò che è assurdo (def. Ili, 8; def. I e 6). Se non è , perché se ciò fosse per quanto si è detto testé non sarebbe # . d. Se è ac, e si ha # c. Difatti in a vi è una parte d identica ab senza che a' sia tutto a, al- trimenti sarebbe = (def. I eo). In b vi è una parte b' identica ae che non è b, epperciò in a vi è una parte identica aee quindi anche in a (b, 60). Dun- que ft C. d'. Se è rt , c si lui ac (d). 1) Non occorre dunque dare un assioma come fa Euclide per dire che il tutto è maggiore della sua parte e la parte è minore del tutto. Ciò è una definizione, e la (1) si basa sull'operazione dell'u- nire nella sua più semplice espressione (I, 29), e della quale fa uso anche Euclide negli altri suoi as- siomi o nozioni comuni senza alcuna spiegazione. 2) Con questo doppio segno intendiamo che ha luogo runa oppure P altra disuguaglianza. De / ". THE Thus if and 'd is obtained by joining to it in the same way that V b is joined to #, being a = #, =' (2) it has CEEC '(aiv 60). (3). We say that e is greater than 'and b', and ft ',' minorici and, we write: ca 'or' and c 'or' c (4). Oss. 7. For the same reason and b are smaller than and 'and then c' to, ie to cf,; cr ie bc '(5) .. IZ concept of greater and lesser of the forms is independent of the relative position of the forms between them. fact second (1), (2 ), (3), (4) c in the report that we can replace ac AEO in a form identical to any (oss, III, 58) and 'od (def. VIII, 13). u. If oab is not a = b (j \ 8). b '. If a = b is a ^ b 2) because if it could not be a ^ b = b (b). and. If a ^ b is a ^ b. in fact is obtained from the former 'union of a form y bo to form a shape identical to ab (def. I or II), and if it were,-b would be obtained from the union of a form x to the form or a form identical to a, then b would be obtained by 'merging to form the form x (by), and then you would (/ #) = (, 40) which is absurd (def. Ill, 8, def. I and 6) . If not, because if it were not for what you have just said would not be #. d. If ac, and has c #. in fact there is a part of the same ab without that 'everything is in - trimenti would = (final I o). In b there is a part b 'which is not identical to and b, in a epperciò there is an identical part EEE therefore also in a (b, 60). Dun-que ft C . d '. If rt is, he is ac c (d). 1) There must therefore be given as an axiom Euclid is to say that the whole is greater than its part and the part is less of everything. This is a definition, and (1) is based on the operation of U-ne in its simplest expression (I, 29), and which also uses in his other Euclidean axioms or common notions, without any explanation. 2) With this double sign mean that the place P rune or other inequality.

Page 55 Page 55

55 Ò3s. 55 Ò3s. ti. you. Se abebc risulta soltanto che in e in e vi sono parti identiche a 6, ma non risulta punto che in e vi sia una parte identica ad a, o in a una parte identica ae ]). If abebc is only that in and in and there are parts identical to 6, but is not the point that in and there is a part identical to a, or to a part identical ae]). e. and. Se a~beb^c si ha a'Sc. If a ~ b and b ^ c we have a'Sc. Ciò deriva con un analogo ragionamento del precedente dalle def. This follows a similar argument from the previous final. I e IL 4. I and IL 4. Sistema ad una, dimensione Segmenti del sistema, loro estremi Segmento indivisibile Versi del sistema Sistema semplice ad una dimensione chiuso od aperto Prolungamenti di un seg- mento nel sistema. System by one dimension segments of the system, their extreme segment of the system System indivisible Verses simple one-dimensional closed or open Extensions of a segment in the system. 62. 62. Def. Def. I. I. La forma data da una serie qualunque di elementi che ha o non ha un primo ed ultimo elemento e il cui ordine a cominciare da un suo ele- mento qualunque (def. 21) è contrassegno dato della forma (def. I, 38), e dalla serie inversa, chiamasi sistema ad ima dimensione 2). The form given by any number of items that have or do not have a first and last element and whose order starting with any one of its ele-ment (def. 21) since it is a sign of the form (def. I, 38), and the inverse series, is called system ima size 2). Oss. Oss. I. I. Elementi consecutivi della forma sono quelli consecutivi nell'ordine dato o nell' ordine inverso (24 ; def. I, 33), in modo che considerati gli elementi in un altro ordine quelli consecutivi in questo nuovo ordine non sono più tali per la forma data, poiché l'ordine delle serie di