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1.1 Definitions

Game theory is concerned with the actions of decision makers who are conscious that their
actions affect each other. When the only two publishers in a city choose prices for their
newspapers, aware that their sales are determined jointly, they are players in a game with
each other. They are not in a game with the readers who buy the newspapers, because each
reader ignores his effect on the publisher. Game theory is not useful when decision makers
ignore the reactions of others or treat them as impersonal market forces.

The best way to understand which situations can be modelled as games and which cannot,
is to think about examples like the following:

1 OPEC members choosing their annual output;
2 General Motors purchasing steel from U.S. Steel;
3 two manufacturers, one of nuts and one of bolts, deciding whether to use metric or

American standards;
4 a board of directors setting up a stock option plan for the chief executive officer;
5 the US Air Force hiring jet fighter pilots;
6 an electric company deciding whether to order a new power plant given its estimate of

demand for electricity in ten years.

The first four examples are games. In (1), OPEC members are playing a game because
Saudi Arabia knows that Kuwait’s oil output is based on Kuwait’s forecast of Saudi output,
and the output from both countries matters to the world price. In (2), a significant portion
of American trade in steel is between General Motors and U.S. Steel, companies which
realize that the quantities traded by each of them affect the price. One wants the price low,
the other high, so this is a game with conflict between the two players. In (3), the nut and
bolt manufacturers are not in conflict, but the actions of one do affect the desired actions
of the other, so the situation is a game nonetheless. In (4), the board of directors chooses a
stock option plan anticipating the effect on the actions of the CEO.
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Game theory is inappropriate for modelling the final two examples. In (5), each individual
pilot affects the US Air Force insignificantly, and each pilot makes his employment decision
without regard for the impact on the Air Force’s policies. In (6), the electric company faces
a complicated decision, but it does not face another rational agent. These situations are
more appropriate for the use of decision theory than game theory, decision theory being
the careful analysis of how one person makes a decision when he may be faced with
uncertainty, or an entire sequence of decisions that interact with each other, but when he is
not faced with having to interact strategically with other single decisionmakers. Changes
in the important economic variables could, however, turn examples (5) and (6) into games.
The appropriate model changes if the Air Force faces a pilots’ union or if the public utility
commission pressures the utility to change its generating capacity.

Game theory as it will be presented in this book is a modelling tool, not an axiomatic
system. The presentation in this chapter is unconventional. Rather than starting with math-
ematical definitions or simple little games of the kind used later in the chapter, we will start
with a situation to be modelled, and build a game from it step by step.

Describing a Game

The essential elements of a game are players, actions, payoffs, and information – PAPI, for
short. These are collectively known as the rules of the game, and the modeller’s objective
is to describe a situation in terms of the rules of a game so as to explain what will happen
in that situation. Trying to maximize their payoffs, the players will devise plans known as
strategies that pick actions depending on the information that has arrived at each moment.
The combination of strategies chosen by each player is known as the equilibrium. Given
an equilibrium, the modeller can see what actions come out of the conjunction of all the
players’ plans, and this tells him the outcome of the game.

This kind of standard description helps both the modeller and his readers. For the modeller,
the names are useful because they help ensure that the important details of the game have
been fully specified. For his readers, they make the game easier to understand, especially
if, as with most technical papers, the paper is first skimmed quickly to see if it is worth
reading. The less clear a writer’s style, the more closely he should adhere to the standard
names, which means that most of us ought to adhere very closely indeed.

Think of writing a paper as a game between author and reader, rather than as a single-
player production process. The author, knowing that he has valuable information but
imperfect means of communication, is trying to convey the information to the reader. The
reader does not know whether the information is valuable, and he must choose whether to
read the paper closely enough to find out.1

To define the terms used above and to show the difference between game theory and
decision theory, let us use the example of an entrepreneur trying to decide whether to start
a dry cleaning store in a town already served by one dry cleaner. We will call the two firms
“NewCleaner” and “OldCleaner.” NewCleaner is uncertain about whether the economy will
be in a recession or not, which will affect how much consumers pay for dry cleaning, and
must also worry about whether OldCleaner will respond to entry with a price war, or by
keeping its initial high prices. OldCleaner is a well-established firm, and it would survive

1 Once you have read to the end of this chapter: What are the possible equilibria of this game?
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any price war, though its profits would fall. NewCleaner must itself decide whether to
initiate a price war or to charge high prices, and must also decide what kind of equipment
to buy, how many workers to hire, and so forth.

Players are the individuals who make decisions. Each player’s goal is to maximize his
utility by choice of actions.

In the Dry Cleaners Game, let us specify the players to be NewCleaner and OldCleaner.
Passive individuals like the customers, who react predictably to price changes without
any thought of trying to change anyone’s behavior, are not players, but environmental
parameters. Simplicity is the goal in modelling, and the ideal is to keep the number of
players down to the minimum that captures the essence of the situation.

Sometimes it is useful to explicitly include individuals in the model called pseudo-
players whose actions are taken in a purely mechanical way.

Nature is a pseudo-player who takes random actions at specified points in the game with
specified probabilities.

In the Dry Cleaners Game, we will model the possibility of recession as a move by Nature.
With probability 0.3, Nature decides that there will be a recession, and with probability 0.7
there will not. Even if the players always took the same actions, this random move means
that the model would yield more than just one prediction. We say that there are different
realizations of a game depending on the results of random moves.

An action or move by player i, denoted ai, is a choice he can make.

Player i’s action set, Ai = {ai}, is the entire set of actions available to him.

An action profile is a list a = {ai}, (i = 1, . . . , n) of one action for each of the n players
in the game.

Again, simplicity is our goal. We are trying to determine whether Newcleaner will enter
or not, and for this it is not important for us to go into the technicalities of dry cleaning
equipment and labor practices. Also, it will not be in Newcleaner’s interest to start a price
war, since it cannot possibly drive out Oldcleaners, so we can exclude that decision from
our model. Newcleaner’s action set can be modelled very simply as {Enter, Stay Out}. We
will also specify Oldcleaner’s action set to be simple: it is to choose price from {Low, High}.

By player i’s payoff πi(s1, . . . , sn), we mean either:

(1) The utility player i receives after all players and Nature have picked their strategies
and the game has been played out; or

(2) The expected utility he receives as a function of the strategies chosen by himself
and the other players.

For the moment, think of “strategy” as a synonym for “action.” Definitions (1) and (2)
are distinct and different, but in the literature and this book the term “payoff” is used for
both the actual payoff and the expected payoff. The context will make clear which is meant.
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Table 1.1 The Dry Cleaners Game

(a) Normal economy
OldCleaner

Low price High price
Enter −100, −50 100, 100

NewCleaner
Stay Out 0, 50 0, 300

(b) Recession
OldCleaner

Low price High price
Enter −160, −110 40, 40

NewCleaner
Stay Out 0, −10 0, 240

Payoffs to: (NewCleaner, OldCleaner) in thousands of dollars.

If one is modelling a particular real-world situation, figuring out the payoffs is often the
hardest part of constructing a model. For this pair of dry cleaners, we will pretend we
have looked over all the data and figured out that the payoffs are as given by table 1.1a
(normal economy) if the economy is normal, and that if there is a recession the payoff of
each player who operates in the market is 60,000 dollars lower, as shown in table 1.1b
(recession).

Information is modelled using the concept of the information set, a concept which
will be defined more precisely in section 2.2. For now, think of a player’s information set
as his knowledge at a particular time of the values of different variables. The elements
of the information set are the different values that the player thinks are possible. If the
information set has many elements, there are many values the player cannot rule out; if it
has one element, he knows the value precisely. A player’s information set includes not only
distinctions between the values of variables such as the strength of oil demand, but also
knowledge of what actions have previously been taken, so his information set changes over
the course of the game.

Here, at the time that it chooses its price, OldCleaner will know NewCleaner’s decision
about entry. But what do the firms know about the recession? If both firms know about the
recession we model that as Nature moving before NewCleaner; if only OldCleaner knows,
we put Nature’s move after NewCleaner; if neither firm knows whether there is a recession
at the time they must make their decisions, we put Nature’s move at the end of the game.
Let us do this last.

It is convenient to lay out information and actions together in an order of play. Here is
the order of play we have specified for the Dry Cleaners Game:

1 Newcleaner chooses its entry decision from {Enter, Stay Out}.
2 Oldcleaner chooses its price from {Low, High}.
3 Nature picks demand, D, to be Recession with probability 0.3 or Normal with

probability 0.7.

The purpose of modelling is to explain how a given set of circumstances leads to a
particular result. The result of interest is known as the outcome.
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NewCleaner

OldCleaner
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0
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High price, 0.5
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Figure 1.1 The Dry Cleaners Game as a decision tree.

The outcome of the game is a set of interesting elements that the modeller picks from the
values of actions, payoffs, and other variables after the game is played out.

The definition of the outcome for any particular model depends on what variables the
modeller finds interesting. One way to define the outcome of the Dry Cleaners Game would
be as either Enter or Stay Out. Another way, appropriate if the model is being constructed to
help plan NewCleaner’s finances, is as the payoff that NewCleaner realizes. From tables 1.1a
and b, this is one element of the set {0, 100, −100, 40, −160}.

