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Mathematical Appendix

This appendix has three purposes: to remind some readers of the definitions of terms they
have seen before, to give other readers an idea of what the terms mean, and to list a
few theorems for reference. In accordance with these limited purposes, some terms such
as “boundary point” are left undefined. For fuller exposition, see Rudin (1964) on real
analysis, Debreu’s Theory of Value (1959), and Chiang (1984) and Takayama (1985) on
mathematics for economists. Intriligator (1971) and Varian (1992) both have good math-
ematical appendices and are strong in discussing optimization, and Kamien & Schwartz
(1991) covers maximizing by choice of functions. Border’s 1985 book is entirely about fixed
point theorems. Stokey & Lucas (1989) is about dynamic programming. Fudenberg &
Tirole (1991a) is the best source of mathematical theorems for use in game theory.

The web is very useful for mathematical definitions. See http://en.wikipedia.org,
http://mathworld.wolfram.com, and http://planetmath.org.

*A.1 Notation

∑
Summation.

∑3
i=1 xi = x1 + x2 + x3.

Π Product. Π3
i=1xi = x1x2x3.

|x| Absolute value of x. If x ≥ 0 then |x| = x and if x < 0 then |x| = −x.

| “Such that,” “given that,” or “conditional upon.” {x|x < 3} denotes the set of real
numbers less than three. Prob(x|y < 5) denotes the probability of x given that y is
less than 5.

: “Such that.” {x : x < 3} denotes the set of real numbers less than three. The colon is
a synonym for |.

Rn The set of n-dimensional vectors of real numbers (integers, fractions, and the least
upper bounds of any subsets thereof).

{x, y, z} A set of elements x, y, and z. The set {3, 5} consists of two elements, 3 and 5.

∈ “Is an element of.” a ∈ {2, 5} means that a takes either the value 2 or 5.

⊂ Set inclusion. If X = {2, 3, 4} and Y = {2, 4}, then Y ⊂ X because Y is a subset of
X.

[x, y] The closed interval with endpoints x and y. The interval [0, 1000] is the set
{x|0 ≤ x ≤ 1000}. Square brackets are also used as delimiters.
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(x, y) The open interval with endpoints x and y. The interval (0, 1000) is the set
{x|0 < x < 1000}. (0, 1000] would be a half-open interval, the set {x|0 < x ≤ 1000}.
Parentheses are also used as delimiters.

x! x-factorial. x! = x(x− 1)(x− 2)....(2)(1). 4! = 4(3)(2)(1) = 24.(
a
b

)
The number of unordered combinations of b elements from a set with a elements.(
a
b

)
= a!

b!(a−b)!
, so

(
4
3

)
= 4!

3!(4−3)!
= 24/6 = 4. (See combination and permutation

below.)

× The Cartesian product. X × Y is the set of points {x, y}, where x ∈ X and y ∈ Y .

ε An arbitrarily small positive number. If my payoff from both Left and Right
equals 10, I am indifferent between them; if my payoff from Left is changed to 10+ ε,
I prefer Left.

∼ We say that X ∼ F if the random variable X is distributed according to distribu-
tion F .

∃ “There exists...” ∃x > 0 : 9− x2 = 0.

∀ “For all...” ∀x ∈ [0, 3], x2 < 10.

≡ “Equals by definition” “For clarity, let us define the average income x ≡ θw−1

(a−1)2+b2+c

for use in the expressions below.”

→ If f maps space X into space Y then f : X → Y .

df
dx

, d2f
dx2 The first and second derivatives of a function. If f(x) = x2 then df

dx
= 2x and

d2f
dx2 = 2.

f ′, f ′′ The first and second derivatives of a function. If f(x) = x2 then f ′ = 2x and
f ′′ = 2. Primes are also used on variables (not functions) for other purposes: x′ and
x′′ might denote two particular values of x.

∂f
∂x

, ∂2f
∂x∂y

Partial derivatives of a function. If f(x, y) = x2y then ∂f
∂x

= 2xy and
∂2f
∂x∂y

= 2x.

y−i The set y minus element i. If y = {y1, y2, y3}, then y−2 = {y1, y3}.

Max(x, y) The maximum of two numbers x and y. Max(8, 24) = 24.

Min(x, y) Theminimum of two numbers x and y. Min(5, 3) = 3.

dxe Ceiling (x). A number rounded up to the nearest integer. d4.2e = 5. This notation
is not well known in economics.

bxc Floor (x). A number rounded down to the nearest integer. b6.9c = 6. This notation
is not well known in economics.
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Sup X The supremum (least upper bound) of set X. If X = {x|0 ≤ x < 1000}, then
sup X = 1000. The supremum is useful because sometimes, as here, no maximum
exists.

