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This appendix contains answers to the odd-numbered problems in the third

edition of Games and Information by Eric Rasmusen, published in 2001.

The answers to the even- numbered problems are available to instructors or

self-studiers on request to me at Erasmuse@indiana.edu.

Other books which contain exercises with answers include Bierman &

Fernandez (1993), Binmore (1992), Fudenberg & Tirole (1991a), J. Hirsh-

leifer & Riley (1992), Moulin (1986), and Gintis (2000). I must ask pardon

of any authors from whom I have borrowed without attribution in the prob-

lems below; these are the descendants of problems that I wrote for teaching

without careful attention to my sources.

PROBLEMS FOR CHAPTER 1

1.1: Nash and Iterated Dominance.

(1.1a) Show that every iterated dominance equilibrium s∗ is Nash.

Answer. Suppose that s∗ is not Nash. This means that there exist some
i and s0i such that i could profitably deviate, i.e., πi(s

∗) < πi(s
0
i, s

∗
−i).

But that means that there is no point during the iterated deletion that

player i could have eliminated strategy s0i as being even weakly domi-
nated for him by s∗i . Hence, iterated deletion could not possibly reach
s∗ and we have have a contradiction; it must be that every iterated
dominance equilibrium is Nash.

(1.1b) Show by counterexample that not every Nash equilibrium can be gen-

erated by iterated dominance.

Answer. In “Ranked Coordination” (Table 1.7) no strategy can be elim-

inated by dominance, and the boldfaced strategies are Nash.
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(1.1c) Is every iterated dominance equilibrium made up of strategies that are

not weakly dominated?

Answer. No. A strategy that is in the equilibrium strategy combination

might be a bad reply to some strategies that iterated deletion removed

from the original game. Consider the Iteration Path Game below. The

strategy combinations (r1, c1) and (r1, c3) are both iterated dominance

equilibria, because each of those strategy combinations can be found by

iterated deletion. The deletion can proceed in the order (r3, c3, c2, r2)

or in the order (r2, c2, c1, r3). But c3, which is a part of the (r1, c3)

equilibrium, is weakly dominated by c1.

Column
c1 c2 c3

r1 2,12 1,10 1,12

Row: r2 0,12 0,10 0,11

r3 0,12 1,10 0,13

Payoffs to: (Row, Column)

Table Ax1: The Iteration Path Game

1.3: Pareto Dominance (based on notes by Jong-shin Wei)

(1.3a) If a strategy combination s∗ is a dominant strategy equilibrium, does
that mean it weakly pareto-dominates all other strategy combinations?

Answer. No– think of the “Prisoner’s Dilemma”, in Table 1 of Chapter

1. (Confess, Confess) is a dominant strategy equilibrium, but it does

not weakly pareto-dominate (Deny, Deny)
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(1.3b) If a strategy combination s strongly pareto- dominates all other strat-

egy combinations, does that mean it is a dominant strategy equilib-

rium?

Answer. No– think of “Ranked Coordination” in Table 7 of Chapter

1. (Large, Large) strongly pareto- dominates all other strategy combi-

nations, but is not a dominant strategy equilibrium.1

(1.3c) If sweakly pareto-dominates all other strategy combinations, then must

it be a Nash equilibrium?

Answer.Yes. If s is weakly pareto- dominant, then πi(s) ≥ πi(s
0),∀s0,∀i.

If s is Nash, πi(s) ≥ πi(s
0
i, s−i),∀s0i,∀i. Since {s0i, s−i} is a subset of

{s0}, if s satisfies the condition to be weakly pareto-dominant, it must
also be a Nash equilibrium.

1.5: Drawing Outcome Matrices. It can be surprisingly difficult to

look at a game using new notation. In this exercise, redraw the outcome

matrix in a different form than in the main text. In each case, read the

description of the game and draw the outcome matrix as instructed. You

will learn more if you do this from the description, without looking at the

conventional outcome matrix.

(1.5a) The Battle of the Sexes (Table 8 of Chapter 1). Put (Prize Fight, Prize

Fight) in the northwest corner, but make the woman the row player.

Answer. See Table A1.

Table A1: “Rearranged Battle of the Sexes I”

Man
Prize Fight Ballet

Prize Fight 1,2 ← - 5,- 5
Woman: ↑ ↓

Ballet -1,-1 → 2, 1
Payoffs to: (Woman, Man).

1The Prisoner’s Dilemma is not a good example for this problem, because (Deny, Deny)
does not pareto- dominate (Deny, Confess).
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(1.5b) The Prisoner’s Dilemma (Table 2 of Chapter 1). Put ( Confess, Con-

fess) in the northwest corner.

Answer. See Table A2.

