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5.1 Finitely Repeated Games and the Chainstore Paradox

Chapter 4 showed how to refine the concept of Nash equilibrium to find sensible equilibria
in games with moves in sequence over time, so-called dynamic games. An important class
of dynamic games is repeated games, in which players repeatedly make the same decision
in the same environment. Chapter 5 will look at such games, in which the rules of the game
remain unchanged with each repetition and all that changes is the “history” which grows
as time passes, and, if the number of repetitions is finite, the approach of the end of the
game. It is also possible for asymmetry of information to change over time in a repeated
game since players’ moves may convey their private information, but Chapter 5 will confine
itself to games of symmetric information.

Section 5.1 will show the perverse unimportance of repetition for the games of Entry
Deterrence and The Prisoner’s Dilemma, a phenomenon known as the Chainstore Paradox.
Neither discounting, probabilistic end dates, infinite repetitions, nor precommitment are
satisfactory escapes from the Chainstore Paradox. This is summarized in the Folk Theorem
of Section 5.2. Section 5.2 will also discuss strategies which punish players who fail to
cooperate in a repeated game— strategies such as the Grim Strategy, Tit-for- Tat, and
Minimax. Section 5.3 builds a framework for reputation models based on The Prisoner’s
Dilemma, and Section 5.4 presents one particular reputation model, the Klein-Leffler model
of product quality. Section 5.5 concludes the chapter with an overlapping generations model
of consumer switching costs which uses the idea of Markov strategies to narrow down the
number of equilibria.

The Chainstore Paradox

Suppose that we repeat Entry Deterrence I 20 times in the context of a chainstore that is
trying to deter entry into 20 markets where it has outlets. We have seen that entry into just
one market would not be deterred, but perhaps with 20 markets the outcome is different
because the chainstore would fight the first entrant to deter the next 19.

The repeated game is much more complicated than the one-shot game, as the unre-
peated version is called. A player’s action is still to Enter or Stay Out, to Fight or Collude,
but his strategy is a potentially very complicated rule telling him what action to choose
depending on what actions both players took in each of the previous periods. Even the
five-round repeated Prisoner’s Dilemma has a strategy set for each player with over two
billion strategies, and the number of strategy profiles is even greater (Sugden [1986], p.
108).

The obvious way to solve the game is from the beginning, where there is the least
past history on which to condition a strategy, but that is not the easy way. We have to
follow Kierkegaard, who said, “Life can only be understood backwards, but it must be lived
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forwards” (Kierkegaard 1938, p. 465). In picking his first action, a player looks ahead to
its implications for all the future periods, so it is easiest to start by understanding the end
of a multi- period game, where the future is shortest.

Consider the situation in which 19 markets have already been invaded (and maybe the
chainstore fought, or maybe not). In the last market, the subgame in which the two players
find themselves is identical to the one-shot Entry Deterrence I, so the entrant will Enter
and the chainstore will Collude, regardless of the past history of the game. Next, consider
the next- to-last market. The chainstore can gain nothing from building a reputation for
ferocity, because it is common knowledge that he will Collude with the last entrant anyway.
So he might as well Collude in the 19th market. But we can say the same of the 18th market
and— by continuing backward induction— of every market, including the first. This result
is called the Chainstore Paradox after Selten (1978) .

Backward induction ensures that the strategy profile is a subgame perfect equilibrium.
There are other Nash equilibria— (Always Fight, Never Enter), for example— but because
of the Chainstore Paradox they are not perfect.

The Repeated Prisoner’s Dilemma

The Prisoner’s Dilemma is similar to Entry Deterrence I. Here the prisoners would like
to commit themselves to Silence, but, in the absence of commitment, they Blame. The
Chainstore Paradox can be applied to show that repetition does not induce cooperative
behavior. Both prisoners know that in the last repetition, both will Blame. After 18
repetitions, they know that no matter what happens in the 19th, both will Blame in the
20th, so they might as well Blame in the 19th too. Building a reputation is pointless,
because in the 20th period it is not going to matter. Proceeding inductively, both players
Blame in every period, the unique perfect equilibrium outcome.

In fact, as a consequence of the fact that the one-shot Prisoner’s Dilemma has a
dominant-strategy equilibrium, blaming is the only Nash outcome for the repeated Pris-
oner’s Dilemma, not just the only perfect outcome. The argument of the previous paragraph
did not show that blaming was the unique Nash outcome. To show subgame perfectness,
we worked back from the end using longer and longer subgames. To show that blaming
is the only Nash outcome, we do not look at subgames, but instead rule out successive
classes of strategies from being Nash. Consider the portions of the strategy which apply
to the equilibrium path (that is, the portions directly relevant to the payoffs). No strategy
in the class that calls for Silence in the last period can be a Nash strategy, because the
same strategy with Blame replacing Silence would dominate it. But if both players have
strategies calling for blaming in the last period, then no strategy that does not call for
blaming in the next-to-last period is Nash, because a player should deviate by replacing
Silence with Blame in the next- to-last period. The argument can be carried back to the
first period, ruling out any class of strategies that does not call for blaming everywhere
along the equilibrium path.

The strategy of always blaming is not a dominant strategy, as it is in the one-shot game,
because it is not the best response to various suboptimal strategies such as (Silence until
the other player Blamees, then Silence for the rest of the game). Moreover, the uniqueness
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is only on the equilibrium path. Nonperfect Nash strategies could call for cooperation at
nodes far away from the equilibrium path, since that action would never have to be taken.
If Row has chosen (Always Blame), one of Column’s best responses is (Always Blame unless
Row has chosen Silence ten times; then always Silence).

5.2 Infinitely Repeated Games, Minimax Punishments, and the Folk Theorem

The contradiction between the Chainstore Paradox and what many people think of as
real world behavior has been most successfully resolved by adding incomplete information
to the model, as will be seen in Section 6.4. Before we turn to incomplete information,
however, we will explore certain other modifications. One idea is to repeat the Prisoner’s
Dilemma an infinite number of times instead of a finite number (after all, few economies
have a known end date). Without a last period, the inductive argument in the Chainstore
Paradox fails.

In fact, we can find a simple perfect equilibrium for the infinitely repeated Prisoner’s
Dilemma in which both players cooperate—a game in which both players adopt the Grim
Strategy.

Grim Strategy
1 Start by choosing Silence.
2 Continue to choose Silence unless some player has chosen Blame, in which case choose
Blame forever.

Notice that the Grim Strategy says that even if a player is the first to deviate and
choose Blame, he continues to choose Blame thereafter.

If Column uses the Grim Strategy, the Grim Strategy is weakly Row’s best response.
If Row cooperates, he will continue to receive the high (Silence, Silence) payoff forever. If
he blamees, he will receive the higher (Blame, Silence) payoff once, but the best he can
hope for thereafter is the (Blame, Blame) payoff.

Even in the infinitely repeated game, cooperation is not immediate, and not every
strategy that punishes blaming is perfect. A notable example is the strategy of Tit-for-Tat.

Tit-for-Tat
1 Start by choosing Silence.
2 Thereafter, in period n choose the action that the other player chose in period (n− 1).

If Column uses Tit-for-Tat, Row does not have an incentive to Blame first, because
if Row cooperates he will continue to receive the high (Silence, Silence) payoff, but if
he blamees and then returns to Tit-for-Tat, the players alternate (Blame, Silence) with
(Silence,Blame) forever. Row’s average payoff from this alternation would be lower than
if he had stuck to (Silence, Silence), and would swamp the one-time gain. But Tit-for-Tat
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is almost never perfect in the infinitely repeated Prisoner’s Dilemma without discounting,
because it is not rational for Column to punish Row’s initial Blame. Adhering to Tit-
for-Tat’s punishments results in a miserable alternation of Blame and Silence, so Column
would rather ignore Row’s first Blame. The deviation is not from the equilibrium path
action of Silence, but from the off-equilibrium action rule of Blame in response to a Blame.
Thus, Tit-for-Tat, unlike the Grim Strategy, is not subgame perfect. (See Kalai, Samet &
Stanford (1988) and Problem 5.5 for more on this point.)