Inf X The infimum (greatest lower bound) of set X. If X = {x|0 ≤ x < 1000},
then inf X = 0.

Argmax The argument that maximizes a function. If e∗ = argmax EU(e), then e∗

is the value of e that maximizes the function EU(e). The argmax of f(x) = x − x2

is 1/2.

Maximum The greatest value that a function can take. Maximum(x− x2) = 1/4.

Minimum The least value that a function can take. Minimum(−5 + x2) = −5.

*A.2 The Greek Alphabet

A α alpha
B β beta
Γ γ gamma
∆ δ delta
E ε or ε epsilon
Z ζ zeta
H η eta
Θ θ theta
I ι iota
K κ kappa
Λ λ lambda
M µ mu
N ν nu
Ξ ξ xi
O o omicron
Π π pi
P ρ rho
Σ σ sigma
T τ tau
Υ υ upsilon
Φ φ phi
X χ chi
Ψ ψ psi
Ω ω omega

*A.3 Glossary

almost always See “generically.”
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annuity A riskless security paying a constant amount each year for a given period of years,
with the amount conventionally paid at the end of each year.

closed A closed set in Rn includes its boundary points. The set {x : 0 ≤ x ≤ 1000} is
closed.

combination The number of unordered sets of b elements from a set with a elements, de-

noted

(
a
b

)
= a!

b!(a−b)!
. If we form sets of 2 element from the set A = {w, x, y, z}, the

possibilities are {w, x}, {w, y}, {w, z}, {x, y}, {x, z}, {y, z}. Thus,

(
4
2

)
= 4!

2!(4−2)!
=

24/6 = 6. (See permutation for the ordered version.)

compact If set X in Rn is closed and bounded, then X is compact. Outside of Euclidean
space, however, a set being closed and bounded does not guarantee compactness.

complete metric space A metric space that includes the limits of all possible Cauchy
sequences. All compact metric spaces and all Euclidean spaces are complete.

concave function The continuous function f(x) defined on interval X is concave if for
all elements w and z of X, f(0.5w + 0.5z) ≥ 0.5f(w) + 0.5f(z). If f maps R into R
and f is concave, then f ′′ ≤ 0. See Figure 1.

Figure 1: Concavity and Convexity
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continuous function Let d(x, y) represent the distance between points x and y. The
function f is continuous if for every ε > 0 there exists a δ(ε) > 0 such that d(x, y) <
δ(ε) implies d(f(x), f(y)) < ε.

continuum A continuum is a closed interval of the real line, or a set that can be mapped
one-to-one onto such an interval.

contraction The mapping f(x) is said to be a contraction if there exists a number c < 1
such that for the metric d of the space X,

d(f(x), f(y)) ≤ c ∗ d(x, y), for all x, y ∈ X. (1)

convex function The continuous function f(x) is convex if for all elements w and z of X,
f(0.5w+ 0.5z) ≤ 0.5f(w) + 0.5f(z). See Figure 1. Convex functions are only loosely
related to convex sets.

convex set If set X is convex, then if you take any two of its elements w and z and a real
number t : 0 ≤ t ≤ 1, then tw + (1− t)z is also in X.

correspondence A correspondence is a mapping that maps each point to one or more
other points, as opposed to a function, which only maps to one.

domain The domain of a mapping is the set of elements it maps from– something like the
land that it can alter as it pleases. (The mapping maps from the domain onto the
range.)

Leibniz’s integral rule This is the rule for differentiation under the integral sign.

∂

∂z

∫ b(z)

a(z)

f(x, z)dx = f(b(z), z)
∂b(z)

∂z
− f(a(z), z)

∂a(z)

∂z
+

∫ b(z)

a(z)

∂f(x, z)

∂z
dx. (2)

function If f maps each point in X to exactly one point in Y , f is called a function. The
two mappings in Figure 1 are functions, but the mapping in Figure 2 is not.

generically If a fact is true on set X generically, “except on a set of measure zero,” or
“almost always,” then it is false only on a subset of points Z that have the property
that if a point is randomly chosen using a density function with support X, a point in
Z is chosen with probability zero. This implies that if the fact is false on z ∈ Rn and
z is perturbed by adding a random amount ε, the fact is true on z+ε with probability
one.

integration by parts This is a technique to rearrange integrals so they can be solved
more easily. It uses the formula∫ b

z=a

g(z)h′(z)dz = g(z)h(z)
∣∣b
z=a −

∫ b

z=a

h(z)g′(z)dz. (3)