elementi della forma a cominciare da un suo elemento-è già stabilito (def. I, 26). Consecutive elements of the form are consecutive in the order given, or in 'reverse order (24; final. I, 33), so that the elements considered in a different order at different times in this new order are no longer those for the given form because the order of the number of elements of the form starting with an element-is already established (def. I, 26). Oss. Oss. IL Le parti della forma oltre gli elementi .. THE parts of the form elements as well .. .A, B, C, D...., sono anche AB, BC, CD ecc. . A, B, C, D. ..., are also AB, BC, CD, etc.. ABC, BCD..... ABC, BCD ..... ecc. etc.. (def. I, 38; def. II, 27). (Def. I, 38; final. II, 27). Oss. Oss. III. III. L'ordine degli elementi della forma determina l'ordine in cui si se- guono tutte le sue parti AB, BC, CD ecc., ABC, BCD ecc., e l'ordine di ciascuna di queste parti, poiché in quello della forma C segue B, D segue C ecc. The order of the elements of the form determines the order in which-if guono all its parts AB, BC, CD, etc.., ABC, BCD etc.., And the order of each of these parts, as in that of the form C follows B, D follows C etc.. CI* 18 ; def. CI * 18; final. I, 21; def. I, 21; final. II, 39). II, 39). Def. Def. IL L'ordine dato e l'ordine inverso rispetto ad un elemento qualun- que del sistema si chiamano versi del sistema, e uno qualunque di essi si dice opposto all'altro. THE The order given and the reverse order compared to an element of the system In whatever they are called lines of the system, and any one of them is said opposite each other. Def. Def. III. III. Ogni parte del sistema che contiene almeno due elementi di- stinti si chiama segmento del sistema 3). Each part of the system that contains at least two elements of faded-called segment of the system 3). Def. Def. IV. IV. Se gli elementi A e E limitano un segmento essi si chiamano estremi, termini o limiti del segmento. If the elements A and E limit a segment they call extreme conditions or limits of the segment. Indicheremo il segmento con (AB). We will denote the segment with (AB). Quando non si dirà diversamente intenderemo sempre che un segmento Sia limitato da due elementi determinati. When not always tell otherwise shall understand that a segment Both limited by two elements determined. 1) Da quanto abbiamo detto ai n. 1) From what we have said no to. 3e9 e sull'operazione dell'unire (29e 38 e 41) nei numeri di que- sto paragrafo risulta chiara la indeterminatezza dei cosldetti assiomi di Euclide sulle grandezze (vedi trad. di setti e Brioscfrì libro I) che nel testo greco tradotto da Heìberg sono però chiamati nozioni comuni (vedi pref.). 3E9 and the operation of uniting (29th 38 and 41) numbers in this paragraph is clear-I am the indeterminacy of cosldetti axioms of Euclid on the magnitudes (see trans. Of septa and Brioscfrì Book I) in the greek text translated by Heiberg however, are called common notions (see pref.). 2) Si badi che qui il concetto di dimensione non contiene quello di misura, che verrà spiegato più tardi. 2) Care must be taken here that the concept of dimension does not contain one of measurement, which will be explained later. Sarà opportuno che nel corso del lavoro il lettore rammenti che il vocabolo forma indica gli oggetti matematici in generale fdef. Will be appropriate in the course of the work the reader remember that the word indicates the form of mathematical objects in general FDEF. i. the. 38), mentre il gruppo (13), la serie (19), il gruppo ordinato (26), il sistema ad una dimensione, sono in fondo oggetti diversi che possono essere indicati col vocabolo forma. 38), while the group (13), the series (19), the ordered group (26), the system to a size, are at the bottom of different objects that can be indicated with the word shape. Cosi ad es. Thus eg. : il sistema ad una dimensione può essere chiamato anche gruppo ordinato se lo si considera soltanto in un solo verso (veggasi anche nota n. 4). : The system can also be called a dimension ordered group if considered only in one direction only (compare also footnote. 4). 3) Questo vocabolo geometrico non significa già che qui intendiamo un segmento rettilineo o cur- vilineo, e nemmeno un segmento continuo, perché gli elementi ABCD.... 3) This word does not mean geometrical already here we mean a straight line segment or cur-vilineo, and not a continuous segment, because the elements ABCD .... sono distinti e qualunque. are distinct and whatever.