Having laid out the assumptions of the model, let us return to what is special about the
way game theory models a situation. Decision theory sets up the rules of the game in much
the same way as game theory, but its outlook is fundamentally different in one important
way: there is only one player. Return to NewCleaner’s decision about entry. In decision
theory, the standard method is to construct a decision tree from the rules of the game, which
is just a graphical way to depict the order of play.

Figure 1.1 shows a decision tree for the Dry Cleaners Game. It shows all the moves
available to NewCleaner, the probabilities of states of nature (actions that NewCleaner
cannot control), and the payoffs to NewCleaner depending on its choices and what the
environment is like. Note that although we already specified the probabilities of Nature’s
move to be 0.7 for Normal, we also need to specify a probability for OldCleaner’s move,
which is set at probability 0.5 of Low price and probability 0.5 of High price.

Once a decision tree is set up, we can solve for the optimal decision which maximizes the
expected payoff. Suppose NewCleaner has entered. If OldCleaner chooses a high price, then
NewCleaner’s expected payoff is 82, which is 0.7(100)+ 0.3(40). If OldCleaner chooses a
low price, then NewCleaner’s expected payoff is −118, which is 0.7(−100)+ 0.3(−160).
Since there is a 50–50 chance of each move by OldCleaner, NewCleaner’s overall expected
payoff from Enter is−18. That is worse than the 0 which NewCleaner could get by choosing
stay out, so the prediction is that NewCleaner will stay out.



RASMUSSEN: “chap-01” — 2006/9/16 — 19:22 — page 16 — #8

16 Game Theory
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Figure 1.2 The Dry Cleaners Game as a game tree.

That, however, is wrong. This is a game, not just a decision problem. The flaw in the
reasoning I just went through is the assumption that OldCleaner will choose High price
with probability 0.5. If we use information about OldCleaner’s payoffs and figure out what
moves OldCleaner will take in solving its own profit maximization problem, we will come
to a different conclusion.

First, let us depict the order of play as a game tree instead of a decision tree. Figure 1.2
shows our model as a game tree, with all of OldCleaner’s moves and payoffs.

Viewing the situation as a game, we must think about both players’ decision making.
Suppose NewCleaner has entered. If OldCleaner chooses High price, OldCleaner’s expected
profit is 82, which is 0.7(100) + 0.3(40). If OldCleaner chooses Low price, OldCleaner’s
expected profit is −68, which is 0.7(−50) + 0.3(−110). Thus, OldCleaner will choose
High price, and with probability 1.0, not 0.5. The arrow on the game tree for High price
shows this conclusion of our reasoning. This means, in turn, that NewCleaner can predict
an expected payoff of 82, which is 0.7(100)+ 0.3(40), from Enter.

Suppose NewCleaner has not entered. If OldCleaner chooses High price, OldCleaner’s
expected profit is 282, which is 0.7(300) + 0.3(240). If OldCleaner chooses Low price,
OldCleaner’s expected profit is 32, which is 0.7(50) + 0.3(−10). Thus, OldCleaner will
choose High price, as shown by the arrow on High price. If NewCleaner chooses Stay out,
NewCleaner will have a payoff of 0, and since that is worse than the 82 which NewCleaner
can predict from Enter, NewCleaner will in fact enter the market.

This switching back from the point of view of one player to the point of view of another is
characteristic of game theory. The game theorist must practice putting himself in everybody
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else’s shoes. (Does that mean we become kinder, gentler people? – Or do we just get
trickier?)

Since so much depends on the interaction between the plans and predictions of different
players, it is useful to go a step beyond simply setting out actions in a game. Instead, the
modeller goes on to think about strategies, which are action plans.

Player i’s strategy si is a rule that tells him which action to choose at each instant of the
game, given his information set.

Player i’s strategy set or strategy space Si = {si} is the set of strategies available to him.

A strategy profile s = (s1, . . . , sn) is a list consisting of one strategy for each of the n
players in the game.2

Since the information set includes whatever the player knows about the previous actions
of other players, the strategy tells him how to react to their actions. In the Dry Cleaners
Game, the strategy set for NewCleaner is just {Enter, Stay Out}, since NewCleaner moves
first and is not reacting to any new information. The strategy set for OldCleaner, though, is




High Price if NewCleaner Entered, Low Price if NewCleaner Stayed Out

Low Price if NewCleaner Entered, High Price if NewCleaner Stayed Out

High Price No Matter What

Low Price No Matter What




The concept of the strategy is useful because the action a player wishes to pick often
depends on the past actions of Nature and the other players. Only rarely can we predict a
player’s actions unconditionally, but often we can predict how he will respond to the outside
world.

Keep in mind that a player’s strategy is a complete set of instructions for him, which
tells him what actions to pick in every conceivable situation, even if he does not expect to
reach that situation. Strictly speaking, even if a player’s strategy instructs him to commit
suicide in 1989, it ought also to specify what actions he takes if he is still alive in 1990. This
kind of care will be crucial in chapter 4’s discussion of “subgame perfect” equilibrium. The
completeness of the description also means that strategies, unlike actions, are unobservable.
An action is physical, but a strategy is only mental.

Equilibrium

To predict the outcome of a game, the modeller focusses on the possible strategy profiles,
since it is the interaction of the different players’ strategies that determines what hap-
pens. The distinction between strategy profiles, which are sets of strategies, and outcomes,
which are sets of values of whichever variables are considered interesting, is a common
source of confusion. Often different strategy profiles lead to the same outcome. In the

2 I used “strategy combination” instead of “strategy profile” in the third edition, but “profile” seems well
enough established that I’m switching to it.
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Dry Cleaners Game, the single outcome of NewCleaner Enters would result from either of
the following two strategy profiles:{

High Price if NewCleaner Enters, Low Price if NewCleaner Stays Out

Enter

}
{

Low Price if NewCleaner Enters, High Price if NewCleaner Stays Out

Enter

}

Predicting what happens consists of selecting one or more strategy profiles as being the
most rational behavior by the players acting to maximize their payoffs.

An equilibrium s∗ = (s∗1, . . . , s∗n) is a strategy profile consisting of a best strategy for
each of the n players in the game.

The equilibrium strategies are the strategies players pick in trying to maximize their
individual payoffs, as distinct from the many possible strategy profiles obtainable by arbi-
trarily choosing one strategy per player. Equilibrium is used differently in game theory than
in other areas of economics. In a general equilibrium model, for example, an equilibrium is
a set of prices resulting from optimal behavior by the individuals in the economy. In game
theory, that set of prices would be the equilibrium outcome, but the equilibrium itself
would be the strategy profile – the individuals’ rules for buying and selling – that generated
the outcome.

People often carelessly say “equilibrium” when they mean “equilibrium outcome,” and
“strategy” when they mean “action.” The difference is not very important in most of the
games that will appear in this chapter, but it is absolutely fundamental to thinking like a
game theorist. Consider Germany’s decision on whether to remilitarize the Rhineland in
1936. France adopted the strategy: Do not fight, and Germany responded by remilitariz-
ing, leading to World War II a few years later. If France had adopted the strategy: Fight
if Germany remilitarizes; otherwise do not fight, the outcome would still have been that
France would not have fought. No war would have ensued, however, because Germany
would not then remilitarize. Perhaps it was because he thought along these lines that
John von Neumann was such a hawk in the Cold War, as MacRae describes in his biography
(MacRae [1992]). This difference between actions and strategies, outcomes and equilib-
ria, is one of the hardest ideas to teach in a game theory class, even though it is trivial
to state.

To find the equilibrium, it is not enough to specify the players, strategies, and payoffs,
because the modeller must also decide what “best strategy” means. He does this by defining
an equilibrium concept.

An equilibrium concept or solution concept F : {S1, . . . , Sn, π1, . . . , πn} → s∗ is a
rule that defines an equilibrium based on the possible strategy profiles and the payoff
functions.

We have implicitly already used an equilibrium concept in the analysis above, which picked
one strategy for each of the two players as our prediction for the game (what we implicitly
used is the concept of subgame perfectness which will reappear in chapter 4). Only a few
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equilibrium concepts are generally accepted, and the remaining sections of this chapter are
devoted to finding the equilibrium using the two best-known of them: dominant strategy
equilibrium and Nash equilibrium.

Uniqueness

Accepted solution concepts do not guarantee uniqueness, and lack of a unique equilibrium
is a major problem in game theory. Often the solution concept employed leads us to believe
that the players will pick one of the two strategy profiles A or B, not C or D, but we cannot
say whether A or B is more likely. Sometimes we have the opposite problem and the game
has no equilibrium at all. Having no equilibrium means either that the modeller sees no
good reason why one strategy profile is more likely than another, or that some player wants
to pick an infinite value for one of his actions.

A model with no equilibrium or multiple equilibria is underspecified. The modeller
has failed to provide a full and precise prediction for what will happen. One option is to
admit that the theory is incomplete. This is not a shameful thing to do; an admission of
incompleteness such as section 5.2’s Folk Theorem is a valuable negative result. Or perhaps
the situation being modelled really is unpredictable, in which case to make a prediction
would be wrong. Another option is to renew the attack by changing the game’s description
or the solution concept. Preferably it is the description that is changed, since economists
look to the rules of the game for the differences between models, and not to the solution
concept. If an important part of the game is concealed under the definition of equilibrium,
in fact, the reader is likely to feel tricked, and to charge the modeller with intellectual
dishonesty.

