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*15 Entry

*15.1 Innovation and Patent Races

How do firms come to enter particular industries? Of the many potential products that
might be produced, firms choose a small number, and each product is only produced by a
few firms. Most potential firms choose to remain potential, not actual. Information and
strategic behavior are especially important in borderline industries in which only one or
two firms are active in production.

This chapter begins with a discussion of innovation with the complications of imitation
by other firms and patent protection by the government. Section 15.2 looks at a different
way to enter a market: by purchasing an existing firm, something that also provides help
against moral hazard on the part of company executives. Section 15.3 analyzes a more
traditional form of entry deterrence, predatory pricing, using a Gang of Four model of a
repeated game under incomplete information. Section 15.4 returns to a simpler model of
predatory pricing, but shows how the ability of the incumbent to credibly engage in a price
war can actually backfire by inducing entry for buyout.

Market Power as a Precursor of Innovation

Market power is not always inimical to social welfare. Although restrictive monopoly
output is inefficient, the profits it generates encourage innovation, an important source
of both additional market power and economic growth. The importance of innovation,
however, is diminished because of imitation, which can so severely diminish its rewards as
to entirely prevent it. An innovator generally incurs some research cost, but a discovery
instantly imitated can yield zero net revenues. Table 15.1 shows how the payoffs look if
the firm that innovates incurs a cost of 1 but imitation is costless and results in Bertrand
competition. Innovation is a dominated strategy.

Table 15.1 Imitation with Bertrand pricing

Brydox
Innovate Imitate

Innovate -1,-1 −1, 0
Apex

Imitate 0,−1 0,0
Payoffs to: (Apex, Brydox)

Under different assumptions, innovation occurs even with costless imitation. The
key is whether duopoly profits are high enough for one firm to recoup the entire costs
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of innovation. If they are, the payoffs are as shown in table 15.2, a version of Chicken.
Although the firm that innovates pays the entire cost and keeps only half the benefit,
imitation is not dominant. Apex imitates if Brydox innovates, but not if Brydox imitates.
If Apex could move first, it would bind itself not to innovate, perhaps by disbanding its
research laboratory.

Table 15.2 Imitation with profits in the product market

Brydox
Innovate Imitate

Innovate 1,1 1,2
Apex

Imitate 2,1 0,0
Payoffs to: (Apex, Brydox)

Without a first-mover advantage, the game has two pure strategy Nash equilibria,
(Innovate, Imitate) and (Imitate, Innovate), and a symmetric equilibrium in mixed strate-
gies in which each firm innovates with probability 0.5. The mixed-strategy equilibrium is
inefficient, since sometimes both firms innovate and sometimes neither.

History might provide a focal point or explain why one player moves first. Japan was
for many years incapable of doing basic scientific research, and does relatively little even
today. The United States therefore had to innovate rather than imitate in the past, and
today continues to do much more basic research.

Much of the literature on innovation compares the relative merits of monopoly and
competition. One reason a monopoly might innovate more is because it can capture more
of the benefits, capturing the entire benefit if perfect price discrimination is possible (oth-
erwise, some of the benefit goes to consumers). In addition, the monopoly avoids a second
inefficiency: entrants innovating solely to steal the old innovator’s rents without much in-
creasing consumer surplus. The welfare aspects of innovation theory — indeed, all aspects
— are intricate, and the interested reader is referred to the surveys by Kamien & Schwartz
(1982) and Reinganum (1989).

Patent Races

One way that governments respond to imitation is by issuing patents: exclusive rights to
make, use, or sell an innovation. If a firm patents its discovery, other firms cannot imitate,
or even use the discovery if the make it independently. Research effort therefore has a
discontinuous payoff: if the researcher is the first to make a discovery, he receives the
patent; if he is second, nothing. Patent races are examples of the tournaments discussed
in section 8.2 except that if no player exerts any effort, none of them will get the reward.
Patents are also special because they lose their value if consumers find a substitute and
stop buying the patented product. Moreover, the effort in tournaments is usually exerted
over a fixed time period, whereas research usually has an endogenous time period, ending
when the discovery is made. Because of this endogeneity, we call the competition a patent
race.
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We will consider two models of patents. On the technical side, the first model shows
how to derive a continuous mixed strategies probability distribution, instead of just the
single number derived in chapter 3. On the substantive side, it shows how patent races
lead to inefficiency.

Patent Race for a New Market

Players
Three identical firms, Apex, Brydox, and Central.

The Order of Play
Each firm simultaneously chooses research spending xi ≥ 0, (i = a, b, c).
Payoffs
Firms are risk neutral and the discount rate is zero. Innovation occurs at time T (xi) where
T 0 < 0. The value of the patent is V , and if several players innovate simultaneously they
share its value.

πi =



V − xi if T (xi) < T (xj), (∀j 6= i) (Firm i gets the patent)

V
1+m
− xi if T (xi) = T (xk), (Firm i shares the patent with

m = 1 or 2 other firms)

−xi if T (xi) > T (xj) for some j (Firm i does not get the patent)

The game does not have any pure strategy Nash equilibria, because the payoff functions
are discontinuous. A slight difference in research by one player can make a big difference
in the payoffs, as shown in figure 15.1 on the next page for fixed values of xb and xc. The
research levels shown in figure 15.1 are not equilibrium values. If Apex chose any research
level xa less than V , Brydox would respond with xa+ ε and win the patent. If Apex chose
xa = V , then Brydox and Central would respond with xb = 0 and xc = 0, which would
make Apex want to switch to xa = ε.