Table A2 “Rearranged Prisoner’s Dilemma”

Column
Confess Deny

Confess -8,-8 ← 0,-10
Row: ↑ ↑

Deny -10,0 ← -1,-1
Payoffs to: (Row, Column).

(1.5c) The Battle of the Sexes (Table 1.8). Make the man the row player,

but put (Ballet, Prize Fight) in the northwest corner.

Answer. See Table A3.

Table A3: “Rearranged Battle of the Sexes II”

Woman
Prize Fight Ballet

Ballet -5,-5 → 1,2
Man: ↓ ↑

Prize Fight 2,1 ← - 1,- 1
Payoffs to: (Man, Woman).

PROBLEMS FOR CHAPTER 2: INFORMATION

2.1: The Monty Hall Problem. You are a contestant on the TV show,

“Let’s Make a Deal.” You face three curtains, labelled A, B and C. Behind

two of them are toasters, and behind the third is a Mazda Miata car. You

choose A, and the TV showmaster says, pulling curtain B aside to reveal a

toaster, “You’re lucky you didn’t choose B, but before I show you what is

behind the other two curtains, would you like to change from curtain A to

curtain C?” Should you switch? What is the exact probability that curtain

C hides the Miata?

Answer. You should switch to curtain C, because
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Prob (Miata behind C | Host chose B) = Prob(Host chose B |Miata behind C)Prob(Miata behind C)
Prob(Host chose B)

=
(1)( 1

3
)

(1)( 1
3
)+( 1

2
)( 1
3
)
.

= 2
3
.

The key is to remember that this is a game. The host’s action has revealed

more than that the Miata is not behind B; it has also revealed that the host

did not want to choose curtain C. If the Miata were behind B or C, he would

pull aside the curtain it was not behind. Otherwise, he would pull aside a

curtain randomly. His choice tells you nothing new about the probability

that the Miata is behind curtain A, which remains 1
3
, so the probability of it

being behind C must rise to 2
3
(to make the total probability equal one).

What would be the best choice if curtain B simply was blown aside by

the wind, revealing a toaster, and the host, Monty Hall, asked if you wanted

to switch to curtain C? In that case you should be indifferent. Just as easily,

curtain C might have blown aside, possibly revealing a Miata, but though

the wind’s random choice is informative— your posterior on the probability

that the Miata is behind curtain C rises from 1/3 to 1/2– it does not convey

as much information as Monty Hall’s deliberate choice.

See http://www.stat.sc.edu/ west/javahtml/LetsMakeaDeal.html for a

Java applet on this subject.

2.3: Cancer Tests. Imagine that you are being tested for cancer, using a

test that is 98 accurate. If you indeed have cancer, the test shows positive

(indicating cancer) 98 of the time. If you do not have cancer, it shows negative

98 of the time. You have heard that 1 in 20 people in the population actually

have cancer. Now your doctor tells you that you tested positive, but you

shouldn’t worry because his last 19 patients all died. How worried should

you be? What is the probability you have cancer?
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Answer. Doctors, of course, are not mathematicians. Using Bayes’ Rule:

Prob(Cancer|Positive) = Prob(Positive|Cancer)Prob(Cancer)
Prob(Positive)

= 0.98(0.05)
0.98(0.05)+0.02(0.95)

≈ 0.72.

(1)

With a 72 percent chance of cancer, you should be very worried. But at least

it is not 98 percent.

Here is another way to see the answer. Suppose 10,000 tests are done.

Of these, an average of 500 people have cancer. Of these, 98 test positive

on average– 490 people. Of the 9,500 cancer-free people, 2 test positive on

average–190 people. Thus there are 680 positive tests, of which 490 are true

positives. The probability of having cancer if you test positive is 490/680,

about 72 .

This sort of analysis is one reason why HIV testing for the entire popula-

tion, instead of for high-risk subpopulations, would not be very informative–

there would be more false positives than true positives.

2.5: Joint Ventures. Software Inc. and Hardware Inc. have formed a joint

venture. Each can exert either high or low effort, which is equivalent to costs

of 20 and 0. Hardware moves first, but Software cannot observe his effort.

Revenues are split equally at the end, and the two firms are risk neutral. If

both firms exert low effort, total revenues are 100. If the parts are defective,

the total revenue is 100; otherwise, if both exert high effort, revenue is 200,

but if only one player does, revenue is 100 with probability 0.9 and 200 with

probability 0.1. Before they start, both players believe that the probability

of defective parts is 0.7. Hardware discovers the truth about the parts by

observation before he chooses effort, but Software does not.

(2.5a) Draw the extensive form and put dotted lines around the information

sets of Software at any nodes at which he moves.

Answer. See Figure A.1. To understand where the payoff numbers come

from, see the answer to part (b).
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Figure A.1 The Extensive Form for the Joint Ventures Game

(2.5b) What is the Nash equilibrium?