1.2 Dominated and Dominant Strategies: The Prisoner’s
Dilemma

In discussing equilibrium concepts, it is useful to have shorthand for “all the other players’
strategies.”

For any vector y = (y1, . . . , yn), denote by y−i the vector (y1, . . . , yi−1, yi+1, . . . , yn),
which is the portion of y not associated with player i.

Using this notation, s−Smith, for instance, is the profile of strategies of every player except
player Smith. That profile is of great interest to Smith, because he uses it to help choose his
own strategy, and the new notation helps define his best response.

Player i’s best response or best reply to the strategies s−i chosen by the other players
is the strategy s∗i that yields him the greatest payoff; that is,

πi(s
∗
i , s−i) ≥ πi(s

′
i, s−i) ∀s′i �= s∗i . (1.1)

The best response is strongly best if no other strategies are equally good, and weakly best
otherwise.
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The first important equilibrium concept is based on the idea of dominance.

The strategy sd
i is a dominated strategy if it is strictly inferior to some other strategy

no matter what strategies the other players choose, in the sense that whatever strategies
they pick, his payoff is lower with sd

i . Mathematically, sd
i is dominated if there exists a

single s′i such that

πi(s
d
i , s−i) < πi(s

′
i, s−i) ∀s−i. (1.2)

Note that sd
i is not a dominated strategy if there is no s−i to which it is the best response,

but sometimes the better strategy is s′i and sometimes it is s′′i . In that case, sd
i could have

the redeeming feature of being a good compromise strategy for a player who cannot predict
what the other players are going to do. A dominated strategy is unambiguously inferior to
some single other strategy.

There is usually no special name for the superior strategy that beats a dominated strategy.
In unusual games, however, there is some strategy that beats every other strategy. We call
that a “dominant strategy.”

The strategy s∗i is a dominant strategy if it is a player’s strictly best response to any
strategies the other players might pick, in the sense that whatever strategies they pick,
his payoff is highest with s∗i . Mathematically,

πi(s
∗
i , s−i) > πi(s

′
i, s−i) ∀s−i, ∀s′i �= s∗i . (1.3)

A dominant-strategy equilibrium is a strategy profile consisting of each player’s
dominant strategy.

A player’s dominant strategy is his strictly best response even to wildly irrational actions
by the other players. Most games do not have dominant strategies, and the players must try
to figure out each others’ actions to choose their own.

The Dry Cleaners Game incorporated considerable complexity in the rules of the game
to illustrate such things as information sets and the time sequence of actions. To illustrate
equilibrium concepts, we will use simpler games, such as the Prisoner’s Dilemma. In
the Prisoner’s Dilemma, two prisoners, Messrs. Row and Column, are being interrogated
separately. If each tries to blame the other, each is sentenced to eight years in prison; if both
remain silent, each is sentenced to one year.3 If just one blames the other, he is released,
but the silent prisoner is sentenced to ten years. The Prisoner’s Dilemma is an example of
a 2-by-2 game, because each of the two players – Row and Column – has two possible
actions in his action set: Confess and Deny. Table 1.2 gives the payoffs.

Each player has a dominant strategy. Consider Row. Row does not know which action
Column is choosing, but if Column chooses Deny, Row faces a Deny payoff of −1, and
a Confess payoff of 0, whereas if Column chooses Confess, Row faces a Deny payoff
of−10, and a Confess payoff of−8. In either case Row does better with Confess. Since the
game is symmetric, Column’s incentives are the same. The dominant-strategy equilibrium

3 Another way to tell the story is to say that if both are silent, then with probability 0.1 they are convicted
anyway and serve ten years, for an expected payoff of (−1,−1).
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Table 1.2 The Prisoner’s Dilemma

Column
Deny Confess

Deny −1, −1 −10, 0
Row

Confess 0, −10 −8, −8

Payoffs to: (Row, Column).

is (Confess, Confess), and the equilibrium payoffs are (−8,−8), which is worse for both
players than (−1,−1). Sixteen, in fact, is the greatest possible combined total of years in
prison.

The result is even stronger than it seems, because it is robust to substantial changes in
the model. Because the equilibrium is a dominant-strategy equilibrium, the information
structure of the game does not matter. If Column is allowed to know Row’s move before
taking his own, the equilibrium is unchanged. Row still chooses Confess, knowing that
Column will surely choose Confess afterwards.

The Prisoner’s Dilemma crops up in many different situations, including oligopoly pric-
ing, auction bidding, salesman effort, political bargaining, and arms races. Whenever you
observe individuals in a conflict that hurts them all, your first thought should be of the
Prisoner’s Dilemma.

The game seems perverse and unrealistic to many people who have never encountered it
before (although friends who are prosecutors assure me that it is a standard crime-fighting
tool). If the outcome does not seem right to you, you should realize that very often the chief
usefulness of a model is to induce discomfort. Discomfort is a sign that your model is not
what you think it is – that you left out something essential to the result you expected and
didn’t get. Either your original thought or your model is mistaken; and finding such mistakes
is a real if painful benefit of model building. To refuse to accept surprising conclusions is
to reject logic.

Cooperative and Noncooperative Games

What difference would it make if the two prisoners could talk to each other before making
their decisions? It depends on the strength of promises. If promises are not binding, then
although the two prisoners might agree to Deny, they would Confess anyway when the time
came to choose actions.

A cooperative game is a game in which the players can make binding commitments, as
opposed to a noncooperative game, in which they cannot.

This definition draws the usual distinction between the two theories of games, but the
real difference lies in the modelling approach. Both theories start off with the rules of the
game, but they differ in the kinds of solution concepts employed. Cooperative game theory is
axiomatic, frequently appealing to Pareto-optimality,4 fairness, and equity. Noncooperative
game theory is economic in flavor, with solution concepts based on players maximizing their

4 If outcome X strongly Pareto-dominates outcome Y , then all players have higher utility under out-
come X. If outcome X weakly Pareto-dominates outcome Y , some player has higher utility under X, and no



RASMUSSEN: “chap-01” — 2006/9/16 — 19:22 — page 22 — #14

22 Game Theory

own utility functions subject to stated constraints. Or, from a different angle: cooperative
game theory is a reduced-form theory, which focusses on properties of the outcome rather
than on the strategies that achieve the outcome, a method which is appropriate if modelling
the process is too complicated. Except for the discussion of the Nash Bargaining Solution in
chapter 12, this book is concerned exclusively with noncooperative games. (For an argument
that cooperative game theory is more important than I think, see Aumann [1997].)

In applied economics, the most commonly encountered use of cooperative games is to
model bargaining. The Prisoner’s Dilemma is a noncooperative game, but it could be mod-
elled as cooperative by allowing the two players not only to communicate but to make
binding commitments. Cooperative games often allow players to split the gains from coop-
eration by making side-payments – transfers between themselves that change the prescribed
payoffs. Cooperative game theory generally incorporates commitments and side-payments
via the solution concept, which can become very elaborate, while noncooperative game
theory incorporates them by adding extra actions. The distinction between cooperative and
noncooperative games does not lie in conflict or absence of conflict, as is shown by the
following examples of situations commonly modelled one way or the other:

A cooperative game without conflict. Members of a workforce choose which of equally
arduous tasks to undertake to best coordinate with each other.

A cooperative game with conflict. Bargaining over price between a monopolist and
a monopsonist.

A noncooperative game with conflict. The Prisoner’s Dilemma.

A noncooperative game without conflict. Two companies set a product standard without
communication.

1.3 Iterated Dominance: The Battle of the Bismarck Sea

Very few games have a dominant-strategy equilibrium, but sometimes dominance can still
be useful even when it does not resolve things quite so neatly as in the Prisoner’s Dilemma.
The Battle of the Bismarck Sea, a game I found in Haywood (1954), is set in the South
Pacific in 1943. General Imamura has been ordered to transport Japanese troops across the
Bismarck Sea to New Guinea, and General Kenney wants to bomb the troop transports.
Imamura must choose between a shorter northern route or a longer southern route to New
Guinea, and Kenney must decide where to send his planes to look for the Japanese. If
Kenney sends his planes to the wrong route he can recall them, but the number of days of
bombing is reduced.

The players are Kenney and Imamura, and they each have the same action set, {North,
South}, but their payoffs, given by table 1.3, are never the same. Imamura loses exactly

player has lower utility. A zero sum game does not have outcomes that even weakly Pareto-dominate other
outcomes. All of its equilibria are Pareto-efficient because no player gains without another player losing.

It is often said that strategy profile x “Pareto dominates” or “dominates” strategy profile y. Taken literally,
this is meaningless, since strategies do not necessarily have any ordering at all – one could define Deny as
being bigger than Confess, but that would be arbitrary. The statement is really shorthand for “the payoff
profile resulting from strategy profile x Pareto-dominates the payoff profile resulting from strategy y.”
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Table 1.3 The Battle of the Bismarck Sea

Imamura
North South

North 2, −2 2, −2
Kenney

South 1,−1 3,−3

Payoffs to: (Kenney, Imamura).

what Kenney gains. Because of this special feature, the payoffs could be represented using
just four numbers instead of eight, but listing all eight payoffs in table 1.3 saves the reader a
little thinking. The 2-by-2 form with just four entries is a matrix game, while the equivalent
table with eight entries is a bimatrix game. Games can be represented as matrix or bimatrix
games even if they have more than two moves, as long as the number of moves is finite.