Page 56 Page 56

56 Def. 56 Def. V. V. Se nella forma data fra due elementi A e B nell* ordine di essa non vi sono altri elementi della forma stessa (23), il segmento (AB) lo chia- meremo segmento indivisibile. If in the given form between two elements A and B * in order to it there are other elements of the same shape (23), the segment (AB) the call-segment meremo indivisible. Def. Def. VI. VI. Se di un sistema ad una dimensione dato l'elemento A co- struiamo l'elemento consecutivo B, poi l'elemento consecutivo C ecc., nel verso ABC ecc., diremo anche che applichiamo la legge di costruzione del sistema a cominciare dall'elemento A nel verso dato (def. II, 58). If a system at a given size of the element A co-struiamo element row B, then the element in row C, etc.., Etc. in to ABC., We will say also that we apply the law to build the system from starting ' A data element in the verse (def. II, 58). Def. Def. VII. VII. Per segmenti consecutivi in un dato verso del sistema inten- deremo due segmenti dei quali il secondo estremo del primo è primo estremo del secondo nel verso dato. For consecutive segments in a given direction of the system intend deremo two segments of which the second end of the first is the first end of the second in the direction given. Oss. Oss. IV. IV. Come ogni forma dipende dalla sua legge di determinazione (58), così da questa dipendono anche le relazioni di posizione tra gli elementi di essa. Like any form depends on its law for determining (58), so that this also depend on the positional relationships between the elements of it. E quindi in generale se due sistemi ad una dimensione hanno due elementi A e B comuni non significa per questo che i segmenti determinati da A e B nei due sistemi debbano essere identici, poiché si può supporre a priori senza contraddizione, che le leggi di determinazione siano diverse. So in general if two one-dimensional systems have two components A and B common does not mean however that certain segments A and B in the two systems should be identical, since it can be assumed a priori, without contradiction, that the laws of determination are different. Avremo fra poco una conferma a posteriori della no- stra osservazione, (Vedi nota n. 64). We will soon post a confirmation of non-strategic observation, (See note no. 64). Del resto abbiamo frequenti esempi nel mondo esterno di tale diversità. Besides, we have frequent examples of this diversity in the outside world. 63. 63. Def. Def. I. I. Se applicando la legge di costruzione a cominciare da un ele- mento A di un sistema ad una dimensione dopo avere ottenuti tutti gli altri ele- menti si ottiene di nuovo (o si riproduce) quell'elemento ; il sistema si dice chiuso; al contrario dicesi aperto. If applying the law of construction beginning with an ele-ment in a one-dimensional system obtained after all other elements is obtained again (or play) that element, the closed system is said to the contrary is called open. et. et. Il sistema ad una dimensione chiuso si può considerare come un seg- mento cogli estremi coincidenti in un elemento qualunque di esso. The one-dimensional closed system can be considered as a segment ends coincident Take any one element of it. Tale proprietà è una conseguenza immediata della def. This property is an immediate consequence of the final. I, delle def. I, of the final. Ili, IV, n. Ill, IV, n. 62 e delle def. 62 and the final. Ili, 57, def. Ill, 57, def. Vili, 13. VIII, 13. ci. there. Un sistema ad una dimensione che ha un primo elemento ed è illimitato è sempre aperto. A system to a size that has a first member and is unlimited is always open. Difatti se fosse chiuso si potrebbe considerare come un segmento coi due estremi coincidenti nel primo elemento del sistema ed avrebbe un ultimo ele- mento e non sarebbe quindi illimitato (def. II, 32 e oss. 28). In fact if it were closed it could be considered as a segment coinciding with the two extremes in the first element of the system and would last ele-ment and is therefore not unlimited (def. II, 32 and oss. 28). Def. Def. IL Se in un sistema ad una dimensione chiuso od aperto nessun ele- mento è ripetuto (nel primo caso prima che si ottengano tutti gli altri ele- menti) il sistema dicesi semplice, oppure semplicemente chiuso o semplicemente aperto. IL If a one-dimensional closed or open any ele-ment is repeated (in the first case before you get all the other elements) the system is called simple, or just simply opened or closed. E nel caso sia aperto quando non si dirà diversamente intenderemo che il sistema non abbia un primo e un ultimo' elemento, ossia non abbia ele- menti che lo limitino. And in the case is open when not tell otherwise shall understand that the system does not have a first and a last 'element, ie does not have elements which limit. Otts. Otts. 7. 7. Considerando il sistema chiuso come tutto dato esso non ha elementi che lo limitano, come lo è un segmento (AB) (def. IV, 62). Considering the closed system as a whole since it does not have elements which limit, as is a segment (AB) (def. IV, 62). Appare subito come talo quando lo consideriamo da un elemento dato di esso. It soon as talo when considered from a given element of it. Possiamo dire nel primo caso che esso è illimitato, ma bisogna osservare che non lo è nel senso che le sue serie (def. I, 62) illimitate abbiano un primo od ultimo elemento oppure che a cominciare da un loro elemento siano illimitate nel senso suddetto (def. II, 32 e 33). We can say in the first case it is unlimited, but can comment that it is not in the sense that its number (def. I, 62) have an unlimited first or last element, or that starting with one of their element are unlimited in the sense that (def. II, 32 and 33). Sotto questo aspetto il sistema chiuso è invece limitato da due elementi coincidenti in uno qua- lunque dei suoi elementi dati (a). In this aspect the closed system is however limited by two coincident elements in a side-lunque of its data items (a). 6. 6. Il sistema chiuso si può considerare come un sistema illimitato a co- minciare da un suo elemento qualunque dato. The closed system can be considered as a system with unlimited co-ranked with an element of any data.