To derive this, differentiate g(z)h(z) using the chain rule, integrate each side of the
equation, and rearrange.
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Lagrange multiplier The Lagrange multiplier λ is the marginal value of relaxing a con-
straint in an optimization problem. If the problem is

{ Maximize
x

x2 subject to x ≤ 5 }, then λ = 2x∗ = 10.

lattice A lattice is a partially ordered set (the ≥ ordering is defined) where for any two
elements a and b, the values inf(a, b) and sup(a, b) are also in the set. A lattice is
complete if the infimum and supremum of each of its subsets are in the lattice.

list (or n-Tuple) A set of n elements in which the element positions are ordered. (Up,Down, Up)
is a list, but (Down,Up, Up) are (Up,Down) are different lists. See set and multiset.

lower semicontinuous correspondence The correspondence φ is lower semicontinuous
at the point x0 if

xn → x0, y0 ∈ φ(x0), implies ∃yn ∈ φ(xn) such that yn → y0, (4)

which means that associated with every x sequence leading to x0 is a y sequence lead-
ing to its image. See Figure 2. This idea is not as important as upper semicontinuity.

maximand A maximand is what is being maximized. In the problem “Maximize f(x, θ)
by choice of x”, the maximand is f .

mean-preserving spread See the Risk section below.

measure zero See “generically.”

metric The function d(w, z) defined over elements of set X is a metric if (1) d(w, z) > 0
if w 6= z and d(w, z) = 0 if and only if w = z; (2) d(w, z) = d(z, w); and (3)
d(w, z) ≤ d(w, y) + d(y, z) for points w, y, z ∈ X.

metric space Set X is a metric space if it is associated with a metric that defines the
distance between any two of its elements.

multiset A set of n elements in which position in the listing is does not matter but
multiplicity does. (Up,Down, Up) is a multiset, and (Down,Up, Up) is the same
multiset, but (Up,Down) is a different multiset. See list and set.

n-Tuple (or Tuple). See list.

one-to-one The mapping f : X → Y is one-to-one if every point in set X maps to a
different point in Y , so x1 6= x2 implies f(x1) 6= f(x2). An example is f(x) = x/2
with X = [0, 1] and Y = [0, 2].

onto The mapping f : X → Y is onto Y if every point in Y is mapped onto by some point
in X. An example is f(x) = x2 with X = [−1, 1] and Y = [0, 1].

open In the space Rn, an open set is one that does not include all its boundary points.
The set {x : 0 ≤ x < 1000} is open (even though it does include one of its boundary
points). In more general spaces, an open set is a member of a topology.
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permutation The number of lists (sets with an order) of b elements from a set with a ele-
ments, which equals a!

(a−b)!
. If we form sets of 2 elements from the set A = {w, x, y, z},

the possibilities are
{w, x}, {x,w}, {w, y}, {y, w}, {w, z}, {z, w}, {x, y}, {y, x}, {x, z}, {z, x}, {y, z}, {z, y}.
The number of these is 4!

(4−2)!
= 24/2 = 12. (See combination for the unordered ver-

sion.)

perpetuity A riskless security paying a constant amount each year in perpetuity, with
the amount conventionally paid at the end of each year.

quasi-concave The continuous function f is quasi-concave if for w 6= z, f(0.5w+ 0.5z) >
min[f(w), f(z)], or, equivalently, if the set {x ∈ X|f(x) > b} is convex for any number
b. Every concave function is quasi-concave, but not every quasi-concave function is
concave.

quasilinear utility A utility function is quasilinear in variable w if a monotonic trans-
formation can make it linear in w and w is separable from all other variables in the
utility function. u(w, x) = w +

√
(x) and u(w, x) = log(w +

√
(x)) are quasilinear;

u(w, x) = wx and u(w, x) = log(w) +
√

(x) are not.

range The range of a mapping is the set of elements to which it maps– the property over
which it can spew its output. (The mapping maps from the domain onto the range.)

risk See the Risk section below.

set A set is a collection of objects in which position of listing and multiplicity do not
matter. {Up,Down}, {Down,Up}, and {Up,Down,Down} are all the same set of 2
elements. See list and multiset.

stochastic dominance See the Risk section below.

strict The word “strict” is used in a variety of contexts to mean that a relationship does
not hold with equality or is not arbitrarily close to being violated. If function f
is concave and f ′ > 0, then f ′′ ≤ 0, but if f is strictly concave, then f ′′ < 0. The
opposite of “strictly” is “weakly.” The word “strong” is sometimes used as a synonym
for “strict.”