Strictly speaking, neither player has a dominant strategy. Kenney would choose North if
he thought Imamura would choose North, but South if he thought Imamura would choose
South. Imamura would choose North if he thought Kenney would choose South, and he
would be indifferent between actions if he thought Kenney would choose North. This is
what the arrows are showing. But we can still find a plausible equilibrium, using the concept
of “weak dominance.”

Strategy s′i is weakly dominated if there exists some other strategy s′′i for player i which
is possibly better and never worse, yielding a higher payoff in some strategy profile and
never yielding a lower payoff. Mathematically, s′i is weakly dominated if there exists s′′i
such that

πi(s
′′
i , s−i) ≥ πi(s

′
i, s−i) ∀s−i, and πi(s

′′
i , s−i) > πi(s

′
i, s−i) for some s−i.

(1.4)

Similarly, we call a strategy that is always at least as good as every other strategy and better
than some a weakly dominant strategy.

One might define a weak-dominance equilibrium as the strategy profile found by delet-
ing all the weakly dominated strategies of each player. Eliminating weakly dominated
strategies does not help much in the Battle of the Bismarck Sea, however. Imamura’s strat-
egy of South is weakly dominated by the strategy North because his payoff from North
is never smaller than his payoff from South, and it is greater if Kenney picks South. For
Kenney, however, neither strategy is even weakly dominated. The modeller must therefore
go a step further, to the idea of the iterated dominance equilibrium.

An iterated-dominance equilibrium is a strategy profile found by deleting a weakly
dominated strategy from the strategy set of one of the players, recalculating to find which
remaining strategies are weakly dominated, deleting one of them, and continuing the
process until only one strategy remains for each player.

Applied to the Battle of the Bismarck Sea, this equilibrium concept implies that Kenney
decides that Imamura will pick North because it is weakly dominant, so Kenney eliminates
“Imamura chooses South” from consideration. Having deleted one column of table 1.3,
Kenney has a strongly dominant strategy: he chooses North, which achieves payoffs strictly
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greater than South. The strategy profile (North, North) is an iterated dominance equilibrium,
and indeed (North, North) was the outcome in 1943.

It is interesting to consider modifying the order of play or the information structure in the
Battle of the Bismarck Sea. If Kenney moved first, rather than simultaneously with Imamura
(North, North), would remain an equilibrium, but (North, South) would also become one.
The payoffs would be the same for both equilibria, but the outcomes would be different.

If Imamura moved first (North, North), would be the only equilibrium. What is impor-
tant about a player moving first is that it gives the other player more information before
he acts, not the literal timing of the moves. If Kenney has cracked the Japanese code and
knows Imamura’s plan, then it does not matter that the two players move literally simul-
taneously; it is better modelled as a sequential game. Whether Imamura literally moves
first or whether his code is cracked, Kenney’s information set becomes either {Imamura
moved North} or {Imamura moved South} after Imamura’s decision, so Kenney’s equi-
librium strategy is specified as (North if Imamura moved North, South if Imamura moved
South).

Game theorists often differ in their terminology, and the terminology applied to the idea
of eliminating dominated strategies is particularly diverse. The equilibrium concept used
in the Battle of the Bismarck Sea might be called iterated-dominance equilibrium, or
iterated-dominant-strategy equilibrium, or one might say that the game is dominance
solvable, that it can be solved by iterated dominance, or that the equilibrium strategy
profile is serially undominated. Often the terms are used to mean deletion of strictly
dominated strategies, and sometimes to mean deletion of weakly dominated strategies.
Iteration of strictly dominated strategies is, of course, a more appealing idea, but one which
more rarely is applicable. For a 3-by-3 example in which iterated elimination of strictly
dominated strategies does reach a unique equilibrium despite no strategy being dominant
for the game as a whole, see Ratliff (1997a, p. 7).

The significant difference is between strong and weak dominance. Everyone agrees
that no rational player would use a strictly dominated strategy, but it is harder to argue
against weakly dominated strategies. In economic models, firms and individuals are often
indifferent about their behavior in equilibrium. In standard models of perfect competition,
firms earn zero profits but it is crucial that some firms be active in the market and some
stay out and produce nothing. If a monopolist knows that customer Smith is willing to pay
up to ten dollars for a widget, the monopolist will charge exactly ten dollars to Smith in
equilibrium, which makes Smith indifferent about buying and not buying, yet there is no
equilibrium unless Smith buys. It is impractical, therefore, to rule out equilibria in which a
player is indifferent about his actions. This should be kept in mind later when we discuss
the “open-set problem” in section 4.3.

Another difficulty is multiple equilibria. The dominant-strategy equilibrium of any game
is unique if it exists. Each player has at most one strategy whose payoff in any strategy profile
is strictly higher than the payoff from any other strategy, so only one strategy profile can
be formed out of dominant strategies. A strong iterated-dominance equilibrium is unique if
it exists. A weak iterated-dominance equilibrium may not be, because the order in which
strategies are deleted can matter to the final solution. If all the weakly dominated strategies
are eliminated simultaneously at each round of elimination, the resulting equilibrium is
unique, if it exists, but possibly no strategy profile will remain.

Consider table 1.4’s Iteration Path Game. The strategy profiles (r1, c1) and (r1, c3) are
both iterated dominance equilibria because each of those strategy profiles can be found
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Table 1.4 The Iteration Path
Game

Column
c1 c2 c3

r1 2, 12 1, 10 1, 12
Row r2 0, 12 0, 10 0, 11

r3 0, 12 1, 10 0, 13

Payoffs to: (Row, Column).

by iterated deletion. The deletion can proceed in the order (r3, c3, c2, r2), or in the order
(r2, c2, c1, r3).

Despite these problems, deletion of weakly dominated strategies is a useful tool, and it is
part of more complicated equilibrium concepts such as section 4.1’s “subgame perfectness.”

Zero-sum Games

The Iteration Path Game is like the typical game in economics in that if one player gains, the
other player does not necessarily lose. The outcome (2, 12) is better for both players than
the outcome (0, 10), for example. Since economics is largely about the gains from trade, it
is not surprising that win–win outcomes are possible, even if the players are each trying to
maximize only their own payoffs. Some games, however, such as the Battle of Bismarck
Sea, are different, because the payoffs of the players always sum to zero. This feature is
important enough to have acquired a name early in the history of game theory.

A zero-sum game is a game in which the sum of the payoffs of all the players is zero
whatever strategies they choose. A game which is not zero-sum is nonzero-sum game
or variable-sum.

In a zero-sum game, what one player gains, another player must lose. The Battle of the
Bismarck Sea is thus a zero-sum game, but the Prisoner’s Dilemma and the Dry Cleaners
Game are not. There is no way that the payoffs in those two games can be rescaled to make
them zero-sum without changing the essential character of the games.

If a game is zero-sum the utilities of the players can be represented so as to sum to zero
under any outcome. Since utility functions are to some extent arbitrary, the sum can also
be represented to be nonzero even if the game is zero-sum. Often modellers will refer to a
game as zero-sum even when the payoffs do not add up to zero, so long as the payoffs add
up to some constant amount. The difference is a trivial normalization.

Although zero-sum games have fascinated game theorists for many years, they are uncom-
mon in economics. One of the few examples is the bargaining game between two players
who divide a surplus, but even this is often modelled nowadays as a nonzero-sum game
in which the surplus shrinks as the players spend more time deciding how to divide it. In
reality, even simple division of property can result in loss – just think of how much the
lawyers take out when a divorcing couple bargain over dividing their possessions.

Although the 2-by-2 games in this chapter may seem facetious, they are simple enough
for use in modelling economic situations. The Battle of the Bismarck Sea, for example, can
be turned into a game of corporate strategy. Two firms, Kenney Company and Imamura
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Table 1.5 Boxed Pigs

Small Pig
Press Wait

Press 5, 1 → 4 , 4

Big Pig ↓ ↑
Wait 9 ,−1 → 0, 0

Payoffs to: (Big Pig, Small Pig). Arrows show how
a player can increase his payoff. Best-response
payoffs are boxed.

Incorporated, are trying to maximize their shares of a market of constant size by choosing
between the two product designs North and South. Kenney has a marketing advantage, and
would like to compete head-to-head, while Imamura would rather carve out its own niche.
The equilibrium is (North, North).

1.4 Nash Equilibrium: Boxed Pigs, the Battle of the Sexes,
and Ranked Coordination

For the vast majority of games, which lack even iterated dominance equilibria, modellers
use Nash equilibrium, the most important and widespread equilibrium concept. To introduce
Nash equilibrium we will use the game Boxed Pigs from Baldwin & Meese (1979).