Figure 15.1 The payoffs in Patent Race for a New Market
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There does exist a symmetric mixed strategy equilibrium. We will derive Mi(x), the
cumulative density function for the equilibrium mixed strategy, rather than the density
function itself. The probability with which firm i chooses a research level less than or equal
to x will beMi(x). In a mixed-strategy equilibrium a player is indifferent between any of the
pure strategies among which he is mixing. Since we know that the pure strategies xa = 0
and xa = V yield zero payoffs, if Apex mixes over the support [0, V ] then the expected
payoff for every strategy mixed between must also equal zero. The expected payoff from
the pure strategy xa is the expected value of winning minus the cost of research. Letting x
stand for nonrandom and X for random variables, this is

V · Pr(xa ≥ Xb, xa ≥ Xc)− xa = 0, (1)

which can be rewritten as

V · Pr(Xb ≤ xa)Pr(Xc ≤ xa)− xa = 0, (2)

or
V ·Mb(xa)Mc(xa)− xa = 0. (3)

We can rearrange equation (15.3) to obtain

Mb(xa)Mc(xa) =
xa
V
. (4)

If all three firms choose the same mixing distribution M , then

M(x) =
µ
x

V

¶1/2
for 0 ≤ x ≤ V. (5)

What is noteworthy about a patent race is not the nonexistence of a pure strategy
equilibrium but the overexpenditure on research. All three players have expected payoffs
of zero, because the patent value V is completely dissipated in the race. As in Brecht’s
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Threepenny Opera, “When all race after happiness/Happiness comes in last.”1 To be sure,
the innovation is made earlier than it would have been by a monopolist, but hurrying the
innovation is not worth the cost, from society’s point of view, a result that would persist
even if the discount rate were positive. The patent race is an example of rent seeking (see
Posner [1975] and Tullock [1967]), in which players dissipate the value of monopoly rents in
the struggle to acquire them. Indeed, Rogerson (1982) uses a game very similar to “Patent
Race for a New Market” to analyze competition for a government monopoly franchise.

The second patent race we will analyze is asymmetric because one player is an in-
cumbent and the other an entrant. The aim is to discover which firm spends more and to
explain why firms acquire valuable patents they do not use. A typical story of a sleeping
innovation (though not in this case patented) is the story of synthetic caviar. In 1976,
the American Romanoff Caviar Company said that it had developed synthetic caviar as a
“defensive marketing weapon” which it would not introduce in the US unless the Soviet
Union introduced synthetic caviar first. The new product would sell for one quarter of the
old price, and Business Week said that the reason Romanoff did not introduce it was to
avoid cannibalizing its old market (Business Week, June 28, 1976, p. 51). The game theo-
retic aspects of this situation put the claims of all the players in doubt, but its dubiousness
makes it all the more typical of sleeping patent stories.

The best-known model of sleeping patents is Gilbert & Newbery (1982). In that model,
the incumbent firm does research and acquires a sleeping patent, while the entrant does no
research. We will look at a slightly more complicated model which does not reach such an
extreme result.

Patent Race for an Old Market

Players
An incumbent and an entrant.

The Order of Play
1 The firms simultaneously choose research spending xi and xe, which result in research
achievements f(xi) and f(xe), where f

0 > 0 and f 00 < 0.
2 Nature chooses which player wins the patent using a function g that maps the difference
in research achievements to a probability between zero and one.

Prob(incumbent wins patent) = g[f(xi)− f(xe)], (6)

where g0 > 0, g(0) = 0.5, and 0 ≤ g ≤ 1.
3 The winner of the patent decides whether to spend Z to implement it.

Payoffs
The old patent yields revenue y and the new patent yields v. The payoffs are shown in
table 15.3.

1Act III, scene 7 of the Threepenny Opera, translated by John Willett (Berthold Brecht, Collected
Works, London: Eyre Methuen (1987).
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Table 15.3 The payoffs in Patent Race for an Old Market

Outcome πincumbent πentrant

The entrant wins and implements −xi v − xe − Z

The incumbent wins and implements v − xi − Z −xe

Neither player implements y − xi −xe

Equation (15.6) specifies the function g[f(xi)−f(xe)] to capture the three ideas of (a)
diminishing returns to inputs, (b) rivalry, and (c) winning a patent race as a probability.
The f(x) function represents dimishing returns because f increases at a decreasing rate in
the input x. Using the difference between f(x) for each firm makes it relative effort which
matters. The g(·) function turns this measure of relative effective input into a probability
between zero and one.