supermodular See the Supermodularity section below.

support The support of a probability distribution F (x) is the closure of the set of values
of x such that the density is positive. If each output between 0 and 20 has a pos-
itive probability density, and no other output does, then the support of the output
distribution is [0,20].

topology Besides denoting a field of mathematics, a topology is a collection of subsets of
a space called “open sets” that includes (1) the entire space and the empty set, (2)
the intersection of any finite number of open sets, and (3) the union of any number
of open sets. In a metric space, the metric “induces” a topology by defining an open
set. Imposing a topology on a space is something like defining which elements are
close to each other, which is easy to do for Rn but not for every space (e.g., spaces
consisting of functions or of game trees).
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upper semicontinuous correspondence The correspondence φ : X → Y is upper semi-
continuous at point x0 if

xn → x0, yn ∈ φ(xn), yn → y0, implies y0 ∈ φ(x0), (5)

which means that every sequence of points in φ(x) leads to a point also in φ(x). See
Figure 2. An alternative definition, appropriate only if Y is compact, is that φ is
upper semicontinuous if the set of points {x, φ(x)} is closed.

Figure 2 Upper Semicontinuity

vector A vector is a list (a set with order) that has a certain structure I will not describe
here, but which, for example, a list of real numbers, a point in Rn, will satisfy. The
point (2.5, 3,−4) is a vector in R3.

weak The word “weak” is used in a variety of contexts to mean that a relationship might
hold with equality or be on a borderline. If f is concave and f ′ > 0, then f ′′ ≤ 0,
but to say that f is weakly concave, while technically adding nothing to the meaning,
emphasizes that f ′′ = 0 under some or all parameters. The opposite of “weak” is
“strict” or “strong.”

*A.4 Formulas and Functions

log(xy) = log(x) + log(y).
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log(x2) = 2log(x).

ax = (elog(a))x.

ert = (er)t.

ea+b = eaeb.

a > b⇒ ka < kb, if k < 0.

The Quadratic Formula: Let ax2 + bx+ c = 0. Then x = −b±
√

b2−4ac
2a

.

Derivatives

f(x) f ′(x)

xa axa−1

1/x − 1
x2

1
x2 − 2

x3

ex ex

erx rerx

log(ax) 1/x

log(x) 1/x

ax axlog(a)

f(g(x)) f ′(g(x))g′(x)

Determinants∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ = a11a22 − a21a12.

∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ = a11a22a33 − a11a23a32 + a12a23a31 − a12a21a33 + a13a21a32 − a13a22a31.

Table 1: Some Useful Functional Forms
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f (x ) f ′(x ) f ′′(x ) Slope for x > 0 Curvature

log(x) 1
x

− 1
x2 increasing concave

√
x 1

2
√

x
− 1

4x(3/2) increasing concave

x2 2x 2 increasing convex

1
x

− 1
x2

2
x3 decreasing convex

7− x2 −2x -2 decreasing concave

7x− x2 7− 2x -2 increasing/decreasing concave

The signs of derivatives can be confusing. The function f(x) = x2 is increasing at an
increasing rate, but the function f(x) = 1

x
is decreasing at a decreasing rate, even though

f ′′ > 0 in each case.

*A.5 Probability Distributions The definitive listing of probability distributions and
their characteristics is the three-volume series of Johnson & Kotz (1970). A few major
distributions are listed here. A probability distribution is the same as a cumulative
density function for a continuous distribution. Any single value has infinitesimal proba-
bility if the distribution is continuous (unless there is a probability atom there), so rather
than speaking of the probability of a value, we speak of the probability of the value being
in an interval, or of the density at a single value.

The Exponential Distribution
The exponential distribution, which has the set of nonnegative real numbers as its support,
has the density function for mean λ of

f(x) =
e−x/λ

λ
. (6)

The cumulative density function is

F (x) = 1− e−x/λ. (7)

The Uniform Distribution
A variable is uniformly distributed over support X if each point in X has equal probability.
If the support is [α, β], the mean is α+ β)/2, the density is

f(x) =


0 x < α

1
β−α

α ≤ x ≤ β

0 x > β,

(8)
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and the cumulative density function is

F (x) =


0 x < α

x−α
β−α

α ≤ x ≤ β

1 x > β

(9)

The Normal Distribution
The normal distribution is a two-parameter single-peaked distribution which has as its
support the entire real line. The density function for mean µ and variance σ2 is

f(x) =
1√

2πσ2
e
−(x−µ)2

2σ2 (10)

The cumulative density function is the the integral of this, often denoted Φ(x), which can-
not be simplified analytically. You can find values at websites such as
http://www.math2.org/math/stat/distributions/z-dist.htm or from a spreadsheet program.