Unfortunately, although eternal cooperation is a perfect equilibrium outcome in the
infinite game under at least one strategy, so is practically anything else, including eternal
blaming. The multiplicity of equilibria is summarized by the Folk Theorem, so called
because its origins are hazy.1

Theorem 1 (the Folk Theorem)
In an infinitely repeated n-person game with finite action sets at each repetition, any pro-
file of actions observed in any finite number of repetitions is the unique outcome of some
subgame perfect equilibrium given
Condition 1: The rate of time preference is zero, or positive and sufficiently small;
Condition 2: The probability that the game ends at any repetition is zero, or positive and
sufficiently small; and
Condition 3: The set of payoff profiles that strictly Pareto dominate the minimax payoff
profiles in the mixed extension of the one-shot game is n- dimensional.

What the Folk Theorem tells us is that claiming that particular behavior arises in a
perfect equilibrium is meaningless in an infinitely repeated game. This applies to any game
that meets conditions 1 to 3, not just to the Prisoner’s Dilemma. If an infinite amount of
time always remains in the game, a way can always be found to make one player willing to
punish some other player for the sake of a better future, even if the punishment currently
hurts the punisher as well as the punished. Any finite interval of time is insignificant
compared to eternity, so the threat of future reprisal makes the players willing to carry out
the punishments needed.

We will next discuss conditions 1 to 3.

Condition 1: Discounting

The Folk Theorem helps answer the question of whether discounting future payments lessens
the influence of the troublesome Last Period. Quite to the contrary, with discounting, the
present gain from blaming is weighted more heavily and future gains from cooperation more
lightly. If the discount rate is very high the game almost returns to being one-shot. When
the real interest rate is 1,000 percent, a payment next year is little better than a payment
a hundred years hence, so next year is practically irrelevant. Any model that relies on a
large number of repetitions also assumes that the discount rate is not too high.

Allowing a little discounting is none the less important to show there is no discontinuity

1There is a multiplicity of Folk Theorems too, since the idea can be formalized in many ways and
in many settings— infinitely or finitely repeated games, complete or incomplete information, overlapping
generations, epsilon-equilibria, and so forth. Benoit & Krishna (2000) attempt a synthesis, using the basic
principle that many things can happen if there is not an end-game that can pin down the equilibrium.
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at the discount rate of zero. If we come across an undiscounted, infinitely repeated game
with many equilibria, the Folk Theorem tells us that adding a low discount rate will not
reduce the number of equilibria. This contrasts with the effect of changing the model by
having a large but finite number of repetitions, a change which often eliminates all but one
outcome by inducing the Chainstore Paradox.

A discount rate of zero supports many perfect equilibria, but if the rate is high enough,
the only equilibrium outcome is eternal blaming. We can calculate the critical value for
given parameters. The Grim Strategy imposes the heaviest possible punishment for deviant
behavior. Using the payoffs for the Prisoner’s Dilemma from Table 2a in the next section,
the equilibrium payoff from the Grim Strategy is the current payoff of 5 plus the value of
the rest of the game, which from Table 2 of Chapter 4 is 5

r
. If Row deviated by blaming,

he would receive a current payoff of 10, but the value of the rest of the game would fall to
0. The critical value of the discount rate is found by solving the equation 5 + 5

r
= 10 + 0,

which yields r = 1, a discount rate of 100 percent or a discount factor of δ = 0.5. Unless
the players are extremely impatient, blaming is not much of a temptation.

Condition 2: A probability of the game ending

Time preference is fairly straightforward, but what is surprising is that assuming that the
game ends in each period with probability θ does not make a drastic difference. In fact, we
could even allow θ to vary over time, so long as it never became too large. If θ > 0, the game
ends in finite time with probability one; or, put less dramatically, the expected number of
repetitions is finite, but it still behaves like a discounted infinite game, because the expected
number of future repetitions is always large, no matter how many have already occurred.
The game still has no Last Period, and it is still true that imposing one, no matter how far
beyond the expected number of repetitions, would radically change the results.

The following two situations are different from each other.
“1 The game will end at some uncertain date before T .”
“2 There is a constant probability of the game ending.”

In situation (1), the game is like a finite game, because, as time passes, the maximum
length of time still to run shrinks to zero. In situation (2), even if the game will end by
T with high probability, if it actually lasts until T the game looks exactly the same as at
time zero. The fourth verse from the hymn “Amazing grace” puts this stationarity very
nicely (though I expect it is supposed to apply to a game with θ = 0).

When we’ve been there ten thousand years,
Bright shining as the sun,
We’ve no less days to sing God’s praise
Than when we’d first begun.

Condition 3: Dimensionality

The “minimax payoff” mentioned in Theorem 1 is the payoff that results if all the other
players pick strategies solely to punish player i, and he protects himself as best he can.
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The set of strategies si∗
−i is a set of (n − 1) minimax strategies chosen by all the

players except i to keep i’s payoff as low as possible, no matter how he responds. si∗
−i solves

Minimize
s−i

Maximum
si πi(si, s−i). (1)

Player i’s minimax payoff, minimax value, or security value is his payoff from the
solution of (1).

The dimensionality condition is needed only for games with three or more players. It
is satisfied if there is some payoff profile for each player in which his payoff is greater than
his minimax payoff but still different from the payoff of every other player. Figure 1 shows
how this condition is satisfied for the two-person Prisoner’s Dilemma of Table 2a a few
pages beyond this paragraph, but not for the two-person Ranked Coordination game. It
is also satisfied by the n-person Prisoner’s Dilemma in which a solitary blameer gets a
higher payoff than his cooperating fellow-prisoners, but not by the n- person Ranked Co-
ordination game, in which all the players have the same payoff. The condition is necessary
because establishing the desired behavior requires some way for the other players to punish
a deviator without punishing themselves.

Figure 1: The Dimensionality Condition

An alternative to the dimensionality condition in the Folk Theorem is

Condition 3′: The repeated game has a “desirable” subgame-perfect equilibrium in which
the strategy profile s played each period gives player i a payoff that exceeds his payoff from
some other “punishment” subgame-perfect equilibrium in which the strategy profile si is
played each period:

∃s : ∀i, ∃si : πi(s
i) < πi(s).
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Condition 3′ is useful because sometimes it is easy to find a few perfect equilibria. To
enforce the desired pattern of behavior, use the “desirable” equilibrium as a carrot and the
“punishment” equilibrium as a self-enforcing stick (see Rasmusen [1992a]).

Minimax and Maximin

In discussions of strategies which enforce cooperation, the question of the maxi-
mum severity of punishment strategies frequently arises. Thus, the idea of the minimax
strategy—the most severe sanction possible if the offender does not cooperate in his own
punishment— entered into the statement of the Folk Theorem. The corresponding strategy
for an offender trying to protect himself from punishment, is the maximin strategy.

The strategy s∗i is a maximin strategy for player i if, given that the other players
pick strategies to make i’s payoff as low as possible, s∗i gives i the highest possible payoff.
In our notation, s∗i solves

Maximize
si

Minimum
s−i πi(si, s−i). (2)

The following formulas show how to calculate the minimax and maximin strategies for
a two-player game with Player 1 as i.

Maximin: Maximum Minimum π1

s1 s2

Minimax: Minimum Maximum π1

s2 s1

In the Prisoner’s Dilemma, the minimax and maximin strategies are both Blame.
Although the Welfare Game (Chapter 3’s Table 1) has only a mixed strategy Nash equilib-
rium, if we restrict ourselves to the pure strategies (just for illustration here) the Pauper’s
maximin strategy is Try to Work, which guarantees him at least 1, and his strategy for
minimaxing the Government is Be Idle, which prevents the Government from getting more
than zero.

Under minimax, Player 2 is purely malicious but must move first (at least in choosing
a mixing probability) in his attempt to cause player 1 the maximum pain. Under maximin,
Player 1 moves first, in the belief that Player 2 is out to get him. In variable-sum games,
minimax is for sadists and maximin for paranoids. In zero-sum games, the players are
merely neurotic. Minimax is for optimists, and maximin is for pessimists.

The maximin strategy need not be unique, and it can be in mixed strategies. Since
maximin behavior can also be viewed as minimizing the maximum loss that might be
suffered, decision theorists refer to such a policy as a minimax criterion, a catchier
phrase (Luce & Raiffa [1957], p. 279).

It is tempting to use maximin strategies as the basis of an equilibrium concept. A
maximin equilibrium is made up of a maximin strategy for each player. Such a strategy
might seem reasonable because each player then has protected himself from the worst harm
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possible. Maximin strategies have very little justification, however, for a rational player.
They are not simply the optimal strategies for risk-averse players, because risk aversion is
accounted for in the utility payoffs. The players’ implicit beliefs can be inconsistent in a
maximin equilibrium, and a player must believe that his opponent would choose the most
harmful strategy out of spite rather than self-interest if maximin behavior is to be rational.