Page 57 Page 57

5? 5? Difatti dopo aver ottenuto a cominciare dall'elemento dato A in un verso stabilito tutti gli altri elementi e quindi di nuovo l'elemento A (def. I), basta con- siderare A dopo questa operazione come un elemento A' diverso da A (oss. Ili, 9), e così per tutti gli altri elementi che si ottengono colla ripetizione del- l'operazione suddetta. In fact, after having obtained starting from the element in a given A to set all other elements and then back to the element A (def. I), with just-siderare A after this operation as an element A 'different from A ( oss. Ill, 9), and so for all other elements that are obtained with the repetition of the operation said. E ottenuto A' lo si indica con A", e così via illimi- tatamente (def. II, 32). e. In un sistema ad una dimensione semplicemente aperto un elemento lo scompone (divìde) in due parti illimitate, runa in un verso V altra nel verso opposto a cominciare dall'elemento dato. Ciò risulta immediatamente dalla definizione stessa del sistema, che esso non ha cioè elementi che lo limitano nei due versi (def. II, 63). d. In un sistema semplice ad mia dimensione i cui elementi sono: ....AH-D.... AH).... Af- .... A'-1).... AAW.... A 2 .... A(*).... 1) scelto un primo elemento A ed uno dei suoi consecutivi, se esiste, ad es.: A*1), come secondo elemento, il verso del sistema è determinato. Il sistema ha due versi rispetto ad ogni suo elemento (def. II, 6?). Se è dato il consecutivo AW di A che deve seguire A , uno dei due versi del sistema è pienamente determinato. Perché se il sistema è chiuso ogni altro suo ele- mento X può considerarsi dopo di A e Al1), e precederà un altro elemento qualunque Y del sistema se sarà compreso fra A e Y, A 1) e Y (23), il che è dato (def. I, 62). Se il sistema è aperto A Io divide in due parti, che non hanno alcun elemento comune trattandosi di un sistema semplice (e). Considerando quindi A come primo elemento della parte ove si trova A(l\ ogni altro elemento X di essa è dopo di A e .AW e precede ogni altro elemento Yse è compreso fra A e Y. Gli elementi dell'altra parte precedono A e A*1), e uno qualunque X di essi segue ogni altro elemento Y se X è compreso fra Y e A. In questo modo si determina dunque il verso Gli elementi ....A...^-1).... A(-2L.. AH).... determinano il verso opposto. e. Un verso del sistema a cominciare da un elemento A determina un verso a cominciare da ogni altro elemento B del sistema. Difatti sia A...^1).... A s).... A(SH).... il verso a cominciare da A. Se B è ad es. : dopo di A, supponiamo sia A s), è determinato il verso AK... A(S+A) ..... Se non è dopo di A ed è ad es.: AH), e se il sistema è chiuso si cade nel caso prece- dente, perché si può considerare che sia anche dopo di A nel verso dato (def. II), e si ha pel casoprecedente il verso AH).... A -s+i).... A.... Se il sistema è aperto è determinato il sistema ....A.-.-AH).... AM.... inverso al precedente (def. I, 33), e quindi il suo verso A....AH).... AH)...., e perciò anche pel caso precedente il verso AH).... AH*1)...., dunque anche il verso opposto AH)....AH)....A (def. 11,62). f. Se un sistema semplice ad una dimensione jS è contenuto in un altro sistema analogo a, un verso del primo determina un verso qualunque del se- condo. 1) i segai ...,{-s).....(-2) (-1) (i) (2).... (s) non hanno per ora alcun significato numerico. And obtained A 'is to be indicated with A ", and so on unlimited tatamente (final II, 32). And. In a system to a size simply open an element it decomposes (splits) into two parts unlimited, rune in a V towards the other in the opposite direction starting from the element data. This results directly from the definition of the same system, namely that it does not have elements that limit in the two directions (final II, 63). d. In a simple system to my dimension whose elements are: .... .... D-AH AH) .... .... Af-A'-1) .... .... AAW A 2 .... A (*) .... 1) choosing a first element A and one of its consecutive, if it exists, eg.: A * 1), as the second element, the direction of the system is determined. The system has two lines with respect to every element (def. II, 6?). If given the row of A that AW should follow A, one of two ways the system is fully determined. Because if the system is closed every other ele-ment's X can be considered after A and Al1), and precedes another element of the system if any Y will be between A and Y, A 1) and Y (23), which is given (final I, 62). If the system is open A I divided into two parts, which have no common element since it is a simple system (s). Considering then A as the first element of the part where is A (l \ every other element X of it is after A and. AW and precedes every other element YSE is between A and Y. The elements of the other party foregoing A and A * 1), and any one of them X follows every other element Y if X is between Y and A. In this way it therefore determines the elements to .... A. .. ^ -1) .... A (-2L .. AH) .... determine the opposite direction. and. A verse of the system starting from a A element causes a line beginning with any other element B of the system. fact is A. .. ^ 1) .... A s) .... A (SH) .... the verse beginning with A. If B is, for example.: after A, we assume that A s), is given to the AK ... A (D + A) ..... If it is not after A and is eg.: AH) , and if the system is closed it falls in the previous case, because we can consider that even after both of A in the direction given (final II), and it has for the casoprecedente towards AH) .... A-s + i) .... A. ... If the system is open is determined by the system .... A -.-AH) .... AM .... opposite to the previous (def. I, 33 ), and therefore its toward A. ... AH) AH ....) ...., and therefore also to the previous case the PEL AH) AH .... * 1) ...., thus also the opposite direction AH) AH ....) .... A (final 11.62). f. If a simple system to a dimension jS is contained in another system similar to a verse of the first determines a verse if any of the-second. 1) the Segal ..., {-s) ..... (-2) (-1) (i) (2) .... (s) does not have any meaning for the time numerically.