The Lognormal Distribution
If log(x) has a normal distribution, x has a lognormal distribution. This is a skewed
distribution which has the set of positive real numbers as its support since the logarithm
of a negative number is not defined. The mean is eσ2/2.

A.6 Supermodularity

Suppose that there are N players in a game, subscripted by i and j, and that player i
has a strategy consisting of si elements, subscripted by s and t, so his strategy is the vector
yi = (yi

1, . . . , y
i
si). Let his strategy set be Si and his payoff function be πi(yi, y−i; z), where

z represents a fixed parameter. We say that the game is a supermodular game if the
following four conditions are satisfied for every player i = 1, . . . N :

(A1) Si is a complete lattice.

(A2) πi : S → R ∪ {−∞} is order semicontinuous in yi for fixed y−i, and order continuous
in y−i for fixed yi, and has a finite upper bound.

(A3) πi is supermodular in yi, for fixed y−i. For all strategy profiles y and y′ in S,

πi(y) + πi(y′) ≤ πi(supremum{y, y′}) + πi(infimum{y, y′}). (11)

(A4) πi has increasing differences in yi and y−i. For all yi ≥ yi′, the difference πi(yi, y−i)−
πi(yi′, y−i) is nondecreasing in y−i.

In addition, it is sometimes useful to use a fifth assumption:

(A5) πi has increasing differences in yi and z for fixed y−i; for all yi ≥ yi′, the difference
πi(yi, y−i, z)− πi(yi′, y−i, z) is nondecreasing with respect to z.
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The conditions for smooth supermodularity are:

A1′ The strategy set is an interval in Rsi
:

Si = [yi, yi]. (12)

A2′ πi is twice continuously differentiable on Si.

A3′ (Supermodularity) Increasing one component of player i’s strategy does not decrease
the net marginal benefit of any other component: for all i, and all s and t such that
1 ≤ s < t ≤ si,

∂2πi

∂yi
s∂y

i
t

≥ 0. (13)

A4′ (Increasing differences in one’s own and other strategies) Increasing one component
of i’s strategy does not decrease the net marginal benefit of increasing any component of
player j’s strategy: for all i 6= j, and all s and t such that 1 ≤ s ≤ si and 1 ≤ t ≤ sj,

∂2πi

∂yi
s∂y

j
t

≥ 0. (14)

The fifth assumption becomes

A5′: (Increasing differences in one’s own strategies and parameters) Increasing parameter z
does not decrease the net marginal benefit to player i of any component of his own strategy:
for all i, and all s such that 1 ≤ s ≤ si,

∂2πi

∂yi
s∂z

≥ 0. (15)

Theorem 1
If the game is supermodular, there exists a largest and smallest Nash equilibrium in pure
strategies.

Theorem 1 is useful because it shows (a) existence of an equilibrium in pure strategies,
and (b) if there are at least two equilibria (note that the largest and smallest equilibria
might be the same strategy profile), then two of them can be ranked in the magnitudes of
the components of each player’s equilibrium strategy.

Theorem 2
If the game is supermodular and assumption (A5′) is satisfied, then the largest and smallest
equilibria are nondecreasing functions of the parameter z.

Theorem 3
If a game is supermodular, then for each player there is a largest and smallest serially
undominated strategy, where both of these strategies are pure.

Theorem 4
Let yi denote the smallest element of player i’s strategy set Si in a supermodular game.
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Let y∗ and y∗′ denote two equilibria, with y∗ ≥ y∗′, so y is the “big” equilibrium. Then,
1. If πi(yi, y−i) is increasing in y−i, then πi(y∗) ≥ πi(y∗′).
2. If πi(yi, y−i) is decreasing in y−i, then πi(y∗) ≤ πi(y∗′).
3. If the condition in (1) holds for a subset N1 of players, and the condition in (2) holds for
the remainder of the players, then the big equilibrium y∗ is the best equilibrium for players
in N1 and the worst for the remaining player, and the small equilibrium y∗′ is the worst
equilibrium for players in N1 and the best for the remaining players.

The theorems here are taken from Milgrom & Roberts (1990). Theorem 1 is their
corollary to Theorem 5. Theorem 2 is their Theorem 6 and corollary. Theorem 3 is their
Theorem 5, and 4 is their Theorem 7. For more on supermodularity, see Milgrom &
Roberts (1990), Fudenberg & Tirole (1991, pp. 489-497), or Vives’s 2005 survey article.
For a mathematician’s view, see Topkis’s 1998 Supermodularity and Complementarity.