The usefulness of minimax and maximin strategies is not in directly predicting the
best strategies of the players, but in setting the bounds of how their strategies affect their
payoffs, as in condition 3 of Theorem 1.

It is important to remember that minimax and maximin strategies are not always pure
strategies. In the Minimax Illustration Game of Table 1, which I take from Fudenerg &
Tirole (1991a, p. 150), Row can guarantee himself a payoff of 0 by choosing Down, so that
is his maximin strategy. Column cannot hold Row’s payoff down to 0, however, by using a
pure minimax strategy. If Column chooses Left, Row can choose Middle and get a payoff
of 1; if Column chooses Right, Row can choose Up and get a payoff of 1. Column can,
however, hold Row’s payoff down to 0 by choosing a mixed minimax strategy of (Probability
0.5 of Left, Probability 0.5 of Right). Row would then respond with Down, for a minimax
payoff of 0, since either Up, Middle, or a mixture of the two would give him a payoff of
−0.5 (= 0.5(−2) + 0.5(1)).

Table 1: The Minimax Illustration Game

Column
Left Right

Up −2, 2 1 ,−2

Row: Middle 1 ,−2 −2, 2

Down 0, 1 0, 1

Payoffs to: (Row, Column). Best-response payoffs are boxed.

Column’s maximin and minimax strategies can also be computed. The strategy for
minimaxing Column is (Probability 0.5 of Up, Probability 0.5 of Middle), his maximin
strategy is (Probability 0.5 of Left, Probability 0.5 of Right), and his minimax payoff is 0.

In two-person zero-sum games, minimax and maximin strategies are more directly use-
ful, because when Player 1 reduces Player 2’s payoff, he increases his own payoff. Punishing
the other player is equivalent to rewarding yourself. This is the origin of the celebrated
Minimax Theorem (von Neumann [1928]), which says that a minimax equilibrium exists
in pure or mixed strategies for every two-person zero-sum game and is identical to the
maximin equilibrium. Unfortunately, the games that come up in applications are usually
not zero-sum games, so the Minimax Theorem usually cannot be applied.

Precommitment

What if we use metastrategies, abandoning the idea of perfectness by allowing players to
commit at the start to a strategy for the rest of the game? We would still want to keep the
game noncooperative by disallowing binding promises, but we could model it as a game
with simultaneous choices by both players, or with one move each in sequence.
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If precommitted strategies are chosen simultaneously, the equilibrium outcome of the
finitely repeated Prisoner’s Dilemma calls for always blaming, because allowing commit-
ment is the same as allowing equilibria to be nonperfect, in which case, as was shown
earlier, the unique Nash outcome is always blaming.

A different result is achieved if the players precommit to strategies in sequence. The
outcome depends on the particular values of the parameters, but one possible equilibrium
is the following: Row moves first and chooses the strategy (Silence until Column Blames;
thereafter always Blame), and Column chooses (Silence until the last period; then Blame).
The observed outcome would be for both players to choose Silence until the last period,
and then for Row to again choose Silence , but for Column to choose Blame . Row would
submit to this because if he chose a strategy that initiated blaming earlier, Column would
choose a strategy of starting to blame earlier too. The game has a second-mover advantage.

5.3 Reputation: The One-Sided Prisoner’s Dilemma

Part II of this book will analyze moral hazard and adverse selection. Under moral hazard,
a player wants to commit to high effort, but he cannot credibly do so. Under adverse
selection, a player wants to prove he is high ability, but he cannot. In both, the problem
is that the penalties for lying are insufficient. Reputation seems to offer a way out of the
problem. If the relationship is repeated, perhaps a player is willing to be honest in early
periods in order to establish a reputation for honesty which will be valuable to himself
later.

Reputation seems to play a similar role in making threats to punish credible. Usually
punishment is costly to the punisher as well as the punished, and it is not clear why the
punisher should not let bygones be bygones. Yet in 1988 the Soviet Union paid off 70-
year-old debt to dissuade the Swiss authorities from blocking a mutually beneficial new
bond issue (“Soviets Agree to Pay Off Czarist Debt to Switzerland,” Wall Street Journal,
January 19, 1988, p. 60). Why were the Swiss so vindictive towards Lenin?

The questions of why players do punish and do not cheat are really the same questions
that arise in the repeated Prisoner’s Dilemma, where the fact of an infinite number of
repetitions allows cooperation. That is the great problem of reputation. Since everyone
knows that a player will Blame, choose low effort, or default on debt in the last period,
why do they suppose he will bother to build up a reputation in the present? Why should
past behavior be any guide to future behavior?

Not all reputation problems are quite the same as the Prisoner’s Dilemma, but they
have much the same flavor. Some games, like duopoly or the original Prisoner’s Dilemma,
are two-sided in the sense that each player has the same strategy set and the payoffs are
symmetric. Others, such as the game of Product Quality (see below), are what we might
call one-sided Prisoner’s Dilemmas, which have properties similar to the Prisoner’s
Dilemma, but do not fit the usual definition because they are asymmetric. Table 2 shows
the normal forms for both the original Prisoner’s Dilemma and the one- sided version.2

The important difference is that in the one-sided Prisoner’s Dilemma at least one player

2The exact numbers are different from the Prisoner’s Dilemma in Table 1 in Chapter 1, but the ordinal
rankings are the same. Numbers such as those in Table 2 of the present chapter are more commonly used,
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really does prefer the outcome equivalent to (Silence, Silence), which is (High Quality,
Buy) in Table 2b, to anything else. He blames defensively, rather than both offensively
and defensively. The payoff (0,0) can often be interpreted as the refusal of one player to
interact with the other, for example, the motorist who refuses to buy cars from Chrysler
because he knows they once falsified odometers. Table 3 lists examples of both one-sided
and two-sided games.

Table 2: Prisoner’s Dilemmas

(a) Two-Sided (conventional)

Column
Silence Blame

Silence 5,5 → -5,10
Row: ↓ ↓

Blame 10,-5 → 0,0

Payoffs to: (Row, Column). Arrows show

how a player can increase his payoff.

(b) One-Sided

Consumer (Column)
Buy Boycott

High Quality 5,5 ← 0,0
Seller (Row): ↓ l

Low Quality 10, -5 → 0,0

Payoffs to: (Seller, Con-

sumer). Arrows show how a player can increase his payoff.

Table 3 Some Repeated Games in which Reputation Is Important

because it is convenient to normalize the (Blame, Blame) payoffs to (0,0) and to make most of the numbers
positive rather than negative.
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Application Sidedness Players Actions

Prisoner’s Dilemma two-sided Row Silence/Blame
Column Silence/Blame

Duopoly two-sided Firm High price/Low price
Firm High price/Low price

Employment two-sided Employer Bonus/No bonus
Employee Work/Shirk

Product Quality one-sided Consumer Buy/Boycott
Seller High quality/low quality

Entry Deterrence one-sided Incumbent Low price/High price
Entrant Enter/Stay out

Financial Disclosure one-sided Corporation Truth/Lies
Investor Invest/Refrain

Borrowing one-sided Lender Lend/Refuse
Borrower Repay/Default

The Nash and iterated dominance equilibria in the one-sided Prisoner’s Dilemma
are still (Blame, Blame), but it is not a dominant-strategy equilibrium. Column does
not have a dominant strategy, because if Row were to choose Silence, Column would
also choose Silence, to obtain the payoff of 5; but if Row chooses Blame, Column would
choose Blame, for a payoff of zero. Blame is however, weakly dominant for Row, which
makes (Blame, Blame) the iterated dominant strategy equilibrium. In both games, the
players would like to persuade each other that they will cooperate, and devices that induce
cooperation in the one-sided game will usually obtain the same result in the two-sided
game.

5.4 Product Quality in an Infinitely Repeated Game

The Folk Theorem tells us that some perfect equilibrium of an infinitely repeated game—
sometimes called an infinite horizon model— can generate any pattern of behavior
observed over a finite number of periods. But since the Folk Theorem is no more than a
mathematical result, the strategies that generate particular patterns of behavior may be
unreasonable. The theorem’s value is in provoking close scrutiny of infinite horizon models
so that the modeller must show why his equilibrium is better than a host of others. He must
go beyond satisfaction of the technical criterion of perfectness and justify the strategies on
other grounds.