Two pigs are put in a box with a special control panel at one end and a food dispenser at the
other end. When a pig presses the panel, at a utility cost of 2 units, 10 units of food are dis-
pensed at the dispenser. One pig is “dominant” (let us assume he is bigger), and if he gets to
the dispenser first, the other pig will only get his leavings, worth 1 unit. If, instead, the small
pig is at the dispenser first, he eats 4 units, and even if they arrive at the same time the small
pig gets 3 units. Thus, for example, the strategy profile (Press, Press) would yield a payoff
of 5 for the big pig (10 units of food, minus 3 that the small pig eats, minus an effort cost of 2)
and of 1 for the little pig (3 units of food, minus an effort cost of 2). Table 1.5 summarizes
the payoffs for the strategies Press the panel and Wait by the dispenser at the other end.

Boxed Pigs has no dominant-strategy equilibrium, because what the big pig chooses
depends on what he thinks the small pig will choose. If he believed that the small pig
would press the panel, the big pig would wait by the dispenser, but if he believed that
the small pig would wait, the big pig would press the panel. There does exist an iterated-
dominance equilibrium (Press, Wait), but we will use a different line of reasoning to justify
that outcome: Nash equilibrium.

Nash equilibrium is the standard equilibrium concept in economics. It is less obviously
correct than dominant-strategy equilibrium but more often applicable. Nash equilibrium
is so widely accepted that the reader can assume that if a model does not specify which
equilibrium concept is being used, it is Nash or some refinement of Nash.

The strategy profile s∗ is a Nash equilibrium if no player has incentive to deviate from
his strategy given that the other players do not deviate. Formally,

∀i, πi(s
∗
i , s∗−i) ≥ πi(s

′
i, s∗−i), ∀s′i. (1.5)
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The strategy profile (Press, Wait) is a Nash equilibrium. The way to approach Nash
equilibrium is to propose a strategy profile and test whether each player’s strategy is a best
response to the others’ strategies. If the big pig picks Press, the small pig, who faces a
choice between a payoff of 1 from pressing and 4 from waiting, is willing to wait. If the
small pig picks Wait, the big pig, who has a choice between a payoff of 4 from pressing and
0 from waiting, is willing to press. This confirms that (Press, Wait) is a Nash equilibrium,
and in fact it is the unique Nash equilibrium.5

It is useful to draw arrows in the tables when trying to solve for the equilibrium, since
the number of calculations is great enough to soak up quite a bit of mental RAM. Another
solution tip, illustrated in Table 1.5, is to circle payoffs that dominate other payoffs (or
box, them, as is especially suitable here). Double arrows or dotted circles indicate weakly
dominant payoffs. Any payoff profile in which every payoff is circled, or which has arrows
pointing towards it from every direction, is a Nash equilibrium. I like using arrows better
in 2-by-2 games, but circles are better for bigger games, since arrows become confus-
ing when payoffs are not lined up in order of magnitude in the table (see chapter 2’s
table 2.2).

The pigs in this game have to be smarter than the players in the Prisoner’s Dilemma.
They have to realize that the only set of strategies supported by self-consistent beliefs is
(Press, Wait). The definition of Nash equilibrium lacks the “∀s−i” of dominant-strategy
equilibrium, so a Nash strategy need only be a best response to the other Nash strategies,
not to all possible strategies. And although we talk of “best responses,” the moves are
actually simultaneous, so the players are predicting each others’ moves. If the game were
repeated or the players communicated, Nash equilibrium would be especially attractive,
because it is even more compelling that beliefs should be consistent.

Like a dominant-strategy equilibrium, a Nash equilibrium can be either weak or strong.
The definition above is for a weak Nash equilibrium. To define strong Nash equilib-
rium, make the inequality strict; that is, require that no player be indifferent between
his equilibrium strategy and some other strategy.

Every dominant-strategy equilibrium is a Nash equilibrium, but not every Nash equilib-
rium is a dominant-strategy equilibrium. If a strategy is dominant it is a best response to
any strategies the other players pick, including their equilibrium strategies. If a strategy is
part of a Nash equilibrium, it need only be a best response to the other players’ equilibrium
strategies.

The Modeller’s Dilemma of table 1.6 illustrates this feature of Nash equilibrium. The sit-
uation it models is the same as the Prisoner’s Dilemma, with one major exception: although
the police have enough evidence to arrest the prisoners as the “probable cause” of the crime,
they will not have enough evidence to convict them of even a minor offense if neither prisoner
confesses. The northwest payoff profile becomes (0, 0) instead of (−1,−1).

The Modeller’s Dilemma does not have a dominant-strategy equilibrium. It does have
what might be called a weak dominant-strategy equilibrium, because Confess is still a
weakly dominant strategy for each player. Moreover, using this fact, it can be seen that
(Confess, Confess) is an iterated dominance equilibrium, and it is a strong Nash equilibrium

5 This game, too, has its economic analog. If Bigpig, Inc. introduces granola bars, at considerable
marketing expense in educating the public, then Smallpig Ltd. can imitate profitably without ruining Bigpig’s
sales completely. If Smallpig introduces them at the same expense, however, an imitating Bigpig would
hog the market.
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Table 1.6 The Modeller’s Dilemma

Column
Deny Confess

Deny 0 , 0 ↔ −10, 0
Row � ↓

Confess 0 , −10 → −8 , −8

Payoffs to: (Row, Column). Arrows show how a player
can increase his payoff.

as well. So the case for (Confess, Confess) still being the equilibrium outcome seems very
strong.

There is, however, another Nash equilibrium in the Modeller’s Dilemma: (Deny, Deny),
which is a weak Nash equilibrium. This equilibrium is weak and the other Nash equilibrium
is strong, but (Deny, Deny) has the advantage that its outcome is Pareto-superior: (0, 0) is
uniformly greater than (−8,−8). This makes it difficult to know which behavior to predict.

The Modeller’s Dilemma illustrates a common difficulty for modellers: what to predict
when two Nash equilibria exist. The modeller could add more details to the rules of the game,
or he could use an equilibrium refinement, adding conditions to the basic equilibrium
concept until only one strategy profile satisfies the refined equilibrium concept. There is no
single way to refine Nash equilibrium. The modeller might insist on a strong equilibrium,
or rule out weakly dominated strategies, or use iterated dominance. All of these lead to
(Confess, Confess) in the Modeller’s Dilemma. Or he might rule out Nash equilibria that
are Pareto-dominated by other Nash equilibria, and end up with (Deny, Deny). Neither
approach is completely satisfactory. In particular, do not be misled into thinking that weak
Nash equilibria are to be despised. Often, no Nash equilibrium at all will exist unless
the players have the expectation that player B chooses X when he is indifferent between
X and Y. It is not that we are picking the equilibrium in which it is assumed B does X
when he is indifferent. Rather, we are finding the only set of consistent expectations about
behavior. (You will read more about this in connection with the “open-set problem” of
section 4.2.)

The Battle of the Sexes

The third game we will use to illustrate Nash equilibrium is the Battle of the Sexes, a conflict
between a man who wants to go to a prize fight and a woman who wants to go to a ballet.
While selfish, they are deeply in love, and would, if necessary, sacrifice their preferences
to be with each other. Less romantically, their payoffs are given by table 1.7.

The Battle of the Sexes does not have an iterated dominance equilibrium. It has two Nash
equilibria, one of which is the strategy profile (Prize Fight, Prize Fight). Given that the man
chooses Prize Fight, so does the woman; given that the woman chooses Prize Fight, so does
the man. The strategy profile (Ballet, Ballet) is another Nash equilibrium by the same line
of reasoning.

How do the players know which Nash equilibrium to choose? Going to the fight and
going to the ballet are both Nash strategies, but for different equilibria. Nash equilibrium
assumes correct and consistent beliefs. If they do not talk beforehand, the man might go



RASMUSSEN: “chap-01” — 2006/9/16 — 19:22 — page 29 — #21

Chapter 1: The Rules of the Game 29

Table 1.7 The Battle of the Sexes6

Woman
Prize Fight Ballet

Prize Fight 2, 1 ← 0, 0
Man ↑ ↓

Ballet 0, 0 → 1, 2

Payoffs to: (Man, Woman). Arrows show how a player
can increase his payoff.

to the ballet and the woman to the fight, each mistaken about the other’s beliefs. But even
if the players do not communicate, Nash equilibrium is sometimes justified by repetition of
the game. If the couple do not talk, but repeat the game night after night, one may suppose
that eventually they settle on one of the Nash equilibria.

Each of the Nash equilibria in the Battle of the Sexes is Pareto-efficient; no other strategy
profile increases the payoff of one player without decreasing that of the other. In many
games the Nash equilibrium is not Pareto-efficient: (Blame, Blame), for example, is the
unique Nash equilibrium of the Prisoner’s Dilemma, although its payoffs of (−8,−8) are
Pareto-inferior to the (−1,−1) generated by (Deny, Deny).

Who moves first is important in the Battle of the Sexes, unlike any of the three previous
games we have looked at. If the man could buy the fight ticket in advance, his commitment
would induce the woman to go to the fight. In many games, but not all, the player who
moves first (which is equivalent to commitment) has a first-mover advantage.