Answer. (Hardware: Low if defective parts, Low if not defective parts;

Software: Low).

πHardware(Low|Defective) = 100

2
= 50.

Deviating would yield Hardware a lower payoff:

πHardware(High|Defective) = 100

2
− 20 = 30.

πHardware(Low|Not Defective) = 100

2
= 50.

Deviating would yield Hardware a lower payoff:

πHardware(High|Not Defective) = .9
µ
100

2

¶
+.1

µ
200

2

¶
−20 = 45+10−20 = 35.

πSoftware(Low) =
100

2
= 50.

Deviating would yield Software a lower payoff:

πSoftware(High) = .7
µ
100

2

¶
+.3

·
.9
µ
100

2

¶
+ .1

µ
200

2

¶¸
−20 = 35+.3(45+10)−20.
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This equals 15 + .3(35) = 31.5, less than the equilibrium payoff of 50.

Elaboration. A strategy combination that is not an equilibrium (be-

cause Software would deviate) is:

(Hardware: Low if defective parts, High if not defective parts; Soft-

ware: High).

πHardware(Low|Defective) = 100

2
= 50.

Deviating would indeed yield Hardware a lower payoff:

πHardware(High|Defective) = 100

2
− 20 = 30.

πHardware(High|Not Defective) = 200

2
− 20 = 100− 20 = 80.

Deviating would indeed yield Hardware a lower payoff:

πHardware(Low|Not Defective) = .9
µ
100

2

¶
+ .1

µ
200

2

¶
= 55.

πSoftware(High) = .7
µ
100

2

¶
+ .3

µ
200

2

¶
− 20 = 35 + 30− 20 = 45.

Deviating would yield Software a higher payoff, so the strategy combi-

nation we are testing is not a Nash equilibrium:

πSoftware(Low) = .7
µ
100

2

¶
+.3

·
.9
µ
100

2

¶
+ .1

µ
200

2

¶¸
= 35+.3(45+10) = 35+.16.5 = 51.5.

More Elaboration. Suppose the probability of revenue of 100 if one

player choose High and the other chooses Low were z instead of .9.

If z is too low, the equilibrium described above breaks down because

Hardware finds it profitable to deviate to High|Not Defective.

πHardware(Low|Not Defective) = 100

2
= 50.
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Deviating would yield Hardware a lower payoff:

πHardware(High|Not Defective) = z
µ
100

2

¶
+(1−z)

µ
200

2

¶
−20 = 50z+100−100z−20.

This comes to be πHardware(High|Not Defective) = 80 − 50z, so if
z < .6 then the payoff from (High|Not Defective) is greater than 50,
and so Hardware would be willing to unilaterally supply High effort

even though Software is providing Low effort.

You might wonder whether Software would deviate from the equilib-

rium for some value of z even greater than .6. To see that he would

not, note that

πSoftware(High) = .7
µ
100

2

¶
+ .3

·
z
µ
100

2

¶
+ (1− z)

µ
200

2

¶¸
− 20.

This takes its greatest value at z = 0, but even then the payoff from

High is just .7(50)+ .3(100)− 20 = 45, less than the payoff of 50 from
Low. The chances of non-defective parts are just too low for Software

to want to take the risk of playing High when Hardware is sure to play

Low.

(2.5c) What is Software’s belief, in equilibrium, as to the probability that

Hardware chooses low effort?

Answer. One. In equilibrium, Hardware always chooses Low.

(2.5d) If Software sees that revenue is 100, what probability does he assign

to defective parts if he himself exerted high effort and he believes that

Hardware chose low effort?

Answer. 0.72 (= (1) 0.7
(1)(0.7)+(0.9)(0.3)

).

PROBLEMS FOR CHAPTER 3: Mixed and Continuous

Strategies

3.1: Presidential Primaries. Smith and Jones are fighting it out for the

Democratic nomination for President of the United States. The more months
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they keep fighting, the more money they spend, because a candidate must

spend one million dollars a month in order to stay in the race. If one of them

drops out, the other one wins the nomination, which is worth 11 million

dollars. The discount rate is r per month. To simplify the problem, you may

assume that this battle could go on forever if neither of them drops out. Let

θ denote the probability that an individual player will drop out each month

in the mixed- strategy equilibrium.

(3.1a) In the mixed-strategy equilibrium, what is the probability θ each month

that Smith will drop out? What happens if r changes from 0.1 to 0.15?

Answer. The value of exiting is zero. The value of staying in is V =

θ(10) + (1 − θ)(−1 + V
1+r
). Thus, V − (1 − θ) V

1+r
= 10θ − 1 + θ, and

V = (11θ−1)(1+r)
(r+θ)

. As a result, θ = 1/11 in equilibrium.