In the simplest model of product quality, a seller can choose between producing costly
high quality or costless low quality, and the buyer cannot determine quality before he
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purchases. If the seller would produce high quality under symmetric information, we have
a one-sided Prisoner’s Dilemma, as in Table 2b. Both players are better off when the
seller produces high quality and the buyer purchases the product, but the seller’s weakly
dominant strategy is to produce low quality, so the buyer will not purchase. This is also
an example of moral hazard, the topic of chapter 7.

A potential solution is to repeat the game, allowing the firm to choose quality at each
repetition. If the number of repetitions is finite, however, the outcome stays the same
because of the Chainstore Paradox. In the last repetition, the subgame is identical to the
one- shot game, so the firm chooses low quality. In the next-to-last repetition, it is foreseen
that the last period’s outcome is independent of current actions, so the firm also chooses
low quality, an argument that can be carried back to the first repetition.

If the game is repeated an infinite number of times, the Chainstore Paradox is in-
applicable and the Folk Theorem says that a wide range of outcomes can be observed in
equilibrium. Klein & Leffler (1981) construct a plausible equilibrium for an infinite period
model. Their original article, in the traditional verbal style of UCLA, does not phrase the
result in terms of game theory, but we will recast it here, as I did in Rasmusen (1989b). In
equilibrium, the firm is willing to produce a high quality product because it can sell at a
high price for many periods, but consumers refuse to ever buy again from a firm that has
once produced low quality. The equilibrium price is high enough that the firm is unwilling
to sacrifice its future profits for a one- time windfall from deceitfully producing low quality
and selling it at a high price. Although this is only one of a large number of subgame
perfect equilibria, the consumers’ behavior is simple and rational: no consumer can benefit
by deviating from the equilibrium.

Product Quality

Players
An infinite number of potential firms and a continuum of consumers.

The Order of Play
1 An endogenous number n of firms decide to enter the market at cost F .
2 A firm that has entered chooses its quality to be High or Low, incurring the constant
marginal cost c if it picks High and zero if it picks Low. The choice is unobserved by
consumers. The firm also picks a price p.
3 Consumers decide which firms (if any) to buy from, choosing firms randomly if they are
indifferent. The amount bought from firm i is denoted qi.
4 All consumers observe the quality of all goods purchased in that period.
5 The game returns to (2) and repeats.

Payoffs
The consumer benefit from a product of low quality is zero, but consumers are willing to
buy quantity q(p) =

∑n
i=1 qi for a product believed to be high quality, where dq

dp
< 0.

If a firm stays out of the market, its payoff is zero.
If firm i enters, it receives −F immediately. Its current end-of- period payoff is qip if it
produces Low quality and qi(p− c) if it produces High quality. The discount rate is r ≥ 0.
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That the firm can produce low quality items at zero marginal cost is unrealistic, but
it is only a simplifying assumption. By normalizing the cost of producing low quality to
zero, we avoid having to carry an extra variable through the analysis without affecting the
result.

The Folk Theorem tells us that this game has a wide range of perfect outcomes,
including a large number with erratic quality patterns like (High, High, Low, High, Low,
Low. . .). If we confine ourselves to pure- strategy equilibria with the stationary outcome of
constant quality and identical behavior by all firms in the market, then the two outcomes
are low quality and high quality. Low quality is always an equilibrium outcome, since it is
an equilibrium of the one-shot game. If the discount rate is low enough, high quality is also
an equilibrium outcome, and this will be the focus of our attention. Consider the following
strategy profile:

Firms. ñ firms enter. Each produces high quality and sells at price p̃. If a firm ever
deviates from this, it thereafter produces low quality (and sells at the same price p̃). The
values of p̃ and ñ are given by equations (4) and (8) below.

Buyers. Buyers start by choosing randomly among the firms charging p̃. Thereafter, they
remain with their initial firm unless it changes its price or quality, in which case they switch
randomly to a firm that has not changed its price or quality.

This strategy profile is a perfect equilibrium. Each firm is willing to produce high quality
and refrain from price-cutting because otherwise it would lose all its customers. If it has
deviated, it is willing to produce low quality because the quality is unimportant, given the
absence of customers. Buyers stay away from a firm that has produced low quality because
they know it will continue to do so, and they stay away from a firm that has cut the
price because they know it will produce low quality. For this story to work, however, the
equilibrium must satisfy three constraints that will be explained in more depth in Section
7.3: incentive compatibility, competition, and market clearing.

The incentive compatibility constraint says that the individual firm must be willing
to produce high quality. Given the buyers’ strategy, if the firm ever produces low quality it
receives a one-time windfall profit, but loses its future profits. The tradeoff is represented
by constraint (3), which is satisfied if the discount rate is low enough.

qip

1 + r
≤ qi(p− c)

r
(incentive compatibility). (3)

Inequality (3) determines a lower bound for the price, which must satisfy

p̃ ≥ (1 + r)c. (4)

Condition (4) will be satisfied as an equality, because any firm trying to charge a price
higher than the quality- guaranteeing p̃ would lose all its customers.

The second constraint is that competition drives profits to zero, so firms are indifferent
between entering and staying out of the market.

qi(p− c)

r
= F (competition) (5)
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Treating (3) as an equation and using it to replace p in equation (5) gives

qi =
F

c
. (6)

We have now determined p and qi, and only n remains, which is determined by the equality
of supply and demand. The market does not always clear in models of asymmetric infor-
mation (see Stiglitz [1987]), and in this model each firm would like to sell more than its
equilibrium output at the equilibrium price, but the market output must equal the quantity
demanded by the market.

nqi = q(p). (market clearing) (7)

Combining equations (3), (6), and (7) yields

ñ =
cq([1 + r]c)

F
. (8)

We have now determined the equilibrium values, the only difficulty being the standard
existence problem caused by the requirement that the number of firms be an integer (see
note N5.4).

The equilibrium price is fixed because F is exogenous and demand is not perfectly
inelastic, which pins down the size of firms. If there were no entry cost, but demand
were still elastic, then the equilibrium price would still be the unique p that satisfied
constraint (3), and the market quantity would be determined by q(p), but F and qi would
be undetermined. If consumers believed that any firm which might possibly produce high
quality paid an exogenous dissipation cost F , the result would be a continuum of equilibria.
The firms’ best response would be for ñ of them to pay F and produce high quality at price
p̃, where ñ is determined by the zero profit condition as a function of F . Klein & Leffler note
this indeterminacy and suggest that the profits might be dissipated by some sort of brand-
specific capital. This is especially plausible when there is asymmetric information, so firms
might wish to use capital spending to signal that they intend to be in the business for a long
time; Rasmusen & Perri (2001) shows a way to model this. Another good explanation for
which firms enjoy the high profits of good reputation is simply the history of the industry.
Schmalensee (1982) shows how a pioneering brand can retain a large market share because
consumers are unwilling to investigate the quality of new brands.

The repeated-game model of reputation for product quality can be used to model many
other kinds of reputation too. Even before Klein & Leffler (1981), Telser titled his 1980
article “A Theory of Self- Enforcing Agreements,” and looked at a number of situations in
which repeated play balanced the short-run gain from cheating against the long-run gain
from cooperation. We will see the idea later in this book in in Section 8.1 as part of the
idea of the “efficiency wage”.

Keep in mind, however, that “reputation” can be modelled in two distinct ways. In
our next model, a firm with a good reputation is one which produces high quality to avoid
losing that reputation, a “moral hazard” model because the focus is on the player’s choice
of actions. An alternative is a model in which the firm with a good reputation is one which
has shown that it would not produce low quality even if there were no adverse consequences
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from doing so, an “adverse selection” model because the focus is on the player’s type. One
kind of reputation is for deciding to be good; the other is for Nature having chosen the
player to be good. As you will see, the Gang of Four model of Chapter 6 will mix the two.

*5.5 Markov Equilibria and Overlapping Generations: Customer Switching
Costs

The next model demonstrates a general modelling technique, the overlapping genera-
tions model, in which different cohorts of otherwise identical players enter and leave the
game with overlapping “lifetimes,” and a new equilibrium concept, “Markov equilibrium.”
The best-known example of an overlapping-generations model is the original consumption-
loans model of Samuelson (1958). The models are most often used in macroeconomics, but
they can also be useful in microeconomics. Klemperer (1987) has stimulated considerable
interest in customers who incur costs in moving from one seller to another. The model
used here will be that of Farrell & Shapiro (1988).