The Battle of the Sexes has many economic applications. One is the choice of an industry-
wide standard when two firms have different preferences but both want a common standard
to encourage consumers to buy the product. A second is to the choice of language used
in a contract when two firms want to formalize a sales agreement but they prefer different
terms. Both sides might, for example, want to add a “liquidated damages” clause which
specifies damages for breach rather than trust the courts to estimate a number later, but one
firm might want a value of $10,000 and the other firm, $12,000.

Coordination Games

Sometimes one can use the size of the payoffs to choose between Nash equilibria. In
the following game, players Smith and Jones are trying to decide whether to design the
computers they sell to use large, or small floppy disks. Both players will sell more computers
if their disk drives are compatible, as shown in table 1.8.

The strategy profiles (Large, Large) and (Small, Small) are both Nash equilibria, but
(Large, Large) Pareto-dominates (Small, Small). Both players prefer (Large, Large), and
most modellers would use the Pareto-efficient equilibrium to predict the actual outcome.
We could imagine that it arises from pregame communication between Smith and Jones
taking place outside of the specification of the model, but the interesting question is what
happens if communication is impossible. Is the Pareto-efficient equilibrium still more
plausible? The question is really one of psychology rather than economics.

6 Political correctness has led to bowdlerized versions of this game being presented in many game theory
books. This is the original, unexpurgated game.
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Table 1.8 Ranked Coordination

Jones
Large Small

Large 2, 2 ← −1, −1
Smith ↑ ↓

Small −1,−1 → 1, 1

Payoffs to: (Smith, Jones). Arrows show how a
player can increase his payoff.

Table 1.9 Dangerous Coordination

Jones
Large Small

Large 2, 2 ← −1000, −1
Smith ↑ ↓

Small −1, −1 → 1, 1

Payoffs to: (Smith, Jones). Arrows show how a player
can increase his payoff.

Ranked Coordination is one of a large class of games called coordination games, which
share the common feature that the players need to coordinate on one of multiple Nash equilib-
ria. Ranked Coordination has the additional feature that the equilibria can be Pareto ranked.
Section 3.2 will return to problems of coordination to discuss the concepts of “correlated
strategies” and “cheap talk.” These games are of obvious relevance to analyzing the setting
of standards; see, for example, Michael Katz & Carl Shapiro (1985) and Joseph Farrell &
Garth Saloner (1985) . They can be of great importance to the wealth of economies – just
think of the advantages of standard weights and measures (or read Charles Kindleberger
[1983] on their history). Note, however, that not all apparent situations of coordination on
Pareto-inferior equilibria turn out to be so. One oft-cited coordination problem is that of
the QWERTY typewriter keyboard, developed in the 1870s when typing had to proceed
slowly to avoid jamming. QWERTY became the standard, although it has been claimed that
the faster speed possible with the Dvorak keyboard would amortize the cost of retraining
full-time typists within ten days (David [1985]). Why large companies would not retrain
their typists is difficult to explain under this story, and Liebowitz & Margolis (1990) show
that economists have been too quick to accept claims that QWERTY is inefficient. English
language spelling is a better example.

Table 1.9 shows another coordination game, Dangerous Coordination, which has the
same equilibria as Ranked Coordination, but differs in the out-of-equilibrium payoffs. If
an experiment were conducted in which students played Dangerous Coordination against
each other, I would not be surprised if (Small, Small), the Pareto-dominated equilibrium,
were the one that was played out. This is true even though (Large, Large) is still a Nash
equilibrium; if Smith thinks that Jones will pick Large, Smith is quite willing to pick
Large himself. The problem is that if the assumptions of the model are weakened, and
Smith cannot trust Jones to be rational, well-informed about the payoffs of the game, and
unconfused, then Smith will be reluctant to pick Large because his payoff if Jones picks
Small is then −1,000. He would play it safe instead, picking Small, and ensuring a payoff
of at least −1. In reality, people do make mistakes, and with such an extreme difference in
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payoffs, even a small probability of a mistake is important, so (Large, Large) would be a bad
prediction.

Games like Dangerous Coordination are a major concern in the 1988 book by Harsanyi
and Selten, two of the giants in the field of game theory. I will not try to describe their
approach here, except to say that it is different from my own. I do not consider the fact that
one of the Nash equilibria of Dangerous Coordination is a bad prediction as a heavy blow
against Nash equilibrium. The bad prediction is based on two things: using the Nash equi-
librium concept, and using the game Dangerous Coordination. If Jones might be confused
about the payoffs of the game, then the game actually being played out is not Dangerous
Coordination, so it is not surprising that it gives poor predictions. The rules of the game
ought to describe the probabilities that the players are confused, as well as the payoffs if
they take particular actions. If confusion is an important feature of the situation, then the
two-by-two game of table 1.9 is the wrong model to use, and a more complicated game of
incomplete information of the kind described in chapter 2 is more appropriate. Again, as
with the Prisoner’s Dilemma, the modeller’s first thought on finding that the model predicts
an odd result should not be “Game theory is bunk,” but the more modest “Maybe I’m not
describing the situation correctly” (or even “Maybe I should not trust my ‘common sense’
about what will happen”).

Nash equilibrium is more complicated but also more useful than it looks. Jumping ahead
a bit, consider a game slightly more complex than the ones we have seen so far. Two firms
are choosing outputs Q1 and Q2 simultaneously. The Nash equilibrium is a pair of numbers
(Q∗1, Q∗2) such that neither firm would deviate unilaterally. This troubles the beginner, who
says to himself, “Sure, Firm 1 will pick Q∗1 if it thinks Firm 2 will pick Q∗2. But Firm 1
will realize that if it makes Q1 bigger, then Firm 2 will react by making Q2 smaller. So the
situation is much more complicated, and (Q∗1, Q∗2) is not a Nash equilibrium. Or, if it is,
Nash equilibrium is a bad equilibrium concept.”

But if there is a problem in this model, it is not Nash equilibrium but the model itself.
Nash equilibrium makes perfect sense as a stable outcome in this model. The beginner’s
hypothetical is false because if Firm 1 chooses something other than Q∗1, Firm 2 would
not observe the deviation till it was too late to change Q2 – remember, this is a simul-
taneous move game. The beginner’s worry is really about the rules of the game, not the
equilibrium concept. He seems to prefer a game in which the firms move sequentially, or
maybe a repeated version of the game. If Firm 1 moved first, and then Firm 2, then Firm
1’s strategy would still be a single number, Q1, but Firm 2’s strategy – its action rule –
would have to be a function, Q2(Q1). A Nash equilibrium would then consist of an equi-
librium number, Q∗∗1 , and an equilibrium function, Q∗∗2 (Q1). The two outputs actually
chosen, Q∗∗1 and Q∗∗2 (Q∗∗1 ), will be different from the Q∗1 and Q∗2 in the original game.
And they should be different – the new model represents a very different real-world situ-
ation. Look ahead, and you will see that these are the Cournot and Stackelberg models of
chapter 3.

One lesson to draw from this is that it is essential to figure out the mathematical form the
strategies take before trying to figure out the equilibrium. In the simultaneous move game,
the strategy profile is a pair of nonnegative numbers. In the sequential game, the strategy
profile is one nonnegative number and one function defined over the nonnegative numbers.
Students invariably make the mistake of specifying Firm 2’s strategy as a number, not a
function. This is a far more important point than any beginner realizes. Trust me – you’re
going to make this mistake sooner or later, so it’s worth worrying about.
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1.5 Focal Points

Thomas Schelling’s 1960 book, The Strategy of Conflict, is a classic in game theory, even
though it contains no equations or Greek letters. Although it was published more than
40 years ago, it is surprisingly modern in spirit. Schelling is not a mathematician but a
strategist, and he examines such things as threats, commitments, hostages, and delegation
that we will examine in a more formal way in the remainder of this book. He is perhaps
best known for his coordination games. Take a moment to decide on a strategy in each of
the following games, adapted from Schelling, which you win by matching your response
to those of as many of the other players as possible.

1 Circle one of the following numbers: 100, 14, 15, 16, 17, 18.
2 Circle one of the following numbers 7, 100, 13, 261, 99, 666.
3 Name Heads or Tails.
4 Name Tails or Heads.
5 You are to split a pie, and get nothing if your proportions add to more than 100 percent.
6 You are to meet somebody in New York City. When? Where?

Each of the games above has many Nash equilibria. In example (1), if each player thinks
every other player will pick 14, he will too, and this is self-confirming; but the same is true
if each player thinks every other player will pick 15. But to a greater or lesser extent they
also have Nash equilibria that seem more likely. Certain of the strategy profiles are focal
points: Nash equilibria which for psychological reasons are particularly compelling.

Formalizing what makes a strategy profile a focal point is hard, and depends on the
context. In example (1), 100 is a focal point, because it is a number clearly different from
all the others – it is biggest, and it is first in the listing. In example (2), Schelling found 7 to
be the most common strategy, but in a group of Satanists, 666 might be the focal point. In
repeated games, focal points are often provided by past history. Examples (3) and (4) are
identical except for the ordering of the choices, but that ordering might make a difference.
In (5), if we split a pie once, we are likely to agree on 50:50. But if last year we split a pie in
the ratio 60:40, that provides a focal point for this year. Example (6) is the most interesting
of all. Schelling found surprising agreement in independent choices, but the place chosen
depended on whether the players knew New York well, or were unfamiliar with the city.