Page 58 Page 58

58 Siano A e B due elementi consecutivi del sistema jS nel suo verso dato (def. I, 25 e def. II, 62). 58 Let A and B be two consecutive elements of the system in his verse as jS (def. I, 25 and final. II, 62). Se fra A e B in a (23) non sono contenuti altri ele- menti, A e B sono pure consecutivi di a (24), e quindi l'ordine in cui si seguono AB in j5 da anche l'ordine in cui si seguono gli stessi elementi in a (d). If between A and B in (23) are not contained other elements, A and B are also consecutive to (24), and therefore the order in which they follow AB j5 from the order in which follow the same elements in to (d). Se invece fra A e B in a sono compresi altri elementi (23), per es. If, however, between A and B are included in other elements (23), eg. : A'A"....#, al- lora l'ordine AB del sistema j3 determina l'ordine in cui si seguono gli ele- menti AAA'....B'B di a. Dato invece l'ordine degli elementi AA'A'...B?B di a è evidentemente determinato l'ordine in cui si seguono gli elementi AB di jS. f. Si può dire che i sistemi ]3 ea hanno nel caso precedente lo stesso verso o versi uguali. Indichiamo con ....A^.A',....^'!.. i posti occupati dagli elementi di a (20). Un verso di a determina un verso del sistema ....AiA'iA'V..., e questo stesso verso è determinato dal verso corrispondente del sistema 0 a cominciare da un suo elemento qualunque, che è elemento di a. Possiamo dunque dire che i versi considerati di ae /3 sono uguali, perché corrispondono al medesimo verso del sistema ....A|....AV...A"i.... : A'A ".... # in the order AB-lora j3 system determines the order in which the following elements AAA '.... B'B a. Since the order instead elements AA'A '... B? B a is evidently determined the order in which you follow the elements of AB jS. f. One can say that systems] 3 in the previous case and have the same verse or verses equal. .... Denote by A ^. ​​A ', .... ^'! .. the places occupied by elements in (20). A verse of one hand to determine the system .... AiA'iA 'V. .., and this same direction is determined by the system corresponding to 0 to start with any element thereof, which is part of a. We can therefore say that the verses considered a and / 3 are equal, because they correspond to the same into the system .... A | .... A ... AV 's .... ossia perché possono sostituirsi l'uno ali'altro nella determinazione del verso di ....A'i....A"t.... (def. VII, 8; nota n. 9). f\ I versi di un sistema semplice sono indipendenti doli' elemento dato dal quale si considerano. Difatti considerando il sistema a da due elementi qualunque B e C, un verso a cominciare da B determina un verso a cominciare da C (e), e si ot- tengono così due sistemi feya cominciare da B e C che appartengono al sistema ae che determinano un verso di esso (def. I, 62, def. II, 27 ef). I due sistemi a cominciare da A e da B hanno lo stesso verso (/"), dunque ciò si- gnifica che è indifferente cominciare da B o da C per determinare i versi di a. ie it can replace the one ali'altro in determining the direction of A'i .... .... A "t .... (def. VII, 8; note no. 9). f \ Verses of a simple system are independent doli 'data element from which shall be considered. fact, considering the system in any of two elements B and C, a line beginning with B determines a line starting from C (s), and is ot-take Thus two systems Feya beginning with B and C which belong to the system that determine a ae towards it (final I, 62, def. II, 27 f). The two systems starting from A and B have the same direction ( / "), therefore this is-means that it is indifferent to start from B or from C to determine the lines of a. f" Ogni segmento del sistema semplice ad una dimensione ha due versi che sono i versi del sistema. Perché ogni segmento del sistema è un sistema che appartiene al dato (def. Ili, I, 62 e 27). 64. a. Dato un segmento limitato a due estremi A e B di un sistema sem- plice ad una dimensione, uno d?i versi di esso si può ritenere determinato da uno dei suoi estremi, e Valtro verso dall'estremo rimanente. Il segmento non può contenere alcuna parte chiusa altrimenti un ele- mento del segmento e quindi del sistema sarehhe ripetuto, mentre il sistema contiene altri elementi fuori del segmento suddetto, e quindi esso non sarebbe semplice (def. Ili, 62 e def. II 63). Uno dei versi del segmento (AB) può ritenersi determinato evidentemente dall'elemento A e il verso opposto dall'altro estremo, perché considerando come primo elemento A, gli altri elementi del segmento seguono A, ed un elemento X precede un altro elemento Y se X è compreso fra A e Y (def. I, III, 62). Ind. I. Quando non si dirà diversamente intenderemo che il simbolo (AB) determini anche un verso di questo segmento, quello cioè che si ottiene co- minciando da A. Si otterrà il verso opposto cominciando dall'elemento B. b. Nel sistema semplicemente aperto bastano due elementi per determinare un segmento limitato da essi. f "Every segment of the simple one-dimensional two verses are the verses of the system. Because each segment of the system is a system belonging to datum (def. Ill, I, 62 and 27). 