Customer Switching Costs

Players
Firms Apex and Brydox, and a series of customers, each of whom is first called a youngster
and then an oldster.

The Order of Play
1a Brydox, the initial incumbent, picks the incumbent price pi

1.
1b Apex, the initial entrant, picks the entrant price pe

1.
1c The oldster picks a firm.
1d The youngster picks a firm.
1e Whichever firm attracted the youngster becomes the incumbent.
1f The oldster dies and the youngster becomes an oldster.
2a Return to (1a), possibly with new identities for entrant and incumbent.

Payoffs
The discount factor is δ. The customer reservation price is R and the switching cost is c.
The per period payoffs in period t are, for j = (i, e),

πfirm j =


0 if no customers are attracted.

pj
t if just oldsters or just youngsters are attracted.

2pj
t if both oldsters and youngsters are attracted.

πoldster =

{
R− pi

t if he buys from the incumbent.
R− pe

t − c if he switches to the entrant.

πyoungster =

{
R− pi

t if he buys from the incumbent.
R− pe

t if he buys from the entrant.

Finding all the perfect equilibria of an infinite game like this one is difficult, so we
will follow Farrell and Shapiro in limiting ourselves to the much easier task of finding the
perfect Markov equilibrium, which is unique.
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A Markov strategy is a strategy that, at each node, chooses the action independently
of the history of the game except for the immediately preceding action (or actions, if they
were simultaneous).

Here, a firm’s Markov strategy is its price as a function of whether the particular is
the incumbent or the entrant, and not a function of the entire past history of the game.

There are two ways to use Markov strategies: (1) just look for equilibria that use
Markov strategies, and (2) disallow nonMarkov strategies and then look for equilibria.
Because the first way does not disallow non-Markov strategies, the equilibrium must be
such that no player wants to deviate by using any other strategy, whether Markov or not.
This is just a way of eliminating possible multiple equilibria by discarding ones that use
non-Markov strategies. The second way is much more dubious, because it requires the
players not to use non- Markov strategies, even if they are best responses. A perfect
Markov equilibrium uses the first approach: it is a perfect equilibrium that happens to
use only Markov strategies.

Brydox, the initial incumbent, moves first and chooses pi low enough that Apex is
not tempted to choose pe < pi − c and steal away the oldsters. Apex’s profit is pi if it
chooses pe = pi and serves just youngsters, and 2(pi− c) if it chooses pe = pi− c and serves
both oldsters and youngsters. Brydox chooses pi to make Apex indifferent between these
alternatives, so

pi = 2(pi − c), (9)

and
pi = pe = 2c. (10)

In equilibrium, Apex and Brydox take turns being the incumbent and charge the same
price.

Because the game lasts forever and the equilibrium strategies are Markov, we can use
a trick from dynamic programming to calculate the payoffs from being the entrant versus
being the incumbent. The equilibrium payoff of the current entrant is the immediate
payment of pe plus the discounted value of being the incumbent in the next period:

π∗
e = pe + δπ∗

i . (11)

The incumbent’s payoff can be similarly stated as the immediate payment of pi plus the
discounted value of being the entrant next period:

π∗
i = pi + δπ∗

e . (12)

We could use equation (10) to substitute for pe and pi, which would leave us with the two
equations (11) and (12) for the two unknowns π∗

i and π∗
e , but an easier way to compute the

payoff is to realize that in equilibrium the incumbent and the entrant sell the same amount
at the same price, so π∗

i = π∗
e and equation (12) becomes

π∗
i = 2c + δπ∗

i . (13)

It follows that

π∗
i = π∗

e =
2c

1− δ
. (14)
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Prices and total payoffs are increasing in the switching cost c, because that is what gives
the incumbent market power and prevents ordinary competition of the ordinary Bertrand
kind to be analyzed in section 13.2. The total payoffs are increasing in δ for the usual
reason that future payments increase in value as δ approaches one.

*5.6 Evolutionary Equilibrium: Hawk-Dove

For most of this book we have been using the Nash equilibrium concept or refinements of
it based on information and sequentiality, but in biology such concepts are often inappro-
priate. The lower animals are less likely than humans to think about the strategies of their
opponents at each stage of a game. Their strategies are more likely to be preprogrammed
and their strategy sets more restricted than the businessman’s, if perhaps not more so than
his customer’s. In addition, behavior evolves, and any equilibrium must take account of
the possibility of odd behavior caused by the occasional mutation. That the equilibrium
is common knowledge, or that players cannot precommit to strategies, are not compelling
assumptions. Thus, the ideas of Nash equilibrium and sequential rationality are much less
useful than when game theory is modelling rational players.

Game theory has grown to some importance in biology, but the style is different than
in economics. The goal is not to explain how players would rationally pick actions in a
given situation, but to explain how behavior evolves or persists over time under exogenous
shocks. Both approaches end up defining equilibria to be strategy profiles that are best
responses in some sense, but biologists care much more about the stability of the equilibrium
and how strategies interact over time. In section 3.5, we touched briefly on the stability
of the Cournot equilibrium, but economists view stability as a pleasing by-product of the
equilibrium rather than its justification. For biologists, stability is the point of the analysis.

Consider a game with identical players who engage in pairwise contests. In this special
context, it is useful to think of an equilibrium as a strategy profile such that no player with
a new strategy can enter the environment (invade) and receive a higher expected payoff
than the old players. Moreover, the invading strategy should continue to do well even if
it plays itself with finite probability, or its invasion could never grow to significance. In
the commonest model in biology, all the players adopt the same strategy in equilibrium,
called an evolutionarily stable strategy. John Maynard Smith originated this idea, which
is somewhat confusing because it really aims at an equilibrium concept, which involves
a strategy profile, not just one player’s strategy. For games with pairwise interactions
and identical players, however, the evolutionarily stable strategy can be used to define an
equilibrium concept.

A strategy s∗ is an evolutionarily stable strategy, or ESS, if, using the notation
π(si, s−i) for player i’s payoff when his opponent uses strategy s−i, for every other strategy
s′ either

π(s∗, s∗) > π(s′, s∗) (15)

or
(a) π(s∗, s∗) = π(s′, s∗)
and
(b) π(s∗, s′) > π(s′, s′).

(16)
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If condition (15) holds, then a population of players using s∗ cannot be invaded by a deviant
using s′. If condition (16) holds, then s′ does well against s∗, but badly against itself, so
that if more than one player tried to use s′ to invade a population using s∗, the invaders
would fail.

We can interpret ESS in terms of Nash equilibrium. Condition (15) says that s∗ is a
strong Nash equilibrium (although not every strong Nash strategy is an ESS). Condition
(16) says that if s∗ is only a weak Nash strategy, the weak alternative s′ is not a best
response to itself. ESS is a refinement of Nash, narrowed by the requirement that ESS not
only be a best response, but that (a) it have the highest payoff of any strategy used in
equilibrium (which rules out equilibria with asymmetric payoffs), and (b) it be a strictly
best response to itself.

The motivations behind the two equilibrium concepts are quite different, but the sim-
ilarities are useful because even if the modeller prefers ESS to Nash, he can start with the
Nash strategies in his efforts to find an ESS.

As an example of (a), consider the Battle of the Sexes. In it, the mixed strategy
equilibrium is an ESS, because a player using it has as high a payoff as any other player.
The two pure strategy equilibria are not made up of ESS’s, though, because in each of
them one player’s payoff is higher than the other’s. Compare with Ranked Coordination,
in which the two pure strategy equilibria and the mixed strategy equilibrium are all made
up of ESS’s. (The dominated equilibrium strategy is nonetheless an ESS, because given
that the other players are using it, no player could do as well by deviating.)

As an example of (b), consider the Utopian Exchange Economy game in Table 4,
adapted from problem 7.5 of Gintis (2000). In Utopia, each citizen can produce either
one or two units of individualized output. He will then go into the marketplace and meet
another citizen. If either of them produced only one unit, trade cannot increase their
payoffs. If both of them produced two, however, they can trade one unit for one unit, and
both end up happier with their increased variety of consumption.

Table 4 The Utopian Exchange Economy Game

Jones
Low Output HighOutput

LowOutput 1, 1 ↔ 1, 1
Smith: l ↓

High Output 1,1 → 2,2
Payoffs to: (Smith, Jones). Arrows show how a player can increase his payoff.