The boundary is a particular kind of focal point. If player Russia chooses the action
of putting his troops anywhere from one inch to 100 miles away from the Chinese border,
player China does not react. If he chooses to put troops from one inch to 100 miles beyond the
border, China declares war. There is an arbitrary discontinuity in behavior at the boundary.
Another example, quite vivid in its arbitrariness, is the rallying cry, “Fifty-four Forty
or Fight!,” which refers to the geographic parallel claimed as the boundary by jingoist
Americans in the Oregon dispute between Britain and the United States in the 1840s.7

Once the boundary is established it takes on additional significance because behavior
with respect to the boundary conveys information. When Russia crosses an established
boundary, that tells China that Russia intends to make a serious incursion further into
China. Boundaries must be sharp, and well known if they are not to be violated, and

7 The threat was not credible: that parallel is now deep in British Columbia.
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a large part of both law and diplomacy is devoted to clarifying them. Boundaries can
also arise in business: two companies producing an unhealthful product might agree not
to mention relative healthfulness in their advertising, but a boundary rule like “Mention
unhealthfulness if you like, but don’t stress it,” would not work.

Mediation and communication are both important in the absence of a clear focal point.
If players can communicate, they can tell each other what actions they will take, and
sometimes, as in Ranked Coordination, this works, because they have no motive to lie. If the
players cannot communicate, a mediator may be able to help by suggesting an equilibrium
to all of them. They have no reason not to take the suggestion, and they would use the
mediator even if his services were costly. Mediation in cases like this is as effective as
arbitration, in which an outside party imposes a solution.

One disadvantage of focal points is that they lead to inflexibility. Suppose the Pareto-
superior equilibrium (Large, Large) were chosen as a focal point in Ranked Coordination,
but the game was repeated over a long interval of time. The numbers in the payoff matrix
might slowly change until (Small, Small) and (Large, Large) both had payoffs of, say, 1.6,
and (Small, Small) started to dominate. When, if ever, would the equilibrium switch?

In Ranked Coordination, we would expect that after some time one firm would switch
and the other would follow. If there were communication, the switch point would be at the
payoff of 1.6. But what if the first firm to switch is penalized more? Such is the problem in
oligopoly pricing. If costs rise, so should the monopoly price, but whichever firm raises its
price first suffers a loss of market share.

Notes

N1.2 Dominant strategies: The Prisoner’s Dilemma
• Many economists are reluctant to use the concept of cardinal utility (see Starmer [2000]), and

even more reluctant to compare utility across individuals (see Cooter & Rappoport [1984]).
Noncooperative game theory never requires interpersonal utility comparisons, and only ordinal
utility is needed to find the equilibrium in the Prisoner’s Dilemma. So long as each player’s
rank ordering of payoffs in different outcomes is preserved, the payoffs can be altered without
changing the equilibrium. In general, the dominant strategy and pure strategy Nash equilibria of
games depend only on the ordinal ranking of the payoffs, but the mixed strategy equilibria depend
on the cardinal values. Compare section 3.2’s Chicken game with section 5.6’s Hawk–Dove.

• If we consider only the ordinal ranking of the payoffs in 2-by-2 games, there are 78 distinct
games in which each player has strict preference ordering over the four outcomes and 726 distinct
games if we allow ties in the payoffs. Rapoport, Guyer, & Gordon’s 1976 book, The 2× 2 Game,
contains an exhaustive description of the possible games.

• If we allow players to randomize their action choices (the “mixed strategies” of chapter 3), it
can happen that some action is strictly dominated by a randomized strategy, even though it is not
dominated by any nonrandom strategy. An example is in chapter 3. Jim Ratliff’s web notes are
good on this topic; see Ratliff (1997a, 1997b). If random strategies are allowed, it becomes much
more difficult to check for dominance and to use the iterative dominance ideas of section 1.3.

• The Prisoner’s Dilemma was so named by Albert Tucker in an unpublished paper, although the
particular 2-by-2 matrix, discovered by Dresher and Flood, was already well known. Tucker was
asked to give a talk on game theory to the psychology department at Stanford, and invented a
story to go with the matrix, as recounted in Straffin (1980), Poundstone (1992, pp. 101–18), and
Raiffa (1992, pp. 171–3).
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Table 1.10 A general Prisoner’s Dilemma

Column
Silence Blame

Silence R, R → S, T
Row ↓ ↓

Blame T , S → P, P

Payoffs to: (Row, Column). Arrows show how a player
can increase his payoff.

• In the Prisoner’s Dilemma the notation cooperate and defect is often used for the moves. This
is bad terminology, because it is easy to confuse with cooperative games, with deviations . It is
also often called the Prisoners’ Dilemma (rs’, not r’s). Whether one looks at from the point of the
individual or the group, the prisoners have a problem.

• The Prisoner’s Dilemma is not always defined the same way. If we consider just ordinal pay-
offs, then the game in table 1.10 is a prisoner’s dilemma if T(temptation) > R(revolt) >

P(punishment) > S(Sucker), where the terms in parentheses are mnemonics. This is stan-
dard notation; see, for example, Rapoport, Guyer, & Gordon (1976, p. 400). If the game is
repeated, the cardinal values of the payoffs can be important. The requirement 2R > T + S > 2P
should be added if the game is to be a standard Prisoner’s Dilemma, in which (Silence, Silence)
and (Blame, Blame) are the best and worst possible outcomes in terms of the sum of payoffs.
Section 5.3 will show that an asymmetric game called the One-Sided Prisoner’s Dilemma has
properties similar to the standard Prisoner’s Dilemma, but does not fit this definition.

Sometimes the game in which 2R < T + S is also called a “Prisoner’s Dilemma,” but in it the
sum of the players’ payoffs is maximized when one blames the other and the other is silent. If
the game were repeated or the prisoners could use the correlated equilibria defined in section 3.2,
they would prefer taking turns being silent, which would make the game a coordination game
similar to the Battle of the Sexes. David Shimko has suggested the name “Battle of the Prisoners”
for this (or, perhaps, “The Sex Prisoners’ Dilemma”).

• Herodotus (429 BC, III-71) describes an early example of the reasoning in the Prisoner’s Dilemma
in a conspiracy against the Persian emperor. A group of nobles met and decided to overthrow
the emperor, and it was proposed to adjourn till another meeting. One of them named Darius
then spoke up and said that if they adjourned, he knew that one of them would go straight to the
emperor and reveal the conspiracy, because if nobody else did, he would himself. Darius also
suggested a solution – that they immediately go to the palace and kill the emperor.

The conspiracy also illustrates a way out of coordination games. After killing the emperor, the
nobles wished to select one of themselves as the new emperor. Rather than fight, they agreed to
go to a certain hill at dawn, and whoever’s horse neighed first would become emperor. Herodotus
tells how Darius’s groom manipulated this randomization scheme to make him the new emperor.

• Philosophers are intrigued by the Prisoner’s Dilemma: see Campbell & Sowden (1985), a collec-
tion of articles on the Prisoner’s Dilemma and the related Newcombe’s paradox. Game theory has
even been applied to theology: if one player is omniscient or omnipotent, what kind of equilibrium
behavior can we expect? See Steven Brams’s 1980 and 1983 books, Biblical Games: A Strategic
Analysis of Stories from the Old Testament and Superior Beings.

N1.4 Nash equilibrium: Boxed Pigs, the Battle of the Sexes, and
Ranked Coordination

• For a history of the idea of Nash equilibrium, see Roger Myerson’s 1999 article, “Nash Equilibrium
and the History of Game Theory.” E. Roy Weintraub’s 1992 collection of essays, Toward a
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History of Game Theory, Norman Macrae’s 1992 John von Neumann, William Poundstone’s
1992 Prisoner’s Dilemma: John von Neumann, Game Theory, and the Puzzle of the Bomb, Sylvia
Nasar’s 1998 A Beautiful Mind, and Mary and Robert Dimand’s 1996 A History of Game Theory
are other places to learn about the history of game theory. Good profiles of economists can
be found in Michael Szenberg’s 1992 Eminent Economists: Their Life Philosophies and 1998
Passion and Craft: Economists at Work. Sergiu Hart’s 2005 “An Interview with Robert Aumann,”
http://www.ma.huji.ac.il/hart/abs/aumann.html, is also illuminating. Leonard (1995) discusses
the “pre-history” from 1928 to 1944.

• I invented the payoffs for Boxed Pigs from the description of one of the experiments in Baldwin &
Meese (1979). They do not think of this as an experiment in game theory, and they describe the
result in terms of “reinforcement.” The Battle of the Sexes is taken from p. 90 of Luce & Raiffa
(1957). I have changed their payoffs of (−1,−1) to (−5,−5) to fit the story.

• Some people prefer the term “equilibrium point” to “Nash equilibrium,” but the latter is more
euphonious, since the discoverer’s name is “Nash” and not “Mazurkiewicz.”