The entrant will do no research unless he plans to implement, so we will disregard
the strongly dominated strategy, (xe > 0, no implementation). The incumbent wins with
probability g and the entrant with probability 1−g, so from table 15.3 the expected payoff
functions are

πincumbent = (1− g[f(xi)− f(xe)])(−xi) + g[f(xi)− f(xe)]Max{v − xi − Z, y − xi} (7)

and
πentrant = (1− g[f(xi)− f(xe)])(v − xe − Z) + g[f(xi)− f(xe)](−xe). (8)

On differentiating and letting fi and fe denote f(xi) and f(xe) we obtain the first order
conditions

dπi
dxi

= −(1− g[fi − fe])− g0f 0i(−xi) + g0f 0iMax{v − xi − Z, y − xi}− g[fi − fe] = 0 (9)

and
dπe
dxe

= −(1− g[fi − fe]) + g0f 0e(v − xe − Z)− g[fi − fe] + g0f 0exe = 0. (10)

Equating (15.9) and (15.10), which both equal zero, we obtain

−(1−g)−g0f 0ixi+g0f 0iMax{v−xi−Z, y−xi}−g = −(1−g)+g0f 0e(v−xe−Z)−g+g0f 0exe, (11)
which simplifies to

f 0i [xi +Max{v − xi − Z, y − xi}] = f 0e[v − xe − Z + xe], (12)

or
f 0i
f 0e
=

v − Z
Max{v − Z, y} . (13)

We can use equation (15.13) to show that different parameters generate two qualitatively
different outcomes.
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Outcome 1. The entrant and incumbent spend equal amounts, and each implements if
successful.
This happens if there is a big gain from patent implementation, that is, if

v − Z ≥ y, (14)

so that equation (15.13) becomes

f 0i
f 0e
=
v − Z
v − Z = 1, (15)

which implies that xi = xe.

Outcome 2. The incumbent spends more and does not implement if he is successful (he
acquires a sleeping patent).
This happens if the gain from implementation is small, that is, if

v − Z < y, (16)

so that equation (15.13) becomes

f 0i
f 0e
=
v − Z
y

< 1, (17)

which implies that f 0i < f
0
e. Since we assumed that f

00 < 0, f 0 is decreasing in x, and it
follows that xi > xe.

This model shows that the presence of another player can stimulate the incumbent to
do research he otherwise would not, and that he may or may not implement the discovery.
The incumbent has at least as much incentive for research as the entrant because a large
part of a successful entrant’s payoff comes at the incumbent’s expense. The benefit to the
incumbent is the maximum of the benefit from implementing and the benefit from stopping
the entrant, but the entrant’s benefit can only come from implementing. Contrary to the
popular belief that sleeping patents are bad, here they can help society by eliminating
wasteful implementation.

*15.2 Takeovers and Greenmail

The Free Rider Problem

Game theory is well suited to modelling takeovers because the takeover process depends
crucially on information and includes a number of sharply delineated actions and events.
Suppose that under its current mismanagement, a firm has a value per share of v, but
no shareholder has enough shares to justify the expense of a proxy fight to throw out the
current managers, although doing so would raise the value to (v + x). An outside bidder
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makes a tender offer conditional upon obtaining a majority. Any bid p between v and
(v+ x) can make both the bidder and the shareholders better off. But do the shareholders
accept such an offer?

We will see that they do not. Quite simply, the only reason the bidder makes a tender
offer is that the value would rise higher than his bid, so no shareholder should accept his
bid.

The Free Rider Problem in Takeovers
(Grossman & Hart [1980])

Players
A bidder and a continuum of shareholders, with amount m of shares.

The Order of Play
1 The bidder offers p per share for the m shares.
2 Each shareholder decides whether to accept the bid (denote by θ the fraction that accept).
3 If θ ≥ 0.5, the bid price is paid out, and the value of the firm rises from v to (v + x) per
share.

Payoffs
If θ < 0.5, the takeover fails, the bidder’s payoff is zero, and the shareholder’s payoff is v
per share. Otherwise,

πbidder =

(
θm(v + x− p) if θ ≥ 0.5.
0 otherwise

πshareholder =

(
p if the shareholder accepts.
v + x if the shareholder rejects.

Bids above (v+x) are dominated strategies, since the bidder could not possibly profit
from them. But if the bid is any lower, an individual shareholder should hold out for the
new value of (v + x) rather than accepting p. To be sure, when they all do that, the
offer fails and they end up with v, but no individual wants to accept if he thinks the offer
will succeed. The only equilibria are the many strategy combinations that lead to a failed
takeover, or a bid of p = (v+x) accepted by a majority, which succeeds but yields a payoff
of zero to the bidder. If organizing an offer has even the slightest cost, the bidder would
not do it.

The free rider problem is clearest where there is a continuum of shareholders, so that
the decision of any individual does not affect the success of the tender offer. If there were,
instead, nine players with one share each, then in one asymmetric equilibrium five of them
tender at a price just slightly above the old market price and four hold out. Each of the
five tenderers knows that if he held out, the offer would fail and his payoff would be zero.
This is an example of the discontinuity problem of section 8.6.

In practice, the free rider problem is not quite so severe even with a continuum of
shareholders. If the bidder can quietly buy a sizeable number of shares without driving up
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the price (something severely restricted in the United States by the Williams Act), then
his capital gains on those shares can make a takeover profitable even if he makes nothing
from shares bought in the public offer. Dilution tactics such as freeze-out mergers also help
the bidder (see Macey & McChesney [1985]). In a freeze-out, the bidder buys 51 percent
of the shares and merges the new acquisition with another firm he owns, at a price below
its full value. If dilution is strong enough, the shareholders are willing to sell at a price less
than v + x.

Still another takeover tactic is the two-tier tender offer, a nice application of the
Prisoner’s Dilemma. Suppose the underlying value of the firm is 30, which is the initial
stock price. A monopolistic bidder offers a price of 10 for 51 percent of the stock and 5 for
the other 49 percent, conditional upon 51 percent tendering. It is then a dominant strategy
to tender, even though all the shareholders would be better off refusing to sell.