The discount rate does not affect the equilibrium outcome, so a

change in r produces no observable effect.

(3.1b) What are the two pure-strategy equilibria?

Answer. (Smith drops out, Jones stays in no matter what) and (Jones

drops out, Smith stays in no matter what).

(3.1c) If the game only lasts one period, and the Republican wins the general

election (for Democrat payoffs of zero) if both Democrats refuse to

exit, what is the probability γ with which each candidate exits in a

symmetric equilibrium?

Answer. The payoff matrix is shown in Table A.5.

Table A.5 Fighting Democrats

Jones
Exit (γ) Stay (1− γ)

Exit (γ) 0,0 0, 10
Smith

Stay (1− γ) 10,0 -1,-1

The value of exiting is V (exit) = 0. The value of staying in is V (Stay) =

10γ + (−1)(1− γ) = 11γ − 1. Hence, each player stays in with proba-
bility γ = 1/11 – the same as in the war of attrition of part (a).
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3.3: Uniqueness in Matching Pennies. In the game Matching Pennies,

Smith and Jones each show a penny with either heads or tails up. If they

choose the same side of the penny, Smith gets both pennies; otherwise, Jones

gets them.

(3.3a) Draw the outcome matrix for Matching Pennies.

Table A.6 “Matching Pennies”

Jones
Heads (θ) Tails (1− θ)

Heads (γ) 1,−1 −1, 1
Smith:

Tails (1− γ) −1, 1 1,−1
Payoffs to: (Smith, Jones).

(3.3b) Show that there is no Nash equilibrium in pure strategies.

Answer. (Heads,Heads) is not Nash, because Jones would deviate to

Tails. Heads, Tails is not Nash, because Smith would deviate to Tails.

(Tails, Tails) is not Nash, because Jones would deviate to Heads.

(Tails, Heads) is not Nash, because Smith would deviate to Heads.

(3.3c) Find the mixed-strategy equilibrium, denoting Smith’s probability of

Heads by γ and Jones’ by θ.

Answer. Equate the pure strategy payoffs. Then for Smith, π(Heads) =

π(Tails), and

θ(1) + (1− θ)(−1) = θ(−1) + (1− θ)(1), (2)

which tells us that 2θ−1 = −2θ+1, and θ = 0.5. For Jones, π(Heads) =
π(Tails), so

γ(−1) + (1− γ)(1) = γ(1) + (1− γ)(−1), (3)

which tells us that 1− 2γ = 2γ − 1 and γ = 0.5.

(3.3d) Prove that there is only one mixed-strategy equilibrium.
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Answer. Suppose θ > 0.5. Then Smith will choose Heads as a pure

strategy. Suppose θ < 0.5. Then Smith will choose Tails as a pure

strategy. Similarly, if γ > 0.5, Jones will choose Tails as a pure strat-

egy, and if γ < 0.5, Jones will choose Heads as a pure strategy. This

leaves (0.5, 0.5) as the only possible mixed-strategy equilibrium.

Compare this with the multiple equilibria in problem 3.5. In that prob-

lem, there are three players, not two. Should that make a difference?

3.5: A Voting Paradox. Adam, Charles, and Vladimir are the only three

voters in Podunk. Only Adam owns property. There is a proposition on the

ballot to tax property-holders 120 dollars and distribute the proceeds equally

among all citizens who do not own property. Each citizen dislikes having to

go to the polling place and vote (despite the short lines), and would pay 20

dollars to avoid voting. They all must decide whether to vote before going

to work. The proposition fails if the vote is tied. Assume that in equilibrium

Adam votes with probability θ and Charles and Vladimir each vote with the

same probability γ, but they decide to vote independently of each other.

(3.5a) What is the probability that the proposition will pass, as a function of

θ and γ?

Answer. The probability that Adam loses can be decomposed into

three probabilities– that all three vote, that Adam does not vote but

one other does, and that Adam does not vote but both others do.

These sum to θγ2+ (1− θ)2γ(1− γ) + (1− θ)γ2, which is, rearranged,

γ(2γθ − 2θ + 2− γ).

(3.5b) What are the two possible equilibrium probabilities γ1 and γ2 with

which Charles might vote? Why, intuitively, are there two symmetric

equilibria?

Answer. The equilibrium is in mixed strategies, so each player must

have equal payoffs from his pure strategies. Let us start with Adam’s
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payoffs. If he votes, he loses 20 immediately, and 120 more if both

Charles and Vladimir have voted.

πa(V ote) = −20 + γ2(−120). (4)

If Adam does not vote, then he loses 120 if either Charles or Vladimir

vote, or if both vote:

πa(Not V ote) = (2γ(1− γ) + γ2)(−120) (5)

Equating πa(V ote) and πa(Not V ote) gives

0 = 20− 240γ + 240γ2. (6)

The quadratic formula solves for γ:

γ =
12±√144− 4 · 1 · 12

24
. (7)

This equations has two solutions, γ1 = 0.09 (rounded) and γ2 = 0.91(rounded).