64. a. Given a segment limited to two extremes A and B of a system sim-ple one-dimensional, an d? verses of it may be considered determined by one of its sides, and towards the extreme Valtro remaining. This segment can not contain any part closed otherwise an element of the segment and then the system sarehhe repeated, while the system contains other elements out of that segment, and then it would not be easy (def. Ill, 62, and def. II 63). One of the verses in the segment (AB) can be considered obviously determined by the element A and the direction opposite the other extreme, because whereas as the first element A, the other elements of the following segment A, and an element X precedes another element Y if X is between A and Y (def. I, III, 62). Ind. I. When you say otherwise shall understand that the symbol (AB) also determines a line in this segment, that is what you get from co-minciando A. You will get the the opposite direction starting from the element B. b. In the system simply opened just two elements to determine a segment limited by them.

Page 59 Page 59

59 Dìfattì dato il sistemai .... 59 fact, given the settled .... ....A....B....C....É'.... B. ... C. ... A. .... It is ... '.... (1) Se si considerano due elementi A e C, essi determinano nel sistema le tre parti: A....B....C, A...JS1...., C....#'.... (1) If we consider two elements A and C, they determine the system in three parts: A. ... B. ... C .... A. .. JS1, C # ... '. ... di cui una soltanto ha per estremi A e C; le altre due hanno un solo estremo e sono illimitate (e, 63). of which one only has to extremes A and C, the other two have only one end and are unlimited (and 63). b'. b '. Un verso del sistema semplicemente aperto è determinato doli* ordine di due elementi. A verse of the system is determined simply opened doli * order of two elements. Siano A e C' i due elementi nell'ordine in cui si seguono i loro segni; essi determinano il segmento (AC) e il verso da A a C, e quindi anche un verso del sistema (a, ind. I; f" 63). e. bue elementi di un sistema ad una dimensione semplicemente chiuso determinano due segmenti che insieme uniti in un dato verso costituiscono l'in- tero sistema. Ciò risulta dal ragionamento del teor. b quando B e B" in (1) coinci- dono (def. II, 57). Let A and C 'the two elements in the order you follow their signs, they determine the segment (AC) and the direction from A to C, and then to a system (a, ind. I f " 63). and. ox elements of a system to a dimension closed simply determine that two segments joined together to constitute in a given in the entire system. This follows from the argument of the theorem. b when B and B "in (1) coincide gift (def. II, 57). Si hanno cioè i due segmenti: A....B....C, C.... It has two segments namely: A. ... B. ... C, C ... ....A i). .... A i). e'. and '. Per determinare un segmento del sistema semplicemente chiuso basta dare oltre gli estremi un altro elemento di esso. To determine a segment of the system simply closed just beyond the extreme to another element of it. Perché per individuare il segmento A....B....C dando oltre gli estremi A e C l'elemento B,questo elemento non può essere compreso nell'altro segmento ?....#....A determinato da A e C, essendo il sistema semplice (def. II, 63). Because to find the segment A. ... B. ... C giving beyond the ends A and C B element, this element can not be understood in the segment? .... # .... A determined from A and C, being the simple system (final II, 63). Ind. II. Ind. II. Un segmento di questo sistema determinato da tre elementi ABC essendo A e C gli estremi lo indicheremo col simbolo (AJ5C). A segment of this system determined by three elements ABC where A and C indicate the extremes with the symbol (AJ5C). Oss. Oss. I. I. Quando dunque si considera il segmento isolatamente dal sistema come ente a sé basta il simbolo (AC); se invece lo si considera unitamente al sistema a cui appartiene bisogna indicarlo col simbolo (ABC). So when one considers the segment in isolation from the system as an entity in itself just a symbol (AC), and if it is considered together with the system to which it belongs must do this with the symbol (ABC). Si può indicarlo anche in que- sto caso col primo simbolo, ma allpra bisogna dire espressamente in quale dei due versi del sistema si deve considerarlo a cominciare da A per togliere ogni indeter- minatezza. It may