Greenmail

Greenmail occurs when managers buy out some shareholders at an inflated stock price
to stop them from taking over. Opponents of greenmail explain this using the Corrupt
Managers model. Suppose that a little dilution is possible, or the bidder owns some shares
to start with, so he can take over the firm but would lose most of the gains to the other
shareholders. The managers are willing to pay the bidder a large amount of greenmail
to keep their jobs, and both manager and bidder prefer greenmail to an actual takeover,
despite the fact that the other shareholders are considerably worse off.

Managers often use what we might call the Noble Managers model to justify greenmail.
In this model, current management knows the true value of the firm, which is greater than
both the current stock price and the takeover bid. They pay greenmail to protect the
shareholders from selling their mistakenly undervalued shares.

The Corrupt Managers model faces the objection that it fails to explain why the cor-
porate charter does not prohibit greenmail. The Noble Managers model faces the objection
that it implies either that shareholders are irrational or that stock prices rise after greenmail
because shareholders know that the greenmail signal (giving up the benefits of a takeover)
is more costly for a firm which really is not worth more than the takeover bid.

Shleifer & Vishny (1986) have constructed a more sophisticated model in which green-
mail is in the interest of the shareholders. The idea is that greenmail encourages potential
bidders to investigate the firm, eventually leading to a takeover at a higher price than the
initial offer. Greenmail is costly, but for that very reason it is an effective signal that the
manager thinks a better offer could come along later. (Like Noble Managers, this assumes
that the manager acts in the interests of the shareholders.) I will present a numerical
example in the spirit of Shleifer & Vishny rather than following them exactly, since their
exposition is not directed towards the behavior of the stock price.

The story behind the model is that a manager has been approached by a bidder, and
he must decide whether to pay him greenmail in the hopes that other bidders — “white
knights” — will appear. The manager has better information than the market as a whole
about the probability of other bidders appearing, and some other bidders can only appear
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after they undertake costly investigation, which they will not do if they think the takeover
price will be bid up by competition with the first bidder. The manager pays greenmail to
encourage new bidders by getting rid of their competition.

Greenmail to Attract White Knights
(Shleifer & Vishny [1986])

Players
The manager, the market, and bidder Brydox. (Bidders Raider and Apex do not make
decisions.)

The Order of Play
Figure 15.2 shows the game tree. After each time t, the market picks a share price pt.
0 Unobserved by any player, Nature picks the state to be (A), (B), (C), or (D), with
probabilities 0.1, 0.3, 0.1, and 0.5, unobserved by any player.
1 Unless the state is (D), the Raider appears and offers a price of 15. The manager’s
information partition becomes {(A), (B,C), (D)}; everyone else’s becomes {(A,B,C), (D)}.
2 The manager decides whether to pay greenmail and extinguish the Raider’s offer at a
cost of 5 per share.
3 If the state is (A), Apex appears and offers a price of 25 if greenmail was paid, and 30
otherwise.
4 If the state is (B), Brydox decides whether to buy information at a cost of 8 per share.
If he does, then he can make an offer of 20 if the Raider has been paid greenmail, or 27 if
he must compete with the Raider.
5 Shareholders accept the best offer outstanding, which is the final value of a share. If no
offer is outstanding, the final value is 5 if greenmail was paid, 10 otherwise.

Payoffs
The manager maximizes the final value.
The market minimizes the absolute difference between pt and the final value.
If he buys information, Brydox receives 23 (= 31−8) minus the value of his offer; otherwise
he receives zero.

Figure 15.2 The game tree for Greenmail to Attract White Knights
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The payoffs specify that the manager should maximize the final value of the firm,
rather than a weighted average of the prices p0 through p5. This assumption is reasonable
because the only shareholders to benefit from a high value of pt are those that sell their
stock at t. The manager cannot say: “The stock is overvalued: Sell!”, because the market
would learn the overvaluation too, and refuse to buy.

The prices 15, 20, 27, and 30 are assumed to be the results of blackboxed bargaining
games between the manager and the bidders. Assuming that the value of the firm to Brydox
is 31 ensures that he will not buy information if he foresees that he would have to compete
with the Raider. Since Brydox has a dominant strategy — buy information if the Raider
has been paid greenmail and not otherwise — our focus will be on the market price and
the decision of whether to pay greenmail. This model is also not designed to answer the
question of why the Raider appears. His behavior is exogenous. As the model stands, his
expected profit is positive since he is sometimes paid greenmail, but if he actually had to
buy the firm he would regret it in states B and C, since the final value of the firm would
be 10.

We will see that in equilibrium the manager pays greenmail in states (B) and (C), but
not in (A) or (D). Table 15.4 shows the equilibrium path of the market price.

Table 15.4 The equilibrium price in Greenmail to Attract White Knights
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State Probability p0 p1 p2 p3 p4 p5 Final management

(A) 0.1 14.5 19 30 30 30 30 Allied

(B) 0.3 14.5 19 16.25 16.25 20 20 Brydox

(C) 0.1 14.5 19 16.25 16.25 5 5 Old management

(D) 0.5 14.5 10 10 10 10 10 Old management

The market’s optimal strategy amounts to estimating the final value. Before the
market receives any information, its prior beliefs estimate the final value to be 14.5 (=
0.1[30] + 0.3[20]+ 0.1[5] + 0.5[10]). If state (D) is ruled out by the arrival of the Raider,
the price rises to 19 (= 0.2[30] + 0.6[20]+ 0.2[5]). If the Raider does not appear, it becomes
common knowledge that the state is (D), and the price falls to 10.