A.7 Fixed Point Theorems

Fixed points theorems say that various kinds of mappings from one set to another
result in at least one point being mapped back onto itself. The most famous fixed point
theorem is Brouwer’s Theorem, illustrated in Figure 3. I will use a formulation from page
952 of Mas-Colell, Whinston & Green (1994).

Figure 3 A Mapping with Three Fixed Points

The Brouwer Fixed Point Theorem. Suppose that set A in RN is nonempty, compact,
and convex; and that f : A→ A is a continuous function from A into itself. ( “Compact”
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means closed and bounded, in Euclidean space.) Then f has a fixed point; that is, there is
an x in A such that x = f(x).

The usefulness of fixed point theorems is that an equilibrium is a fixed point. Consider
equilibrium prices. Let p be a point in N -space consisting of one price for each good. Let
P be the set of all possible price points. P will be convex and compact if we limit it
to finite prices. Agents in the economy look at p and make decisions about consumption
and output. These decisions change p into f(p). An equilibrium is a point p∗ such that
f(p∗) = p∗. If you can show that f is continuous, you can show that p∗ exists.

This is also true for Nash equilibria. Let s be a point in N − space consisting of
one strategy for each player – a strategy profile. Let S be the set of all possible strategy
profiles. This will be compact and convex if we allow mixed strategies (for convexity) and
if strategy sets are closed and bounded. Each strategy profile s will cause each player to
react by choosing his best response f(s). A Nash equilibrium is s∗ such that f(s∗) = s∗.
If you can show that f is continuous – which you can do if payoff functions are continuous
– you can show that s∗ exists.

The Brouwer theorem is useful in itself, and conveys the intuition of fixed point the-
orems, but to prove existence of prices in general equilibrium and existence of Nash equi-
librium in game theory requires the Kakutani fixed point theorem. That is because the
mappings involved are not one-to-one functions, but one-to-many-point correspondences.
In general equilibrium, one firm might be indifferent between producing various amounts
of output. In game theory, one player might have two best responses to another player’s
strategy.

The Kakutani Fixed Point Theorem (Kakutani [1941]) Suppose that set A in RN

is a nonempty, compact, convex set and that f : A → A is an upper hemicontinuous
correspondence from A into itself, with the property that the set f(x) is nonempty and
convex for every x. Then f has a fixed point; that is, there is an x in A such that x is one
element of f(x).

Other fixed point theorems exist for other kinds of mappings — for example for a
mapping from a set of functions back into itself. In deciding which theorem to use, care
must be taken to identify the mathematical nature of the set of strategy profiles and the
smoothness of the best response functions.

*A.8 Genericity

Suppose we have a space X consisting of the interval between 0 and 100 on the real
line, [0, 100], and a function f such that f(x) = 3 except that f(15) = 5. We can then say
any of the following:

1 f(x) = 3 except on a set of measure zero.

2 f(x) = 3 except on a null set.

3 Generically, f(x) = 3.
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4 f(x) = 3 almost always.

5 The set of x such that f(x) = 3 is dense in X.

6 The set of x such that f(x) = 3 has full measure.

These all convey the idea that if parameters are picked using a continuous random
density, f(x) will be 3 with probability one, and any other value of f(x) is very special in
that sense. If you start with point x, and add a small random perturbation ε, then with
probability one, f(x + ε) = 3. So unless there is some special reason for x to take the
particular value of 15, you can count on observation f(x) = 3.

Statements like these always depend on the definition of the space X. If, instead, we
took a space Y consisting of the integers between 0 and 100, which is 0,1,2,...,100, then it is
not true that “f(x) = 3 except on a set of measure zero.” Instead, if x is chosen randomly,
there is a 1/101 probability that x = 15 and f(x) = 5.

The concept of “a set of measure zero” becomes more difficult to implement if the
space X is not just a finite interval. I have not defined the concept in these notes; I have
just pointed to usage. This, however, is enough to be useful to you. A course in real
analysis would teach you the definitions. As with the concepts of “closed” and “bounded”,
complications can arise even in economic applications because of infinite spaces and in
dealing with spaces of functions, game tree branchings, or other such objects.

Now, let us apply the idea to games. Here is an example of a theorem that uses
genericity.

Theorem: “Generically, all finite games of perfect information have a unique subgame
perfect equilibrium.”