This game has three Nash equilibria, one of which is in mixed strategies. Since all
strategies but High Output are weakly dominated, that alone is an ESS. Low Output fails to
meet condition (16b), because it is not the strictly best response to itself. If the economy
began with all citizens choosing Low Output, then if Smith deviated to High Output he
would not do any better, but if two people deviated to High Output, they would do better
in expectation because they might meet each other and receive the payoff of (2,2).
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An Example of ESS: Hawk-Dove

The best-known illustration of the ESS is the game of Hawk-Dove . Imagine that we have a
population of birds, each of whom can behave as an aggressive Hawk or a pacific Dove. We
will focus on two randomly chosen birds, Bird One and Bird Two. Each bird has a choice of
what behavior to choose on meeting another bird. A resource worth V = 2 “fitness units”
is at stake when the two birds meet. If they both fight, the loser incurs a cost of C = 4,
which means that the expected payoff when two Hawks meet is −1 (= 0.5[2] + 0.5[−4])
for each of them. When two Doves meet, they split the resource, for a payoff of 1 apiece.
When a Hawk meets a Dove, the Dove flees for a payoff of 0, leaving the Hawk with a
payoff of 2. Table 5 summarizes this.

Table 5 Hawk-Dove: Economics Notation

Bird Two
Hawk Dove

Hawk -1,-1 → 2,0
Bird One: ↓ ↑

Dove 0, 2 ← 1,1
Payoffs to: (Bird One, Bird Two). Arrows show how a player can increase his payoff.

These payoffs are often depicted differently in biology games. Since the two players
are identical, one can depict the payoffs by using a table showing the payoffs only of the
row player. Applying this to Hawk-Dove generates Table 6.

Table 6 Hawk-Dove: Biology Notation

Bird Two
Hawk Dove

Hawk -1 2
Bird One:

Dove 0 1
Payoffs to: (Bird One)

Hawk-Dove is Chicken with new feathers. The two games have the same ordinal
ranking of payoffs, as can be seen by comparing Table 5 with Chapter 3’s Table 2, and
their equilibria are the same except for the mixing parameters. Hawk-Dove has no
symmetric pure-strategy Nash equilibrium, and hence no pure-strategy ESS, since in the
two asymmetric Nash equilibria, Hawk gives a bigger payoff than Dove, and the doves
would disappear from the population. In the ESS for this game, neither hawks nor doves
completely take over the environment. If the population consisted entirely of hawks, a dove
could invade and obtain a one-round payoff of 0 against a hawk, compared to the −1 that
a hawk obtains against itself. If the population consisted entirely of doves, a hawk could
invade and obtain a one-round payoff of 2 against a dove, compared to the 1 that a dove
obtains against a dove.
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In the mixed-strategy ESS, the equilibrium strategy is to be a hawk with probability
0.5 and a dove with probability 0.5, which can be interpreted as a population 50 percent
hawks and 50 percent doves. As in the mixed-strategy equilibria in chapter 3, the players are
indifferent as to their strategies. The expected payoff from being a hawk is the 0.5(2) from
meeting a dove plus the 0.5(−1) from meeting another hawk, a sum of 0.5. The expected
payoff from being a dove is the 0.5(1) from meeting another dove plus the 0.5(0) from
meeting a hawk, also a sum of 0.5. Moreover, the equilibrium is stable in a sense similar to
the Cournot equilibrium. If 60 percent of the population were hawks, a bird would have a
higher fitness level as a dove. If “higher fitness” means being able to reproduce faster, the
number of doves increases and the proportion returns to 50 percent over time.

The ESS depends on the strategy sets allowed the players. If two birds can base their
behavior on commonly observed random events such as which bird arrives at the resource
first, and V < C (as specified above), then a strategy called the bourgeois strategy is
an ESS. Under this strategy, the bird respects property rights like a good bourgeois; it
behaves as a hawk if it arrives first, and a dove if it arrives second, where we assume the
order of arrival is random. The bourgeois strategy has an expected payoff of 1 from meeting
itself, and behaves exactly like a 50:50 randomizer when it meets a strategy that ignores
the order of arrival, so it can successfully invade a population of 50:50 randomizers. But
the bourgeois strategy is a correlated strategy (see section 3.3), and requires something like
the order of arrival to decide which of two identical players will play Hawk.

The ESS is suited to games in which all the players are identical and interacting in
pairs. It does not apply to games with non-identical players— wolves who can be wily or big
and deer who can be fast or strong— although other equilibrium concepts of the same flavor
can be constructed. The approach follows three steps, specifying (1) the initial population
proportions and the probabilities of interactions, (2) the pairwise interactions, and (3)
the dynamics by which players with higher payoffs increase in number in the population.
Economics games generally use only the second step, which describes the strategies and
payoffs from a single interaction.

The third step, the evolutionary dynamics, is especially foreign to economics. In
specifying dynamics, the modeller must specify a difference equation (for discrete time)
or differential equation (for continuous time) that describes how the strategies employed
change over iterations, whether because players differ in the number of their descendants or
because they learn to change their strategies over time. In economics games, the adjustment
process is usually degenerate: the players jump instantly to the equilibrium. In biology
games, the adjustment process is slower and cannot be derived from theory. How quickly
the population of hawks increases relative to doves depends on the metabolism of the bird
and the length of a generation.

Slow dynamics also makes the starting point of the game important, unlike the case
when adjustment is instantaneous. Figure 2, taken from David Friedman (1991), shows
a way to graphically depict evolution in a game in which all three strategies of Hawk,
Dove, and Bourgeois are used. A point in the triangle represents a proportion of the three
strategies in the population. At point E3, for example, half the birds play Hawk, half play
Dove, and none play Bourgeois, while at E4 all the birds play Bourgeois.
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Figure 2: Evolutionary Dynamics in the Hawk-Dove- Bourgeois Game

Figure 2 shows the result of dynamics based on a function specified by Friedman
that gives the rate of change of a strategy’s proportion based on its payoff relative to the
other two strategies. Points E1, E2, E3, and E4 are all fixed points in the sense that the
proportions do not change no matter which of these points the game starts from. Only
point E4 represents an evolutionarily stable equilibrium, however, and if the game starts
with any positive proportion of birds playing Bourgeois, the proportions tend towards E4.
The original Hawk-Dove which excluded the bourgeois strategy can be viewed as the HD
line at the bottom of the triangle, and E3 is evolutionarily stable in that restricted game.

Figure 2 also shows the importance of mutation in biological games. If the population
of birds is 100 percent dove, as at E2, it stays that way in the absence of mutation, since
if there are no hawks to begin with, the fact that they would reproduce at a faster rate
than doves becomes irrelevant. If, however, a bird could mutate to play Hawk and then
pass this behavior on to his offspring, then eventually some bird would do so and the
mutant strategy would be successful. The technology of mutations can be important to
the ultimate equilibrium. In more complicated games than Hawk-Dove, it can matter
whether mutations happen to be small, accidental shifts to strategies similar to those that
are currently being played, or can be of arbitrary size, so that a superior strategy quite
different from the existing strategies might be reached.
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The idea of mutation is distinct from the idea of evolutionary dynamics, and it is
possible to use one without the other. In economics models, a mutation would correspond
to the appearance of a new action in the action set of one of the players in a game. This
is one way to model innovation: not as research followed by stochastic discoveries, but
as accidental learning. The modeller might specify that the discovered action becomes
available to players slowly through evolutionary dynamics, or instantly, in the usual style
of economics. This style of research has promise for economics, but since the technologies
of dynamics and mutation are important there is a danger of simply multiplying models
without reliable results unless the modeller limits himself to a narrow context and bases
his technology on empirical measurements.
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Notes

N5.1 Finitely repeated games and the Chainstore Paradox

• The Chainstore Paradox does not apply to all games as neatly as to Entry Deterrence and
The Prisoner’s Dilemma. If the one-shot game has only one Nash equilibrium, the perfect
equilibrium of the finitely repeated game is unique and has that same outcome. But if the
one-shot game has multiple Nash equilibria, the perfect equilibrium of the finitely repeated
game can have not only the one-shot outcomes, but others besides. See Benoit & Krishna
(1985), Harrington (1987), and Moreaux (1985).

• John Heywood is Bartlett’s source for the term “tit-for-tat,” from the French “tant pour
tant.”