• Bernheim (1984a) and Pearce (1984) use the idea of mutually consistent beliefs to arrive at a
different equilibrium concept than Nash. They define a rationalizable strategy to be a strategy
which is a best response for some set of rational beliefs in which a player believes that the other
players choose their best responses. The difference from Nash is that not all players need have
the same beliefs concerning which strategies will be chosen, nor need their beliefs be consistent.
Every Nash equilibrium is rationalizable, but not every rationalizable equilibrium is Nash. Thus,
the idea provides an argument for why Nash equilibria might be played, but not for why just
Nash equilibria would be played. In a two-player game, the set of rationalizable strategies is the
set which survives iterated deletion of strictly dominated strategies, but in a game with three or
more players the set might be smaller. Ratliff (1997a) has an excellent discussion with numerical
examples.

• Jack Hirshleifer (1982) uses the name “The Tender Trap” for a game essentially the same as
Ranked Coordination. It has also been called the “Assurance Game.”

• O. Henry’s story, “The Gift of the Magi” is about a coordination game noteworthy for the reason
communication is ruled out. A husband sells his watch to buy his wife combs for Christmas,
while she sells her hair to buy him a watch fob. Communication would spoil the surprise, a worse
outcome than discoordination.

• Macroeconomics has more game theory in it than is readily apparent. The macroeconomic con-
cept of rational expectations faces the same problems of multiple equilibria and consistency of
expectations as Nash equilibrium. Game theory is now often explicitly used in macroeconomics;
see the books by Canzoneri & Henderson (1991) and Cooper (1999) .

N1.5 Focal points
• Besides his 1960 book, Schelling has written books on diplomacy (1966) and the oddities of

aggregation (1978). Political scientists are now looking at the same issues more technically;
see Brams & Kilgour (1988) and Ordeshook (1986). Douglas Muzzio’s 1982 Watergate Games,
Thomas Flanagan’s 1998 Game Theory and Canadian Politics, and especially William Riker’s
1986 The Art of Political Manipulation are absorbing examples of how game theory can be used
to analyze specific historical episodes.

• In chapter 12 of The General Theory, Keynes (1936) suggests that the stock market is a game
with multiple equilibria, like a contest in which a newspaper publishes the faces of 20 girls, and
contestants submit the name of the one they think most people would submit as the prettiest.
When the focal point changes, big swings in predictions about beauty and value result.

• Not all of what we call boundaries have an arbitrary basis. If the Chinese cannot defend themselves
as easily once the Russians cross the boundary at the Amur River, they have a clear reason to
fight there.
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• Crawford & Haller (1990) take a careful look at focalness in repeated coordination games by
asking which equilibria are objectively different from other equilibria, and how a player can learn
through repetition which equilibrium the other players intend to play. If on the first repetition
the players choose strategies that are Nash with respect to each other, it seems focal for them to
continue playing those strategies, but what happens if they begin in disagreement?

Problems

1.1: Nash and iterated dominance (medium)
(a) Show that every iterated dominance equilibrium s∗ is Nash.
(b) Show by counterexample that not every Nash equilibrium can be generated by iterated

dominance.
(c) Is every iterated dominance equilibrium made up of strategies that are not weakly dominated?

1.2: 2-by-2 Games (easy)
Find or create examples of 2-by-2 games with the following properties:

(a) No Nash equilibrium (you can ignore mixed strategies).
(b) No weakly Pareto-dominant strategy profile.
(c) At least two Nash equilibria, including one equilibrium that Pareto-dominates all other strategy

profiles.
(d) At least three Nash equilibria.

1.3: Pareto dominance (medium) (from notes by Jong-Shin Wei)
(a) If a strategy profile s∗ is a dominant-strategy equilibrium, does that mean it weakly Pareto-

dominates all other strategy profiles?
(b) If a strategy profile s strongly Pareto-dominates all other strategy profiles, does that mean it is

a dominant-strategy equilibrium?
(c) If s weakly Pareto-dominates all other strategy profiles, then must it be a Nash equilibrium?

1.4: Discoordination (easy)
Suppose that a man and a woman each choose whether to go to a prize fight or a ballet. The man would
rather go to the prize fight, and the woman to the ballet. What is more important to them, however, is
that the man wants to show up to the same event as the woman, but the woman wants to avoid him.

(a) Construct a game matrix to illustrate this game, choosing numbers to fit the preferences described
verbally.

(b) If the woman moves first, what will happen?
(c) Does the game have a first-mover advantage?
(d) Show that there is no Nash equilibrium if the players move simultaneously.

1.5: Drawing outcome matrices (easy)
It can be surprisingly difficult to look at a game using new notation. In this exercise, redraw the
outcome matrix in a different form than in the main text. In each case, read the description of
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the game and draw the outcome matrix as instructed. You will learn more if you do this from the
description, without looking at the conventional outcome matrix.

(a) The Battle of the Sexes (table 1.7). Put (Prize Fight, Prize Fight) in the northwest corner, but
make the woman the row player.

(b) The Prisoner’s Dilemma (table 1.2). Put (Confess, Confess) in the northwest corner.
(c) The Battle of the Sexes (table 1.7). Make the man the row player, but put (Ballet, Prize Fight)

in the northwest corner.

1.6: Finding Nash equilibria (medium)
Find the Nash equilibria of the game illustrated in table 1.11. Can any of them be reached by iterated
dominance?

Table 1.11 An abstract game

Column
Left Middle Right

Up 10, 10 0, 0 −1, 15
Row Sideways −12, 1 8, 8 −1, −1

Down 15, 1 8, −1 0, 0

Payoffs to: (Row, Column).

1.7: Finding more Nash equilibria (medium)
Find the Nash equilibria of the game illustrated in table 1.12. Can any of them be reached by iterated
dominance?

Table 1.12 Flavor and texture

Brydox
Flavor Texture

Flavor −2, 0 0, 1
Apex

Texture −1, −1 0, −2

Payoffs to: (Apex, Brydox).

1.8: Which game? (medium)
Table 1.13 is like the payoff matrix for what game that we have seen? (1) A version of the Battle of
the Sexes, (2) a version of the Prisoner’s Dilemma, (3) a version of Pure Coordination, (4) a version
of the Legal Settlement Game, (5) none of the above.

1.9: Choosing computers (easy)
The problem of deciding whether to adopt IBM or HP computers by two offices in a company is most
like which game that we have seen?
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Table 1.13 Which game?

Column
A B

Row
A 3, 3 0, 1
B 5, 0 −1,−1

1.10: Campaign contributions (easy)
The large Wall Street investment banks have recently agreed not to make campaign contributions to
state treasurers, which uptil now has been a common practice. What was the game in the past, and
why can the banks expect this agreement to hold fast?

1.11: A sequential Prisoner’s Dilemma (hard)
Suppose Row moves first, then Column, in the Prisoner’s Dilemma. What are the possible actions?
What are the possible strategies? Construct a normal form, showing the relationship between strategy
profiles and payoffs.
Hint: The normal form is not a two-by-two matrix here.

1.12: Three-by-Three equilibria (medium)

Identify any dominated strategies and any Nash equilibria in pure strategies in the game of
table 1.14.

Table 1.14 A three-by-three game

Column
Left Middle Right

Up 1, 4 5, −1 0, 1
Row Sideways −1, 0 −2, −2 −3, 4

Down 0, 3 9, −1 5, 0

Payoffs to: (Row, Column).
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Fisheries: A Classroom Game for Chapter 1

Each of eight countries in a fishery decides how many fish to catch each decade. Each
country picks an integer number Xt as its fishing catch for decade t. The country’s
profit for decade t is

20Xt − X2
t . (1.6)

Thus, diminishing returns set in after a certain point and the marginal cost is too high
for further fishing to be profitable.

The fish population starts at 112 (14 per country) and the game continues for 5
decades. Let Q1 denote the fish population at the start of Decade 1. In Decade 2, the
population is

1.5 ∗ (Q1 − (X1t + X2t + X3t + · · · )), rounded up, (1.7)

where Xit is Country i’s catch in Decade t.
If X11 = 30 and X21 = X31 = · · · = X81 = 3, then the first country’s profit is

20 ∗ 30 − 302 = 600 − 900 = −300, and each other country earns 20 ∗ 3 − 32 =
60 − 6 = 54. The second-year fish population would be Q2 = 1.5 ∗ (112 − 30 −
7[3]) = 1.5(82− 21) = 1.5(61) = 92.

1 In the first scenario, one fishing authority chooses the catch for all eight countries
to try to maximize the catch over all five decades. Each country will propose quotas
for all eight countries for the first year. The class will discuss the proposals and
the authority will deliberate and make its choice. Once the catch is finalized, the
instructor calculates the next year’s fish population, and the process repeats to
pick the next year’s catch.

2 The countries choose independently. Each country writes down its catch on a
piece of paper, which it hands in to the instructor. The instructor opens them up
as he receives them. He does not announce each country’s catch until the end of
this scenario’s five decades, but he does announce the total catch. If the attempted
catch exceeds the total fish population, those countries which handed in their
catches first get priority, and a country’s payoff is 20Zt − X2

t , where Zt is its
actual catch and Xt is its attempted catch, what it wrote down on its paper. Do
this for five decades.

3 Repeat Scenario 2, but with each country’s actual (not attempted) catch announced
at the end of each decade.

4 Repeat Scenario 3, but this time countries that so wish can form a binding treaty
and submit their catches jointly, on one piece of paper.