Why are there two solutions? If Charles and Vladimir are sure not

to vote, Adam will not vote, because if he does not vote he will win,

0- 0. If Charles and Vladimir are sure to vote, Adam will not vote,

because if he does not vote he will lose, 2-0, but if he does vote, he will

lose anyway, 2-1. Adam only wants to vote if Charles and Vladimir

vote with moderate probabilities. Thus, for him to be indifferent be-

tween voting and not voting, it suffices either for γ to be low or to be

high— it just cannot be moderate.

(3.5c) What is the probability θ that Adam will vote in each of the two sym-

metric equilibria?

Answer. Now use the payoffs for Charles, which depend on whether

Adam and Vladimir vote.

πc(V ote) = −20 + 60[γ + (1− γ)(1− θ)] (8)

πc(Not V ote) = 60γ(1− θ). (9)

Equating these and using γ∗ = 0.09 gives θ = 0.70 (rounded). Equat-

ing these and using γ∗ = 0.91 gives θ = 0.30 (rounded).
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(3.5d) What is the probability that the proposition will pass?

Answer. The probability that Adam will lose his property is, using

the equation in part (a) and the values already discovered, either 0.06

(rounded) (= (0.7)(0.09)2+(0.3)(2(0.09)(0.91)+(0.09)2)) or 0.37 (rounded

(= (0.3)(0.91)2 + (0.7)(2(0.91)(0.09) + (0.91)2)).

PROBLEMS FOR CHAPTER 4

4.1: Repeated Entry Deterrence. Consider two repetitions without dis-

counting of the game Entry Deterrence I from Section 4.2. Assume that

there is one entrant, who sequentially decides whether to enter two markets

that have the same incumbent.

(4.1a) Draw the extensive form of this game.

Answer. See Figure A.2. If the entrant does not enter, the incumbent’s

response to entry in that period is unimportant.

Figure A.2 “Repeated Entry Deterrence”

(4.1b) What are the 16 elements of the strategy sets of the entrant?

Answer. The entrant makes a binary decision at four nodes, so his

strategy must have four components, strictly speaking, and the number

14



of possible arrangements is (2)(2)(2)(2) = 16. Table A.7 shows the

strategy space, with E for Enter and S for Stay out.

Table A.7 The Entrant’s Strategy Set

Strategy E1 E2 E3 E4
1 E E E E
2 E E E E
3 E E E S
4 E E S S
5 E S S S
6 E S E E
7 E S S E
8 E S E S
9 S E E E
10 S S E E
11 S S S E
12 S S S S
13 S E S S
14 S E S E
15 S E E S
16 S S E S

Usually modellers are not so careful. Table A.7 includes action rules

for the Entrant to follow at nodes that cannot be reached unless the

Entrant trembles, somehow deviating from its own strategy. If the

Entrant chooses Strategy 16, for example, nodes E3 and E4 cannot

possibly be reached, even if the Incumbent deviates, so one might think

that the parts of the strategy dealing with those nodes are unimportant.

Table A.8 removes the unimportant parts of the strategy, and Table

A.16 condenses the strategy set down to its six importantly distinct

strategies.
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Table A.8 The Entrant’s Strategy Set, Abridged Version I

Strategy E1 E2 E3 E4
1 E - E E
2 E - E E
3 E - E S
4 E - S S
5 E - S S
6 E - E E
7 E - S E
8 E - E S
9 S E - -
10 S S - -
11 S S - -
12 S S - -
13 S E - -
14 S E - -
15 S E - -
16 S S - -

Table A.9 The Entrant’s Strategy Set, Abridged Version II

Strategy E1 E2 E3 E4
1 E - E E
3 E - E S
4 E - S S
7 E - S E
9 S E - -
10 S S - -

(4.1c) What is the subgame perfect equilibrium?

Answer. The entrant always enters and the incumbent always colludes.

(4.1d) What is one of the nonperfect Nash equilibria?

Answer. The entrant stays out in the first period, and enters in the

second period. The incumbent fights any entry that might occur in the

first period, and colludes in the second period.

4.3: Heresthetics in Pliny and the Freedmens’ Trial. (Pliny, 1963, pp.
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221-4, Riker, 1986, pp.78-88). Afranius Dexter died mysteriously, perhaps

dead by his own hand, perhaps killed by his freedmen (servants a step above

slaves), or perhaps killed by his freedmen by his own orders. The freedmen

went on trial before the Roman Senate. Assume that 45 percent of the

senators favor acquittal, 35 percent favor banishment, and 20 percent favor

execution, and that the preference rankings in the three groups are A Â B Â
E, B Â A Â E, and E Â B Â A. Also assume that each group has a leader
and votes as a bloc.