also indicate in this case-I'm with the first symbol, but allpra must say specifically which of the two lines of the system you should consider starting with A to remove any indeterminate minatezza. d. d. Un verso di un sistema semplicemente chiuso viene determinato da tre elementi ABC; il verso opposto viene determinato dagli elementi GB A neir or- dine in cui si seguono i loro segni. A verse from a closed system simply is determined by three elements ABC; the opposite direction is determined by the elements or GB-A neir order in which you follow their signs. Essendo infatti il segmento (ABC) pienamente determinato (e') è determi- nato anche uno dei suoi versi se si comincia da A (a), e il suo verso opposto se si comincia da C; e quindi vengono così determinati anche i versi del si- stema mediante i tre elementi ordinati ABC e CBA (f, 63). For since the segment (ABC) fully determined (e ') is also determined on one of his verses, if we start from A (a), and its opposite direction if you start from C, and then the verses are so determined also the sys-tem through the three elements ordered ABC and CBA (f, 63). d'. d '. Se ABC sono tre elementi ordinati di un sistema semplicemente chiuso 1) Qui abbiamo una conferma di quanto abbiamo osservato al n. If ABC are three elements of an ordered system simply closed 1) Here we have a confirmation of what we observed at n. 62 (oss. IV):, e cioè che i due segmenti A....B.. 62 (oss. IV):, namely that the two segments ... A. B.. .C, C....Br....A determinati da due elementi A ee nella forma semplicemente chiusa possono non essere uguali, perché se lo fossero basterebbe prendere in uno di essi ad es. . C, Br ... ... C. At defined by two elements A and e in the form closed simply may not be equal, because if they were, it would be enough to take in one of them eg. : A....B....C un elemento A' distinto da A e C e si avrebbe : (Ar.....B....e?) (A....B....C) (def. I,6i) ed anche ed essendo per ipotesi (A....B....c)=f C....B'....A) sì ha: (A'..,.B.. .c) (C....B'....A) e quindi (A'....B...,C) (C. ..B-....A') (d',62). A. ... B. ... C an element A 'distinct from A and C and you would: (Ar. .... B. ... and?) (A. ... B. .. . C) (def. I, 6th) and well being by hypothesis (A. ... B. ... c) = f B C. ... '.... A) yes it: (A' ..,. B. .. c) (C. ... B '.... A) and then (A' .... B. .., C) (B-... C. .. . A ') (d', 62).

Page 60 Page 60

i gruppi ordinati BOA, CAB determinano lo stesso verso di ABC\ mentre i gruppi CBA, BAC, ACB determinano il verso opposto. the ordered groups BOA, CAB determine the same direction of ABC \ while the groups CBA, BAC, ACB determine the opposite direction. Invero, gli elementi B e C del segmento (ABC) sono estremi di un solo segmento (BC) che appartiene al segmento dato (27), e il verso di (AC) a co- minciare da B è lo stesso verso del segmento (ABC) a cominciare da A ( ; fef\ 63). Indeed, the elements B and C of the segment (ABC) are ends of a single segment (BC) that belongs to the given segment (27), and the direction of (AC) to co-ranked by B is the same direction of the segment ( ABC) starting with A (, f and f \ 63). Così è del segmento (AB) di (ABC). So is the segment (AB) of (ABC). La seconda parte del teo- rema deriva dalla dimostrazione precedente e da d. The second part of theo-rows is derived from the previous demonstration and by d. 65. 65. a. a. Dato un segmento (AC) in un sistema semplice ad una dimensione gli altri segmenti a cominciare da A nel verso di (AC) sono minori o maggiori di (AC). Given a segment (AC) in a simple system to a dimension other segments starting from A in the direction of (AC) are smaller or larger than (AC). Se il sistema è illimitato da A9 vi è sempre nel verso dato un segmento (AC) che contiene (AC) senza che C e C coincidano. If the system is unlimited A9 is always given to a segment (AC) containing (AC) without C and C coincide. La prima proprietà deriva immediatamente dalla definizione del sistema ad una dimensione semplice (def. II, 63 e def. I, 62) o dalle proprietà della se- rie di elementi (def. I e , 36) e dalla def. The first property is derived directly from the definition of the system to a dimension simple (final II, 63 and final. I, 62) or from the properties of the se-ries of elements (I and def., 36) and the final. I, 61. I, 61. L'ultima parte del teorema è pure evidente, perché se C" e C fossero un solo elemento il sistema non sa- rebbe più illimitato, in quanto che abbiamo sempre supposto che si tratti di elementi distinti (def. I, 62, def. II, 32; def. V e oss. I, 8 o oss. II, 57). Oss. I. L'ultima proprietà ha pure luogo per il sistema chiuso se a cominciare da un elemento A lo si considera come illimitato nel senso del teor. , 63. b. Dato il verso in cui si seguono gli elementi di un sistema qualunque ad una dimensione esso si può sempre considerare come un sistema semplice (def. II, 63, def. I, 62 ea, 36). 