Proof. A game of perfect information has no simultaneous moves, and consists of a tree
in which each player moves in sequence. Since the game is finite, each path through the
tree leads to an end node. For each end node, consider the decision node just before it.
The player making the decision there has a finite number N of choices, since this is a finite
game. Denote the payoffs from these choices as (P1, P2, ..., PN). This set of payoffs has
a unique maximum, because generically no two payoffs will be equal. (If they were, and
you perturbed the payoffs a little, with probability one they would no longer be equal, so
games with equal payoffs have measure zero.) The player will pick the action with the
biggest payoff. Every subgame perfect equilibrium must specify that the players choose
those actions, since they are the unique Nash strategies in the subgames at the end of the
game.

Next, consider the next-to-last decision nodes. The player making the decision at such
a node has a finite number of choices, and using the payoffs determined from the optimal
choice of final moves, he will find that some move has the maximum payoff. The subgame
perfect equilibrium must specify that move. Continue this procedure until you reach the
very first move of the game. The player there will find that some one of his finite moves has
the largest payoff, and he will pick that one move. Each player will have one best action
choice at each node, and so the equilibrium will be unique. Q.E.D.
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Genericity entered this as the condition that we are ignoring special games in the
theorem’s statement – games that have tied payoffs. Whether those are really special or
not depends on the context.

*A.9 Discounting

A model in which the action takes place in real time must specify whether payments
and receipts are valued less if they are made later, i.e., whether they are discounted.
Discounting is measured by the discount rate or the discount factor.

The discount rate, r, is the extra fraction of a unit of value needed to compensate for
delaying receipt by one period.

The discount factor, δ, is the equivalent in present units of value of one unit to be received
one period from the present.

The discount rate is analogous to the interest rate, and in some models the interest
rate determines the discount rate. The discount factor represents exactly the same idea as
the discount rate, and δ = 1

1+r
. Models use r or δ depending on notational convenience.

Not discounting is equivalent to r = 0 and δ = 1, so the notation includes zero discounting
as a special case.

Whether to put discounting into a model involves two questions. The first is whether
the added complexity will be accompanied by a change in the results or by a surprising
demonstration of no change in the results. A second, more specific question is whether the
events of the model occur in real time, so that discounting is appropriate. The bargaining
game of Alternating Offers from Section 12.3 can be interpreted in two ways. One way is
that the players make all their offers and counteroffers between dawn and dusk of a single
day, so essentially no real time has passed. The other way is that each offer consumes a
week of time, so that the delay before the bargain is reached is important to the players.
Discounting is appropriate only in the second interpretation.

Discounting has two important sources: time preference and a probability that the
game might end, represented by the rate of time preference, ρ, and the probability each
period that the game ends, θ. It is usually assumed that ρ and θ are constant. If they both
take the value zero, the player does not care whether his payments are scheduled now or
ten years from now. Otherwise, a player is indifferent between x

1+ρ
now and x guaranteed

to be paid one period later. With probability (1 − θ) the game continues and the later
payment is actually made, so the player is indifferent between (1−θ)x/(1+ρ) now and the
promise of x to be paid one period later contingent upon the game still continuing. The
discount factor is therefore

δ =
1

1 + r
=

(1− θ)

(1 + ρ)
. (16)

Table 2 summarizes the implications of discounting for the value of payment streams of
various kinds. We will not go into how these are derived, but they all stem from the basic
fact that a dollar paid in the future is worth δ dollars now. Continuous time models usually
refer to rates of payment rather than lump sums, so the discount factor is not so useful a
concept, but discounting works the same way as in discrete time except that payments are
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continuously compounded. For a full explanation, see a finance text (e.g., Appendix A of
Copeland & Weston [1988]).

Table 2 Discounting

Discounted Value
r-notation δ-notation

Payoff Stream (discount rate) (discount factor)

x at the end of one period x
1+r δx

x at the end of each period in perpetuity x
r

δx
1−δ

x at the start of each period in perpetuity x + x
r

x
1−δ

x at the end of each period up through T (first formula)
∑T

t=1
x

(1+r)t

∑T
t=1 δtx

x at the end of each period up through T (second formula) x
r

(
1− 1

(1+r)T

)
δx

1−δ

(
1− δT

)

x at time t in continuous time xe−rt —

Flow of x per period up to time T in continuous time
∫ T
0 xe−rtdt —

Flow of x per period in perpetuity, in continuous time x
r —

The way to remember the formula for an annuity over a period of time is to use the
formulas for a payment at a certain time in the future and for a perpetuity. A stream of
x paid at the end of each year is worth x

r
. A payment of Y at the end of period T has a

present value of −Y
(1+r)T . Thus, if at the start of period T you must pay out a perpetuity

of x at the end of each year, the present value of that payment is
(

x
r

) (
1

1+r

)T
. One may

also view a stream of payments each year from the present until period T as the same
thing as owning a perpetuity but having to give away a perpetuity in period T . This leaves
a present value of