(4.3a) Modern legal procedure requires the court to decide guilt first and

then assign a penalty if the accused is found guilty. Draw a tree to

represent the sequence of events (this will not be a game tree, since

it will represent the actions of groups of players, not of individuals) .

What is the outcome in a perfect equilibrium?

Answer. Guilt would win in the first round by a vote of 55 to 45, and

banishment would win in the second by 80 to 20. See Figure A.3.

Figure A.3 Modern Legal Procedure

(4.3b) Suppose that the acquittal bloc can pre- commit to how they will vote

in the second round if guilt wins in the first round. What will they
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do, and what will happen? What would the execution bloc do if they

could control the second-period vote of the acquittal bloc?

Answer.The acquittal bloc would commit to execution, inducing the

Banishment bloc to vote for Acquittal in the first round, and acquittal

would win. The execution bloc would order the acquittal bloc to choose

banishment in the second round to avoid making the banishment bloc

switch to acquittal.2

(4.3c) The normal Roman procedure began with a vote on execution versus

no execution, and then voted on the alternatives in a second round

if execution failed to gain a majority. Draw a tree to represent this.

What would happen in this case?

Answer. Execution would fail by a vote of 20 to 80, and banishment

would then win by 55 to 45. See Figure A.4.

Figure A.4 Roman Legal Procedure

(4.3d) Pliny proposed that the Senators divide into three groups, depending on

2Note that preferences do not always work out this way. In Athens, six centuries before
the Pliny episode, Socrates was found guilty in a first round of voting and then sentenced
to death (instead of a lesser punishment like banishment) by a bigger margin in the second
round. This would imply the ranking of the acquittal bloc there was AEB, except for the
complicating factor that Socrates was a bit insulting in his sentencing speech.
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whether they supported acquittal, banishment, or execution, and that

the outcome with the most votes should win. This proposal caused a

roar of protest. Why did he propose it?

Answer. It must be that Pliny favored acquittal and hoped that every

senator would vote for his preference,. Acquittal would then win 45 to

35 to 25.

(4.3e) Pliny did not get the result he wanted with his voting procedure. Why

not?

Answer. Pliny said that his arguments were so convincing that the

senator who made the motion for the death penalty changed his mind,

along with his supporters, and voted for banishment, which won (by

55 to 45 in our hypothesized numbers). He forgot that people do not

always vote for their first preference. The execution bloc saw that

acquittal would win unless they switched to banishment.

(4.3f) Suppose that personal considerations made it most important to a sen-

ator that he show his stand by his vote, even if he had to sacrifice his

preference for a particular outcome. If there were a vote over whether to

use the traditional Roman procedure or Pliny’s procedure, who would

vote with Pliny, and what would happen to the freedmen?

Answer. Traditional procedure would win by capturing the votes of the

execution bloc and the banishment bloc, and the freedmen would be

banished. In this case, the voting procedure would matter to the result,

because each senator would vote for his preference.

PROBLEMS FOR CHAPTER 5 Reputation and Repeated

Games

5.1: Overlapping Generations (Samuelson [1958]) There is a long

sequence of players. One player is born in each period t, and he lives for

periods t and t+1. Thus, two players are alive in any one period, a youngster

and an oldster. Each player is born with one unit of chocolate, which cannot
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be stored. Utility is increasing in chocolate consumption, and a player is

very unhappy if he consumes less than 0.3 units of chocolate in a period: the

per-period utility functions are U(C) = −1 for C < 0.3 and U(C) = C for

C ≥ 0.3 , where C is consumption. Players can give away their chocolate,

but, since chocolate is the only good, they cannot sell it. A player’s action

is to consume X units of chocolate as a youngster and give away 1 − X
to some oldster. Every person’s actions in the previous period are common

knowledge, and so can be used to condition strategies upon.

(5.1a) If there is finite number of generations, what is the unique Nash equi-

librium?

Answer. X=1. The Chainstore Paradox applies. Youngster T , the last

one, has no incentive to give anything to Oldster T − 1. Therefore,
Youngster T − 1 has no incentive either, and so for for every t.

(5.1b) If there are an infinite number of generations, what are two Pareto-

ranked perfect equilibria?

Answer. (i) (X = 1, regardless of what others do), and (ii) (X = 0.5,

unless some player has deviated, in which case X = 1). Equilibrium

(ii) is pareto superior.

(5.1c) If there is a probability θ at the end of each period (after consumption

takes place) that barbarians will invade and steal all the chocolate

(leaving the civilized people with payoffs of -1 for any X ), what is the

highest value of θ that still allows for an equilibrium with X = 0.5?