If the state is (A), the manager knows it and refuses to pay greenmail in expectation
of Apex’s offer of 30. Observing the lack of greenmail, the market deduces that the state
is (A), and the price immediately rises to 30.

If the state is (B) or (C) the manager does pay greenmail and the market, ruling out
(A), uses Bayes’s Rule to assign probabilities of 0.75 to (B) and 0.25 to (C). The price falls
from 19 to 16.25 (= 0.75[20] + 0.25[5]).

It is clear that the manager should not pay greenmail in states (A) or (D), when the
manager knows that Brydox is not around to investigate. What if the manager deviates in
the information set (B,C) and refuses to pay greenmail? The market would initially believe
that the state was (A), so the price would rise to p2 = 30. But the price would fall again
after Apex failed to make an offer and the market realized that the manager had deviated.
Brydox would refuse to enter at time 3, and the Raider’s offer of 15 would be accepted.
The payoff of 15 would be less than the expected payoff of 16.25 from paying greenmail.

The model does not say that greenmail is always good for the shareholders, only that
it can be good ex ante. If the true state turns out to be (C), then greenmail was a mistake,
ex post, but since state (B) is more likely, the manager is correct to pay greenmail in
information set (B,C). What is noteworthy is that greenmail is optimal even though it
drives down the stock price from 19 to 16.25. Greenmail communicates the bad news that
Apex is not around, but makes the best of that misfortune by attracting Brydox.

*15.3 Predatory Pricing: The Kreps-Wilson Model

One traditional form of monopolization and entry deterrence is predatory pricing, in
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which the firm seeking to acquire the market charges a low price to drive out its rival. We
have looked at predation already in chapters 4, 5 and 6 in the “Entry Deterrence” games.
The major problem with entry deterrence under complete information is the chainstore
paradox. The heart of the paradox is the sequential rationality problem faced by an in-
cumbent who wishes to threaten a prospective entrant with low post-entry prices. The
incumbent can respond to entry in two ways. He can collude with the entrant and share
the profits, or he can fight by lowering his price so that both firms make losses. We have
seen that the incumbent would not fight in a perfect equilibrium if the game has complete
information. Foreseeing the incumbent’s accommodation, the potential entrant ignores the
threats.

In Kreps & Wilson (1982a), an application of the gang of four model of chapter 6,
incomplete information allows the threat of predatory pricing to successfully deter entry.
A monopolist with outlets in N towns faces an entrant who can enter each town. In our
adaption of the model, we will start by assuming that the order in which the towns can be
entered is common knowledge, and that if the entrant passes up his chance to enter a town,
he cannot enter it later. The incomplete information takes the form of a small probability
that the monopolist is “strong” and has nothing but Fight in his action set: he is an
uncontrolled manager who gratifies his passions in squelching entry instead of maximizing
profits.

Predatory Pricing
(Kreps & Wilson [1982a])

Players
The entrant and the monopolist.

The Order of Play
0 Nature chooses the monopolist to be Strong with low probability θ and Weak, with high
probability (1− θ). Only the monopolist observes Nature’s move.
1 The entrant chooses Enter or Stay Out for the first town.
2 The monopolist chooses Collude or Fight if he is weak, Fight if he is strong.
3 Steps (1) and (2) are repeated for towns 2 through N .

Payoffs
The discount rate is zero. Table 15.5 gives the payoffs per period, which are the same as
in table 4.1.

Table 15.5 Predatory Pricing

Weak incumbent
Collude Fight

Enter 40,50 −10, 0
Entrant

Stay out 0, 100 0,100
Payoffs to: (Entrant, Incumbent)
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In describing the equilibrium, we will denote towns by names such as i30 and i5, where
the numbers are to be taken purely ordinally. The entrant has an opportunity to enter
town i30 before i5, but there are not necessarily 25 towns between them. The actual gap
depends on θ but not N .

Part of the Equilibrium for Predatory Pricing

Entrant: Enter first at town i−10. If entry has occurred before i10 and been answered with
Collude, enter every town after the first one entered.

Strong monopolist: Always fight entry.

Weak monopolist: Fight any entry up to i30. Fight the first entry after i−30 with a
probability m(i) that diminishes until it reaches zero at i5. If Collude is ever chosen
instead, always collude thereafter. If Fight was chosen in response to the first attempt
at entry, increase the mixing probability m(i) in subsequent towns.

This description, which is illustrated by figure 15.3, only covers the equilibrium path
and small deviations. Note that out-of-equilibrium beliefs do not have to be specified
(unlike in the original model of Kreps and Wilson), since whenever a monopolist colludes,
in or out of equilibrium, Bayes’s Rule says that the entrant must believe him to be Weak.

Figure 15.3 The equilibrium in Predatory Pricing

The entrant will certainly stay out until i30. If no town is entered until i5 and the
monopolist is Weak, then entry at i5 is undoubtedly profitable. But entry is attempted at
i10, because since m(i) is diminishing in i, the weak monopolist probably would not fight
even there.

Out of equilibrium, if an entrant were to enter at i90, the weak monopolist would be
willing to fight, to maintain i10 as the next town to be entered. If he did not, then the
entrant, realizing that he could not possibly be facing a strong monopolist, would enter
every subsequent town from i89 to i1. If no town were entered until i5, the weak monopolist
would be unwilling to fight in that town, because too few towns are left to protect. If
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a town between i30 and i5 has been entered and fought over, the monopolist raises the
mixing probability that he fights in the next town entered, because he has a more valuable
reputation to defend. By fighting in the first town he has increased the belief that he is
strong and increased the gap until the next town is entered.