• A realistic expansion of a game’s strategy space may eliminate the Chainstore Paradox.
Hirshleifer & Rasmusen (1989), for example, show that allowing the players in a multi-
person finitely repeated Prisoner’s Dilemma to ostracize offenders can enforce cooperation
even if there are economies of scale in the number of players who cooperate and are not
ostracized.

• The peculiarity of the unique Nash equilibrium for the repeated prisoner’s dilemma was
noticed long before Selten (1978) (see Luce & Raiffa [1957] p. 99), but the term Chainstore
Paradox is now generally used for all unravelling games of this kind.

• An epsilon-equilibrium is a strategy profile s∗ such that no player has more than an ε
incentive to deviate from his strategy given that the other players do not deviate. Formally,

∀i, πi(s∗i , s
∗
−i) ≥ πi(s′i, s

∗
−i)− ε, ∀s′i ∈ Si. (17)

Radner (1980) has shown that cooperation can arise as an ε-equilibrium of the finitely
repeated prisoner’s dilemma. Fudenberg & Levine (1986) compare the ε-equilibria of finite
games with the Nash equilibria of infinite games. Other concepts besides Nash can also use
the ε- equilibrium idea.

• A general way to decide whether a mathematical result is a trick of infinity is to see if the
same result is obtained as the limit of results for longer and longer finite models. Applied to
games, a good criterion for picking among equilibria of an infinite game is to select one which
is the limit of the equilibria for finite games as the number of periods gets longer. Fudenberg
& Levine (1986) show under what conditions one can find the equilibria of infinite-horizon
games by this process. For the Prisoner’s Dilemma, (Always Blame) is the only equilibrium
in all finite games, so it uniquely satisfies the criterion.

• Defining payoffs in games that last an infinite number of periods presents the problem that
the total payoff is infinite for any positive payment per period. Ways to distinguish one
infinite amount from another include the following.

1 Use an overtaking criterion. Payoff stream π is preferred to π̃ if there is some time T ∗

such that for every T ≥ T ∗,
T∑

t=1

δtπt >

T∑
t=1

δtπ̃t.

2 Specify that the discount rate is strictly positive, and use the present value. Since pay-
ments in distant periods count for less, the discounted value is finite unless the payments
are growing faster than the discount rate.
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3 Use the average payment per period, a tricky method since some sort of limit needs to be
taken as the number of periods averaged goes to infinity.

Whatever the approach, game theorists assume that the payoff function is additively
separable over time, which means that the total payoff is based on the sum or average,
possibly discounted, of the one-shot payoffs. Macroeconomists worry about this assumption,
which rules out, for example, a player whose payoff is very low if any of his one-shot payoffs
dips below a certain subsistence level. The issue of separability will arise again in section
13.5 when we discuss durable monopoly.

• Ending in finite time with probability one means that the limit of the probability the game
has ended by date t approaches one as t tends to infinity; the probability that the game
lasts till infinity is zero. Equivalently, the expectation of the end date is finite, which it
could not be were there a positive probability of an infinite length.

N5.2 Infinitely Repeated Games, Minimax Punishments, and the Folk Theorem

• Aumann (1981), Fudenberg & Maskin (1986), Fudenberg & Tirole (1991a, pp. 152-62), and
Rasmusen (1992a) tell more about the Folk Theorem. The most commonly cited version of
the Folk Theorem says that if conditions 1 to 3 are satisfied, then:

Any payoff profile that strictly pareto-dominates the minimax payoff profiles in the mixed
extension of an n-person one-shot game with finite action sets is the average payoff in some
perfect equilibrium of the infinitely repeated game.

• The evolutionary approach can also be applied to the repeated prisoner’s dilemma. Boyd
& Lorberbaum (1987) show that no pure strategy, including Tit- for-Tat, is evolutionar-
ily stable in a population-interaction version of the Prisoner’s Dilemma. Hirshleifer &
Martinez-Coll (1988) have found that Tit-for-Tat is no longer part of an ESS in an evo-
lutionary prisoner’s dilemma if (1) more complicated strategies have higher computation
costs; or (2) sometimes a Silence is observed to be a Blame by the other player. Yet biol-
ogists have found animals playing tit-for-tat— notably the sticklebacks in Milinski (1987)
who can choose whether to shirk or not in investigating predator fish.

• Trigger strategies of trigger-price strategies are an important kind of strategies for re-
peated games. Consider the oligopolist facing uncertain demand (as in Stigler [1964]). He
cannot tell whether the low demand he observes facing him is due to Nature or to price
cutting by his fellow oligopolists. Two things that could trigger him to cut his own price in
retaliation are a series of periods with low demand or one period of especially low demand.
Finding an optimal trigger strategy is a difficult problem (see Porter [1983a]). Trigger
strategies are usually not subgame perfect unless the game is infinitely repeated, in which
case they are a subset of the equilibrium strategies. Recent work has looked carefully at
what trigger strategies are possible and optimal for players in infinitely repeated games; see
Abreu, Pearce & Staccheti (1990). Many theorists have studied what happens when players
can imperfectly observe each others’ actions. For a survey, see Kandori (2002).

Empirical work on trigger strategies includes Porter (1983b), who examines price wars
between railroads in the 19th century, and Slade (1987), who concluded that price wars
among gas stations in Vancouver used small punishments for small deviations rather than
big punishments for big deviations.
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• A macroeconomist’s technical note related to the similarity of infinite games and games with
a constant probability of ending is Blanchard (1979), which discusses speculative bubbles.

• In the repeated Prisoner’s Dilemma, if the end date is infinite with positive probability
and only one player knows it, cooperation is possible by reasoning similar to that of the
Gang of Four theorem in Section 6.4.

• Any Nash equilibrium of the one-shot game is also a perfect equilibrium of the finitely or
infinitely repeated game.

N5.3 Reputation: The One-Sided Prisoner’s Dilemma

• A game that is repeated an infinite number of times without discounting is called a su-
pergame. There is no connection between the terms “supergame” and “subgame.”

• The terms, “one-sided” and “two-sided” prisoner’s dilemma, are my inventions. Only the
two-sided version is a true prisoner’s dilemma according to the definition of note N1.2.

• Empirical work on reputation is scarce. One worthwhile effort is Jarrell & Peltzman (1985),
which finds that product recalls inflict costs greatly in excess of the measurable direct costs
of the operations. The investigations into actual business practice of Macaulay (1963) is
much cited and little imitated. He notes that reputation seems to be more important than
the written details of business contracts.

• Vengeance and Gratitude. Most models have excluded these feelings (although see Jack
Hirshleifer [1987]), which can be modelled in two ways.

1 A player’s current utility from Blame or Silence depends on what the other player has
played in the past; or
2 A player’s current utility depends on current actions and the other players’ current utility
in a way that changes with past actions of the other player.

The two approaches are subtly different in interpretation. In (1), the joy of revenge is in
the action of blaming. In (2), the joy of revenge is in the discomfiture of the other player.
Especially if the players have different payoff functions, these two approaches can lead to
different results.

N5.4 Product Quality in an Infinitely Repeated Game

• The Product Quality Game may also be viewed as a principal- agent model of moral haz-
ard (see Chapter 7). The seller (an agent), takes the action of choosing quality that is
unobserved by the buyer (the principal), but which affects the principal’s payoff, an in-
terpretation used in much of the Stiglitz (1987) survey of the links between quality and
price.

The intuition behind the Klein & Leffler model is similar to the explanation for high
wages in the Shapiro & Stiglitz (1984) model of involuntary unemployment (section 8.1).
Consumers, seeing a low price, realize that with a price that low the firm cannot resist
lowering quality to make short-term profits. A large margin of profit is needed for the firm
to decide on continuing to produce high quality.
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• A paper related to Klein & Leffler (1981) is Shapiro (1983), which reconciles a high price
with free entry by requiring that firms price under cost during the early periods to build up
a reputation. If consumers believe, for example, that any firm charging a high price for any
of the first five periods has produced a low quality product, but any firm charging a high
price thereafter has produced high quality, then firms behave accordingly and the beliefs
are confirmed. That the beliefs are self-confirming does not make them irrational; it only
means that many different beliefs are rational in the many different equilibria.

• An equilibrium exists in the Product Quality model only if the entry cost F is just the right
size to make n an integer in equation (8). Any of the usual assumptions to get around the
integer problem could be used: allowing potential sellers to randomize between entering and
staying out; assuming that for historical reasons, n firms have already entered; or assuming
that firms lie on a continuum and the fixed cost is a uniform density across firms that have
entered.