Answer. The payoff from the equilibrium strategy is 0.5+ (1− θ)0.5 +

θ(−1) = 1 − 1.5θ. The payoff from deviating to X = 1 is 1 − 1 = 0.
These are equal if 1 − 1.5θ = 0; that is, if θ = 2

3
. Hence, θ can take

values up to 2
3
and the X = 0.5 equilibrium can still be maintained.

5.3: Repeated Games.3 Players Benoit and Krishna repeat the game in

Table 5.7 three times, with discounting:

3See Benoit & Krishna (1985).
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Table 5.7 A Benoit-Krishna Game

Krishna
Deny Waffle Confess

Deny 10,10 −1,−12 −1, 15

Benoit: Waffle −12,−1 8,8 −1,−1

Confess 15,−1 8,−1 0, 0

Payoffs to: (Benoit, Krishna).

(5.3a) Why is there no equilibrium in which the players play Deny in all three

periods?

Answer. If Benoit and Krishna both chose Deny in the third period,

Krishna would get a payoff of 10 in that period. He could increase his

payoff by deviating to Confess.

(5.3b) Describe a perfect equilibrium in which both players pick Deny in the

first two periods.

Answer. In the last period, any equilibrium has to have the players ei-

ther both choosing Confess or both choosingWaffle (which means to

equivocate, to talk but neither to quite deny or quite confess). Consider

the following proposed equilibrium behavior for each player:

1. Choose Deny in the first period.

2. Choose Deny in the second period unless someone chose a different

action in the first period, in which case choose Confess.

3. ChooseWaffle in the third period unless someone chose something

other than Deny in the first or second period, in which case choose

Confess.

This is an equilibrium. In the third period, a deviator to either Deny

or Confess would have a payoff of -1 instead of 8 in that period. If,

however, someone has already deviated in an earlier period, each player
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expects the other to choose Confess, in which case Confess is his best

response.

In the second period, if a player deviates to Deny he will have a pay-

off of 15 instead of 10 in that period. In the third period, however,

his payoff will then be 0 instead of 8, because the actions will be

(Confess, Confess) instead of (Waffle,Waffle). If the discount

rate is low enough (for example r = 0), then deviation in the second

period is not profitable. If some other player has deviated in the first

period, however, the players expect each other to choose Confess in

the second period and that is self- confirming.

In the first period, if a player deviates to Deny he will have a pay-

off of 15 instead of 10 in that period. In the second period, however,

his payoff will then be 0 instead of 10, because the actions will be

(Confess, Confess) instead of (Deny,Deny). And in the third pe-

riod his payoff will then be 0 instead of 8, because the actions will

be (Confess, Confess) instead of (Waffle,Waffle). If the discount

rate is low enough (for example r = 0), then deviation in the first

period is not profitable.

(5.3c) Adapt your equilibrium to the twice- repeated game.

Answer.Simply leave out the middle period of the three-period model:

1. Choose Deny in the first period.

2. Choose Waffle in the second period unless someone chose some-

thing other thanDeny in the first period, in which case choose Confess.

(5.3d) Adapt your equilibrium to the T -repeated game.

Answer. Now we just add extra middle periods:

1. Choose Deny in the first period.

2. Choose Deny in the second period unless someone chose a different

action in the first period, in which case choose Confess.

t. Choose Deny in the t’th period for t = 3, ..., T − 1 unless someone
chose a different action previously, in which case choose Confess.
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T . ChooseWaffle in the third period unless someone chose something

other than Deny previously, in which case choose Confess.

(5.3e) What is the greatest discount rate for which your equilibrium still works

in the 3-period game?

Answer. It is harder to prevent deviation in the second period than

in the first period, because deviation in the first period leads to lower

payoffs in two future periods instead of one. So if a discount rate is low

enough to prevent deviation in the second period, it is low enough to

prevent deviation in the first period.

The equilibrium payoff in the subgame starting with the second period

is, if the discount rate is ρ,

10 +
1

1 + ρ
(8)

The payoff to deviating to Confess in the second period and then

choosing Confess in the third period is

15 +
1

1 + ρ
(0) .

Equating these two payoffs yields 10+ 8
1+ρ

= 15, so 8 = 5(1+ρ), 3 = 5ρ,

and ρ = .6. This is the greatest discount rate for which the strategy

combination in part (a) remains an equilibrium.

5.5: The Repeated Prisoner’s Dilemma. Set P = 0 in the general

Prisoner’s Dilemma in Table 1.11, and assume that 2R > S + T .

(5.5a) Show that the Grim Strategy, when played by both players, is a perfect

equilibrium for the infinitely repeated game. What is the maximum

discount rate for which the Grim Strategy remains an equilibrium?