What if the entrant deviated and entered town i20? The equilibrium calls for a mixed
strategy response beginning with i30, so the weak monopolist must be indifferent between
fighting and not fighting. If he fights, he loses current revenue but the entrant’s posterior
belief that he is strong rises, rising more if the fight occurs late in the game. The entrant
knows that in equilibrium the weak monopolist would fight with a probability of, say, 0.9
in town i20, so fighting there would not much increase the belief that he was strong, but
if he fought in town i13, where the mixing probability has fallen to 0.2, the belief would
rise much more. On the other hand, the gain from a given reputation diminishes as fewer
towns remain to be protected, so the mixing probability falls over time.

The description of the equilibrium strategies is incomplete because describing what
happens after unsuccessful entry becomes rather intricate. Even in the simultaneous-move
games of chapter 3, we saw that games with mixed strategy equilibria have many different
possible realizations. In repeated games like Predatory Pricing, the number of possible
realizations makes an exact description very complicated indeed. If, for example, the
entrant entered town i20 and the monopolist chose Fight, the entrant’s belief that he
was strong would rise, pushing the next town entered to i−8 instead of i10. A complete
description of the strategies would say what would happen for every possible history of the
game, which is impractical at this book’s level of detail.

Because of mixing, even the equilibrium path becomes nonunique after i10, when the
first town is entered. When the entrant enters at i10, the weak monopolist chooses randomly
whether to fight, so the entrant’s belief that the monopolist is strong increases if he is fought.
As a result, the next entry might be not at i9, but i7.

As a final note, let us return to the initial assumption that if the entrant decided not
to enter town i, he could not change his mind later. We have seen that no towns will be
entered until near the last one, because the incumbent wants to protect his reputation for
strength. But if the entrant can change his mind, the last town is never approached. The
entrant knows he would take losses in the first (N − 30) towns, and it is not worth his
while to reduce the number to 30 to make the monopolist choose Collude. Paradoxically,
allowing the entrant many chances to enter helps not him, but the incumbent.

15.4 *Entry for Buyout

The previous section suggested that predatory pricing might actually be a credible threat
if information were slightly incomplete, because the incumbent might be willing to makes
losses fighting the first entrant to deter future entry. This is not the end of the story, how-
ever, because even if entry costs exceed operating revenues, entry might still be profitable
if the entrant is bought out by the incumbent.

To see this most simply, let us start by thinking about how entry might be deterred
under complete information. The incumbent needs some way to precommit himself to
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unprofitable post-entry pricing. Spence (1977) and Dixit (1980) suggest that the incumbent
could enlarge his initial capacity to make the post-entry price naturally drop to below
average cost. The post-entry price would still be above average variable cost, so having
already sunk the capacity cost the incumbent fights entry without further expense. The
entrant’s capacity cost is not yet sunk, so he refrains from entry.

In the model with the extensive form of figure 15.4, the incumbent has the additional
option of buying out the entrant. An incumbent who fights entry bears two costs: the loss
from selling at a price below average total cost, and the opportunity cost of not earning
monopoly profits. He can make the first a sunk cost, but not the second. The entrant,
foreseeing that the incumbent will buy him out, enters despite knowing that the duopoly
price will be less than average total cost. The incumbent faces a second perfectness problem,
for while he may try to deter entry by threatening not to buy out the entrant, the threat
is not credible.

Figure 15.4 Entry for Buyout

Entry for Buyout
(Rasmusen [1988a])

Players
The incumbent and the entrant.

The Order of Play
1 The incumbent selects capacity Ki.
2 The entrant decides whether to enter or stay out, choosing a capacity Ke ≥ 0.
3 If the entrant picks a positive capacity, the incumbent decides whether to buy him out
at price B.
4 If the entrant has been bought out, the incumbent selects output qi ≤ Ki +Ke.
5 If the entrant has not been bought out, each player decides whether to stay in the market
or exit.
6 If a player has remained in the market, he selects the output qi ≤ Ki or qe ≤ Ke.
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Payoffs
Each unit of capacity costs a, the constant marginal cost is c, a firm that stays in the market
incurs fixed cost F , and there is no discounting. There is only one period of production.
If no entry occurs, πinc = [p(qi)− c]qi − aKi − F and πent = 0.
If entry occurs and is bought out, πinc = [p(qi)− c]qi − aKi −B − F and πent = B − aKe.
Otherwise,

πincumbent =

(
[p(qi, qe)− c]qi − aKi − F if the incumbent stays.
−aKi if the incumbent exits.

πentrant =

(
[p(qi, qe)− c]qe − aKe − F if the entrant stays.
−aKe if the entrant exits.

Two things have yet to be specified: the buyout price B and the price function p(qi, qe).
To specify them requires particular solution concepts for bargaining and duopoly, which
chapters 12 and 14 have shown are not uncontroversial. Here, they are subsidiary to the
main point and can be chosen according to the taste of the modeller. We have “blackboxed”
the pricing and bargaining subgames in order not to deflect attention to subsidiary parts of
the model. The numerical example below will name specific functions for those subgames,
but other numerical examples could use different functions to illustrate the same points.