N5.5 Markov equilibria and overlapping generations in the game of Customer Switch-
ing Costs

• We assumed that the incumbent chooses its price first, but the alternation of incumbency
remains even if we make the opposite assumption. The natural assumption is that prices
are chosen simultaneously, but because of the discontinuity in the payoff function, that
subgame has no equilibrium in pure strategies.

N5.6 Evolutionary Equilibrium: The Hawk-Dove Game

• Dugatkin & Reeve (1998) is an edited volume of survey articles on different applications
of game theory to biology. Dawkins (1989) is a good verbal introduction to evolutionary
conflict. See also Axelrod & Hamilton (1981) for a short article on biological applications
of the Prisoner’s Dilemma, Hines (1987) for a survey, and Maynard Smith (1982) for a
book. Jack Hirshleifer (1982) compares the approaches of economists and biologists. Boyd
& Richerson (1985) uses evolutionary game theory to examine cultural transmission, which
has important differences from purely genetic transmission.
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Problems

5.1. Overlapping Generations (see Samuelson [1958]) (medium)
There is a long sequence of players. One player is born in each period t, and he lives for periods t
and t + 1. Thus, two players are alive in any one period, a youngster and an oldster. Each player
is born with one unit of chocolate, which cannot be stored. Utility is increasing in chocolate
consumption, and a player is very unhappy if he consumes less than 0.3 units of chocolate in a
period: the per-period utility functions are U(C) = −1 for C < 0.3 and U(C) = C for C ≥ 0.3,
where C is consumption. Players can give away their chocolate, but, since chocolate is the only
good, they cannot sell it. A player’s action is to consume X units of chocolate as a youngster
and give away 1−X to some oldster. Every person’s actions in the previous period are common
knowledge, and so can be used to condition strategies upon.

(a) If there is finite number of generations, what is the unique Nash equilibrium?

(b) If there are an infinite number of generations, what are two Pareto- ranked perfect equilib-
ria?

(c) If there is a probability θ at the end of each period (after consumption takes place) that
barbarians will invade and steal all the chocolate (leaving the civilized people with payoffs
of -1 for any X), what is the highest value of θ that still allows for an equilibrium with
X = 0.5?

5.2. Product Quality with Lawsuits (medium)
Modify the Product Quality game of section 5.4 by assuming that if the seller misrepresents his
quality he must, as a result of a class-action suit, pay damages of x per unit sold, where x ∈ (0, c]
and the seller becomes liable for x at the time of sale.

(a) What is p̃ as a function of x, F, c, and r? Is p̃ greater than when x = 0?

(b) ] What is the equilibrium output per firm? Is it greater than when x = 0?

(c) What is the equilibrium number of firms? Show that a rise in x has an ambiguous effect
on the number of firms.

(d) If, instead of x per unit, the seller pays X to a law firm to successfully defend him, what is
the incentive compatibility constraint?

5.3. Repeated Games (see Benoit & Krishna [1985]) (hard)
Players Benoit and Krishna repeat the game in Table 7 three times, with discounting:

Table 7: A Benoit-Krishna Game
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Krishna
Silence Waffle Blame

Silence 10,10 −1,−12 −1, 15

Benoit: Waffle −12,−1 8,8 −1,−1

Blame 15,−1 −1,−1 0, 0

Payoffs to: (Benoit, Krishna).

(a) Why is there no equilibrium in which the players play Silence in all three periods?

(b) Describe a perfect equilibrium in which both players pick Silence in the first two periods.

(c) Adapt your equilibrium to the twice-repeated game.

(d) Adapt your equilibrium to the T -repeated game.

(e) What is the greatest discount rate for which your equilibrium still works in the three-period
game?

5.4. Repeated Entry Deterrence (medium)
Assume that Entry Deterrence I is repeated an infinite number of times, with a tiny discount rate
and with payoffs received at the start of each period. In each period, the entrant chooses Enter
or Stay out, even if he entered previously.

(a) What is a perfect equilibrium in which the entrant enters each period?

(b) Why is (Stay out, Fight) not a perfect equilibrium?

(c) What is a perfect equilibrium in which the entrant never enters?

(d) What is the maximum discount rate for which your strategy profile in part (c) is still an
equilibrium?

5.5. The Repeated Prisoner’s Dilemma (medium)
Set P = 0 in the general Prisoner’s Dilemma in Chapter 1’s Table 9, and assume that 2R > S+T .

(a) Show that the Grim Strategy, when played by both players, is a perfect equilibrium for the
infinitely repeated game. What is the maximum discount rate for which the Grim Strategy
remains an equilibrium?

(b) Show that Tit-for-Tat is not a perfect equilibrium in the infinitely repeated Prisoner’s
Dilemma with no discounting.

5.6. Evolutionarily Stable Strategies (medium)
A population of scholars are playing the following coordination game over their two possible
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conversation topics over lunch, football and economics. Let Nt(F ) and Nt(E) be the numbers
who talk football and economics in period t, and let θ be the percentage who talk football, so θ =

N(football)
N(football)+N(economics) . Government regulations requiring lunchtime attendance and stipulating
the topics of conversation have maintained the values θ = 0.5, Nt(F ) = 50, 000 and Nt(E) =
50, 000 up to this year’s deregulatory reform. In the future, some people may decide to go home
for lunch instead, or change their conversation. Table 8 shows the payoffs.

Table 8: Evolutionarily Stable Strategies

Scholar 2
Football (θ) Economics (1− θ)

Football (θ) 1,1 0, 0
Scholar 1

Economics (1− θ) 0, 0 5,5
Payoffs to: (Scholar 1, Scholar 2)

(a) There are three Nash equilibria: (Football, Football), (Economics, Economics), and a mixed-
strategy equilibrium. What are the evolutionarily stable strategies?

(b) Let Nt(s) be the number of scholars playing a particular strategy in period t and let πt(s)
be the payoff. Devise a Markov difference equation to express the population dynamics
from period to period: Nt+1(s) = f(Nt(s), πt(s)). Start the system with a population of
100,000, half the scholars talking football and half talking economics. Use your dynamics
to finish Table 9.

Table 9: Conversation Dynamics

t Nt(F ) Nt(E) θ πt(F ) πt(E)
-1 50,000 50,000 0.5 0.5 2.5
0
1
2 .

(c) Repeat part (b), but specifying non-Markov dynamics, in which Nt+1(s) = f(Nt(s), πt(s), πt−1(s)).

5.7. Grab the Dollar (medium)
Table 10 shows the payoffs for the simultaneous-move game of Grab the Dollar. A silver dollar is
put on the table between Smith and Jones. If one grabs it, he keeps the dollar, for a payoff of 4
utils. If both grab, then neither gets the dollar, and both feel bitter. If neither grabs, each gets
to keep something.

Table 10: Grab the Dollar

Jones
Grab (θ) Wait (1− θ)

Grab (θ) −1,−1 4, 0
Smith:

Wait (1− θ) 0, 4 1,1
Payoffs to: (Smith, Jones)
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(a) What are the evolutionarily stable strategies?

(b) Suppose each player in the population is a point on a continuum, and that the initial amount
of players is 1, evenly divided between Grab and Wait. Let Nt(s) be the amount of players
playing a particular strategy in period t and let πt(s) be the payoff. Let the population
dynamics be Nt+1(i) = (2Nt(i))

(
πt(i)P
j πt(j)

)
. Find the missing entries in Table 11.

Table 11: Grab the Dollar Dynamics

t Nt(G) Nt(W ) Nt(total) θ πt(G) πt(w)
0 0.5 0.5 1 0.5 1.5 0.5
1
2

(c) Repeat part (b), but with the dynamics Nt+t(s) = [1 + πt(s)P
j πt(j)

][2Nt(s)].

(d) Which three games that have appeared so far in the book resemble Grab the Dollar?
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The Repeated Prisoner’s Dilemma: A Classroom Game for Chapter 5

Consider the following Prisoner’s Dilemma, obtained by adding 8 to each payoff in Table 2
from Chapter 1:

Table 12: The Prisoner’s Dilemma

Column
Silence Blame

Silence 7,7 -2, 8
Row

Blame 8,-2 0,0
Payoffs to: (Row,Column)

Students will pair up to repeat this game 10 times in the same pair. The objective is to get
as high a summed, undiscounted, payoff as possible (not just to get a higher summed payoff than
any other person in the class).
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