(
x
r

) (
1− ( 1

1+r
)T

)
, which is the second formula for an annuity given in

Table 2. Figure 4 illustrates this approach to annuities and shows how it can also be used
to value a stream of income that starts at period S and ends at period T .
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Figure 4: Discounting

Discounting will be left out of most dynamic games in this book, but it is an especially
important issue in infinitely repeated games, and is discussed further in Section 5.2.

*A.10 Risk

We say that a player is risk averse if his utility function is strictly concave in money,
which means that he has diminishing marginal utility of money. He is risk neutral if his
utility function is linear in money. The qualifier “in money” is used because utility may be
a function of other variables too, such as effort.

We say that probability distribution F dominates distribution G in the sense of first-
order stochastic dominance if the cumulative probability that the variable will take a
value less than x is greater for G than for F , i.e. if

for any x, F (x) ≤ G(x), (17)

and (17) is a strong inequality for at least one value of x. The distribution F dominates
G in the sense of second-order stochastic dominance if the area under the cumulative
distribution G up to G(x) is greater than the area under F , i.e. if

for any x,

∫ x

−∞
F (y)dy ≤

∫ x

−∞
G(y)dy, (18)

and (18) is a strong inequality for some value of x. Equivalently, F dominates G if, limiting
U to increasing functions for first-order dominance and increasing concave functions for
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second-order dominance,

for all functions U,

∫ +∞

−∞
U(x)dF (x) >

∫ +∞

−∞
U(x)dG(x). (19)

If F is a first-order dominant gamble, it is preferred by all players; if F is a second-order
dominant gamble, it is preferred by all risk-averse players. If F is first-order dominant it
is second-order dominant, but not vice versa.

Milgrom (1981b) has used stochastic dominance to carefully define what we mean by
good news. Let θ be a parameter about which the news is received in the form of message
x or y, and let utility be increasing in θ. The message x is more favorable than y (is “good
news”) if for every possible nondegenerate prior for F (θ), the posterior F (θ|x) first-order
dominates F (θ|y).

Rothschild & Stiglitz (1970) shows how two gambles can be related in other ways equiv-
alent to second-order dominance, the most important of which is the mean-preserving
spread. Informally, a mean-preserving spread is a density function which transfers prob-
ability mass from the middle of a distribution to its tails. More formally, for discrete
distributions placing sufficient probability on the four points a1, a2, a3, and a4,

A mean-preserving spread is a set of four locations a1 < a2 < a3 < a4 and four
probabilities γ1 ≥ 0, γ2 ≤ 0, γ3 ≤ 0, γ4 ≥ 0 such that −γ1 = γ2, γ3 = −γ4, and

∑
i γiai = 0.

Figure 5: Mean-Preserving Spreads

Figure 5 shows how this works. Panel (a) shows the original distribution with solid
bars. The mean is 0.1(2) + 0.3(3) + 0.3(4) + 0.2(5) + 0.1(6), which is 3.9. The spread has
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mean 0.1(1)−0.3(.3)−0.1(4)+0.2(6), which is 0, so it is mean-preserving. Panel (b) shows
the resulting spread-out distribution.

The definition can be extended to continuous distributions, and can be alternatively
defined by taking probability mass from one point in the middle and moving it to the sides;
panel (c) of Figure 5 shows an example. See Rasmusen & Petrakis (1992), which also, with
Leshno, Levy, & Spector (1997), fixes an error in the original Rothschild & Stiglitz proof.

Hazard Rates

The hazard rate has been important in the analysis above. Suppose we have a density
f(v) for a buyer’s value for an object being sold, with cumulative distribution F (v) on
support [v, v]. The hazard rate h(v) is defined as

h(v) =
f(v)

1− F (v)
(20)

What this means is that h(v) is the probability density of v for the distribution which is
like F (v) except cutting off the lower values, so its support is limited to [v, v]. In economic
terms, h(v) is the probability density for the valuing equalling v given that we know that
value equals at least v.

For most distributions we use, the hazard rate is increasing, including the uniform,
normal, logistic, and exponential distributions, and any distribution with increasing density
over its support (see Bagnoli & Bergstrom [1994]). Figure 6 shows three of them.

521



Figure 6: Three Densities To Illustrate Hazard Rates
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