A Numerical Example

Assume that the market demand curve is

p = 100− qi − qe. (18)

Let the cost per unit of capacity be a = 10, the marginal cost of output be c = 10, and the
fixed cost be F = 601. Assume that output follows Cournot behavior and the bargaining
solution splits the surplus equally, in accordance with the Nash bargaining solution and
Rubinstein (1982).

If the incumbent faced no threat of entry, he would behave as a simple monopolist,
choosing a capacity equal to the output which solved

Maximize
qi (100− qi)qi − 10qi − 10qi. (19)

Problem (15.19) has the first-order condition

80− 2qi = 0, (20)

so the monopoly capacity and output would both equal 40, yielding a net operating revenue
of 1,399 (= [p− c]qi − F ), well above the capacity cost of 400.

We will not go into details, but under these parameters the incumbent chooses the
same output and capacity of 40 even if entry is possible but buyout is not. If the potential
entrant were to enter, he could do no better than to chooseKe = 30, which costs 300. With
capacities Ki = 40 and Ke = 30, Cournot behavior leads the two firms to solve

Maximize
qi (100− qi − qe)qi − 10qi s.t. qi ≤ 40 (21)
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and
Maximize
qe (100− qi − qe)qe − 10qe s.t. qe ≤ 30, (22)

which have first order conditions

90− 2qi − qe = 0 (23)

and
90− qi − 2qe = 0. (24)

The Cournot outputs both equal 30, yielding a price of 40 and net revenues of Rdi = R
d
e =

299 (= [p− c]qi−F ). The entrant’s profit net of capacity cost would be −1 (= Rde − 30a),
less than the zero from not entering.

What if both entry and buyout are possible, but the incumbent still chooses Ki = 40?
If the entrant chooses Ke = 30 again, then the net revenues would be R

d
e = R

d
i = 299, just

as above. If he buys out the entrant, the incumbent, having increased his capacity to 70,
produces a monopoly output of 45. Half of the surplus from buyout is

B = 1/2
·
Maximize
qi {[p(qi)− c]qi|qi ≤ 70}− F − (Rde +Rdi )

¸

= 1/2[(55− 10)45− 601− (299 + 299)] = 413.
(25)

The entrant is bought out for his Cournot revenue of 299 plus the 413 which is his share of
the buyout surplus, a total buyout price of 712. Since 712 exceeds the entrant’s capacity
cost of 300, buyout induces entry which would otherwise have been deterred. Nor can the
incumbent deter entry by picking a different capacity. Choosing any Ki greater than 30
leads to the same Cournot output of 60 and the same buyout price of 712. Choosing Ki

less than 30 allows the entrant to make a profit even without being bought out.

Realizing that entry cannot be deterred, the incumbent would choose a smaller initial
capacity. A Cournot player whose capacity is less than 30 would produce right up to
capacity. Since buyout will occur, if a firm starts with a capacity less than 30 and adds one
unit, the marginal cost of capacity is 10 and the marginal benefit is the increase (for the
entrant) or decrease (for the incumbent) in the buyout price. If it is the entrant who adds a
unit of capacity, the net revenue Rde rises by at least (40− 10), the lowest possible Cournot
price minus the marginal cost of output. Moreover, Rdi falls because the entrant’s extra
output lowers the market price, so under our bargaining solution the buyout price rises by
more than 15 (= 40−10

2
) and the entrant should add extra capacity up toKe = 30. A parallel

argument shows why the incumbent should build a capacity of at least 30. Increasing the
capacities any further leaves the buyout price unchanged, because the duopoly net revenues
are unaffected, so both firms choose exactly 30.

The industry capacity equals 60 when buyout is allowed, but after the buyout only 45 is
used. Industry profits in the absence of possible entry would have been 999 (= 1, 399−400),
but with buyout they are 824 (= 1, 424− 600), so buyout has decreased industry profits by
175. Consumer surplus has risen from 800 ( = 0.5[100−p(q|K = 40)][q|K = 40]) to 1,012.5
(= 0.5[100−p(q|K = 60)][q|K = 60]), a gain of 212.5, so buyout raises total welfare in this
example. The increase in output outweighs the inefficiency of the entrant’s investment in
capacity, an outcome that depends on the particular parameters chosen.
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The model is a tangle of paradoxes. The central paradox is that the ability of the
incumbent to destroy industry profits after entry ends up hurting him rather than helping
because it increases the buyout price. This has a similar flavor to the “judo economics” of
Gelman & Salop (1983): the incumbent’s very size and influence weighs against him. In
the numerical example, allowing the incumbent to buy out the entrant raised total welfare,
even though it solidified monopoly power and resulted in wasteful excess capacity. Under
other parameters, the effect of excess capacity dominates, and allowing buyout would lower
welfare — but only because it encourages entry, of which we usually approve. Adding more
potential entrants would also have perverse effects. If the incumbent’s excess capacity can
deter one entrant, it can deter any number. We have seen that a single entrant might
enter anyway, for the sake of the buyout price. But if there are many potential entrants,
it is easier to deter entry. Buying out a single entrant would not do the incumbent much
good, so he would only be willing to pay a small buyout price, and the small price would
discourage any entrant from being the first. The game becomes complicated, but clearly
the multiplicity of potential entrants makes entry more difficult for any of them.

Notes

N15.1 Innovation and patent races

• The idea of the patent race is described by Barzel (1968), although his model showed the
same effect of overhasty innovation even without patents.