66. Def. Si abbia la parte (AB) del segmento (A-^Bi) di un sistema ad una dimensione semplice nel verso (AtABBi); se A{ e A, B e Bl non sono il me- desimo elemento le parti (AAt), (,BBt) si chiamano prolungamenti del segmento (AB) nei due versi del sistema; cioè la parte (BB,) nel verso AiABB^ la parte (AAi) nel verso opposto. 5. Applicazione del linguaggio del movimento ai sistemi ad una dimensione 67. Def. I. Invece di dire che dall'elemento A applicando la legge di costru- zione di un sistema ad una dimensione (A) ....A -5 ....A(-2)....AH)....4.... A(i)....A(2L,.A(-s).... si ottengono in un dato verso gli elementi Af1), A(2) ecc. del sistema (def. VI, 62) diremo che A....AW....AW.... sono posizioni differenti di uno stesso elemento X che si muove secondo la legge del sistema, come un corpo cambia la sua po- sizione nel mondo esterno, senza però intendere che effettivamente l'elemento goda questa proprietà, imperocché l'elemento è una forma astratta e senza al- cun significato o contenuto speciale (def. I, 57). Def. IL Siccoma nel sistema ad una dimensione semplice abbiamo due versi che sono determinati a cominciare da un elemento qualunque di esso, noi diremo anche; un elemento può generare un sistema dato ad una dimen- The last part of the theorem is also evident, because if C 'and C were only one element of the system it would not be as unlimited as we have always assumed that it is distinct elements (def. I, 62, def. II, 32, def. V and oss. I, 8 or oss. II, 57). Oss. I. The last property also takes place for the closed system when starting from an element in it is considered as unlimited in the sense of theor.., 63. b. Since the direction in which the following elements of a system to any one dimension it can always be regarded as a simple system (final II, 63, def. I, and 62, 36). 66. Def. It has the part (AB) of the segment (A-^ Bi) of a system to a simple dimension in the direction (AtABBi); {if A and A, B and Bl are not the me-desimo element parts (AAT), (, BBT) are called extensions of the segment (AB) in the two verses of the system, ie the part (BB) in the direction AiABB ^ part (AAI) in the opposite direction. 5. Applying the language of movement to systems to a dimension 67. Def. I. Instead of saying that the element A by applying the law of construction of a system to a dimension (A) .... .... At A -5 (-2) AH ....) .... 4 .... A (i) .... A (2L,. A (-s) .... are obtained in a given towards the elements Af1), A ( 2) etc.. system (final VI, 62) we will say that A. ... AW AW .... .... are different positions of the same element X which moves according to the law of the system, such as a body changes its position-in the outside world, without understanding that the item actually enjoy this property, Inasmuch as the element is an abstract form and without the cun-special meaning or content (def. I, 57). Def. IL Siccoma system in one dimension we have two simple ways that are determined to start from any one element of it, we will say also, an element can generate a given system to a size

Page 61 Page 61

61 sione nei due versi opposti movendosi da un elemento di esso secondo la legge di generazione del sistema (def. II, 58). 61 sion in the two opposite directions moving about by an element of it according to the law of generation of the system (final II, 58). Def. Def. III. III. La prop. The prop. : il sistema ad una dimensione ]S che appartiene al si- stema analogo a è diretto nello stesso verso o ha la stessa direzione di a si- gnifica che j3 ea hanno lo stesso verso (/*, 63). : The system to a dimension] which belongs to the S-system is similar to is directed in the same direction or has the same direction in It means that j3 and have the same direction (/ *, 63). Def. Def. IV. IV. La prop.: I prolungamenti di un segmento (AB) di un sistema ad una dimensione vengono generati da un elemento che si muove secondo la legge del sistema nell'uno o nell'altro verso partendoci due estremi di esso, significa che i prolungamenti (BBi), (AAt) (66) si ottengono in uno e nell'al- tro verso applicando la legge di costruzione del sistema (def. II, 58 e def. VI, 62J a cominciare dagli elementi estremi di (AB) (def. IV, 62). Def. V. La prop. : nel sistema semplicemente chiuso a partire da un ele- mento A dopo aver percorso l'intero sistema in una data direzione o nella di- rezione opposta si ritorna all'elemento di partenza senza essere passati più d'una volta per un altro elemento del sistema; oppure anche la prop.: se un elemento parte dall'elemento A in un verso o nel verso opposto e dopo aver percorso l'intero sistema ritorna n