• Reinganum (1985) has shown that an important element of patent races is whether increased
research hastens the arrival of the patent or just affects whether it is acquired. If more
research hastens the innovation, then the incumbent might spend less than the entrant
because the incumbent is enjoying a stream of profits from his present position that the
new innovation destroys.

• Uncertainty in innovation. Patent Race for an Old Market, is only one way to model
innovation under uncertainty. A more common way is to use continuous time with discrete
discoveries and specifies that discoveries arrive as a Poisson process with parameter λ(X),
where X is research expenditure, λ0 > 0, and λ00 < 0, as in Loury (1979) and Dasgupta &
Stiglitz (1980). Then

Prob(invention at t) = λe−λ(X)t;
Prob(invention before t) = 1− e−λ(X)t. (26)

A little algebra gives us the current value of the firm, R0, as a function of the innovation
rate, the interest rate, the post-innovation value V1, and the current revenue flow R0. The
return on the firm equals the current cash flow plus the probability of a capital gain.

rV0 = R0 −X + λ(V1 − V0), (27)

which implies

V0 =
λV1 +R0 −X

λ+ r
. (28)

Expression (15.28 ) is frequently useful.
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• A common theme in entry models is what has been called the fat-cat effect by Fudenberg
& Tirole (1986a, p. 23). Consider a two-stage game, in the first stage of which an incumbent
firm chooses its advertising level and in the second stage plays a Bertrand subgame with an
entrant. If the advertising in the first stage gives the incumbent a base of captive customers
who have inelastic demand, he will choose a higher price than the entrant. The incumbent
has become a “fat cat.” The effect is present in many models. In section 14.3’s Hotelling
Pricing Game a firm located so that it has a large “safe” market would choose a higher
price. In section 5.5’s Customer Switching Costs a firm that has old customers locked in
would choose a higher price than a fresh entrant in the last period of a finitely repeated
game.

N15.2 Predatory Pricing: the Kreps-Wilson Model

• For other expositions of this model see pages 77-82 of Martin (1993) 239-243 of Osborne &
Rubinstein (1994).

• Kreps & Wilson (1982a) do not simply assume that one type of monopolist always chooses
Fight. They make the more elaborate but primitive assumption that his payoff function
makes fighting a dominant strategy. Table 15.6 shows a set of payoffs for the strong mo-
nopolist which generate this result.

Table 15.6 Predatory Pricing with a dominant strategy

Strong Incumbent
Collude Fight

Enter 20,10 −10, 40
Entrant

Stay out 0, 100 0,100
Payoffs to: (Entrant, Incumbent)

Under the Kreps-Wilson assumption, the strong monopolist would actually choose to
collude in the early periods of the game in some perfect Bayesian equilibria. Such an
equilibrium could be supported by out-of-equilibrium beliefs that the authors point out are
absurd: if the monopolist fights in the early periods, the entrant believes he must be a weak
monopolist.

Problems

15.1: Crazy Predators (adapted from Gintis [forthcoming], Problem 12.10.)
Apex has a monopoly in the market for widgets, earning profits of m per period, but Brydox
has just entered the market. There are two periods and no discounting. Apex can either Prey
on Brydox with a low price or accept Duopoly with a high price, resulting in profits to Apex of
−pa or da and to Brydox of −pb or db. Brydox must then decide whether to stay in the market
for the second period, when Brydox will make the same choices. If, however, Professor Apex,
who owns 60 percent of the company’s stock, is crazy, he thinks he will earn an amount p∗ > da
from preying on Brydox (and he doesn not learn from experience). Brydox initially assesses the
probability that Apex is crazy at θ.
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15.1a Show that under the following condition, the equilibrium will be separating, i.e., Apex will
behave differently in the first period depending on whether the Professor is crazy or not:

−pa +m < 2d (29)

15.1b Show that under the following condition, the equilibrium can be pooling, i.e., Apex will
behave the same in the first period whether the Professor is crazy or not:

θ ≥ db
pb + db

(30)

15.1c If neither of the two conditions above applies, the equilibrium is hybrid, i.e., Apex will use
a mixed strategy and Brydox may or may not be able to tell whether the Professor is crazy
at the end of the first period. Let α be the probability that a sane Apex preys on Brydox in
the first period, and let β be the probability that Brydox stays in the market in the second
period after observing that Apex chose Prey in the first period. Show that equilibrium
values of α and β are:

α =
θdb

(1− θ)pb
(31)

β =
−pa +m− 2da

m− da (32)

15.1d Is this behavior related to any of the following phenomenon: signalling, signal jamming,
reputation, efficiency wages?

15.2: Rent Seeking
I mentioned that Rogerson (1982) uses a game very similar to “Patent Race for a New Market”
to analyze competition for a government monopoly franchise. See if you can do this too. What
can you predict about the welfare results of such competition?

15.3: A Patent Race
See what happens in Patent Race for an Old Market when specific functional forms and parameters
are assumed. Set f(x) = log(x), g(y) = 0.5(1 + y/(1 + y) if y ≥ 0, g(y) = 0.5(1 + y/(1 − y) if
y ≤ 0, y = 2, and z = 1. Figure out the research spending by each firm for the three cases of (a)
v = 10, (b) v = 4, (c) v = 2 and (d) v = 1.

15.4: Entry for Buyout
Find the equilibrium in Entry for Buyout if all the parameters of the numerical example are the
same except that the marginal cost of output is c = 20 instead of c = 10.
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