Answer. The grim strategy is a perfect equilibrium because the payoff

from continued cooperation is R + R
r
, which for low discount rates is
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greater than the payoff from (Confess,Deny) once and (Confess, Confess)

forever after, which is T + 0
r
. To find the maximum discount rate,

equate these two payoffs: R+ R
r
= T . This means that r = T−R

R
is the

maximum.

(5.5b) Show that Tit-for-Tat is not a perfect equilibrium in the infinitely re-

peated Prisoner’s Dilemma with no discounting.4

Answer. Suppose Row has played Confess. Will Column retaliate?

If both follow tit-for-tat after the deviation, retaliation results in a

cycle of (Confess,Deny), (Deny,Confess), forever. Row’s payoff is

T+S+T+S+.... If Column forgives, and they go back to cooperating,

on the other hand, his payoff is R+R+R+R+ .... Comparing the first

four periods, forgiveness has the higher payoff because 4R > 2S + 2T

. The payoffs of the first four periods simply repeat an infinite number

of times to give the total payoff, so forgiveness dominates retaliation,

and tit-for- tat is not perfect.

See Kalai, Samet & Stanford (1988), which pointed this out.

5.7: Grab the Dollar. Table 5.10 shows the payoffs for the simultaneous-

move game of Grab the Dollar. A silver dollar is put on the table between

Smith and Jones. If one grabs it, he keeps the dollar, for a payoff of 4 utils.

If both grab, then neither gets the dollar, and both feel bitter. If neither

grabs, each gets to keep something.

Table 5.9 Grab the Dollar

Jones
Grab (θ) Wait (1− θ)

Grab (θ) −1,−1 4, 0
Smith:

Wait (1− θ) 0, 4 1,1
Payoffs to: (Smith, Jones).

4xxx Add: The idea is informally explained on page 112).
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(5.7a) What are the evolutionarily stable strategies?

Answer. The ESS is mixed and unique. Let Prob(Grab) = θ. Then

π(Grab) = −1(θ)+ 4(1− θ) = π(Wait) = 0(θ)+ 1(1− θ), which solves

to θ = 3/4. Three fourths of the population plays Grab.

(5.7b) Suppose each player in the population is a point on a continuum, and

that the initial amount of players is 1, evenly divided between Grab and

Wait. Let Nt(s) be the amount of players playing a particular strategy

in period t and let πt(s) be the payoff. Let the population dynamics be

Nt+1(i) = (2Nt(i))
µ

πt(i)P
j
πt(j)

¶
. Find the missing entries in Table 5.11.

Table 5.11 Grab the Dollar: Dynamics

t Nt(G) Nt(W ) Nt(total) θ πt(G) πt(w)
0 0.5 0.5 1 0.5 1.5 0.5
1
2

Answer. See Table C.7.

Table C.7 “Grab the Dollar”: Dynamics I

t Nt(G) Nt(W ) Nt(total) θ πt(G) πt(w)
0 0.5 0.5 1 0.5 1.5 0.5
1 0.75 0.25 1 0.75 0.25 0.25
2 0.75 0.25 1 0.75 0.25 0.25

(5.7c) Repeat part (b), but with the dynamics Nt+t(s) = [1+
πt(s)P
j
πt(j)

][2Nt(s)].

Answer. See Table C.8.

Table C.8 “Grab the Dollar”: Dynamics II

t Nt(G) Nt(W ) Nt(total) θ πt(G) πt(w)
0 .5 0.5 1 .5 1.5 0.5
1 1.75 1.25 3 0.58 1.1 0.42
2 6.03 3.19 9.22 0.65 0.75 0.35

(5.7d) Which three games that have appeared so far in the book resemble

Grab the Dollar?
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Answer. “Chicken”, “The Battle of the Sexes”, and “The Hawk-Dove

Game”.

PROBLEMS FOR CHAPTER 6 Dynamic Games with

Asymmetric Information

6.1: Cournot Duopoly Under Incomplete Information About Costs.

This problem introduces incomplete information into the Cournot model of

Chapter 3 and allows for a continuum of player types.

(6.1a) Modify the Cournot Game of Chapter 3 by specifying that Apex’ aver-

age cost of production is c per unit, while Brydox’ remains zero. What

are the outputs of each firm if the costs are common knowledge? What

are the numerical values if c = 10?

Answer. The payoff functions are

πApex = (120− qa − qb − c)qa
πBrydox = (120− qa − qb − c)qb (10)

The first order conditions are then

∂πApex
∂qa

= 120− 2qa − qb − c = 0
∂πBrydox

∂qb
= 120− qa − 2qb = 0 (11)

Solving the first order conditions together gives

qa = 40− 2c
3

qb = 40 +
c
3

(12)

If c = 10, Apex produces 33 1/3 and Brydox produces 43 1/3. Apex’s

higher costs make it cut back its output, which encourages Brydox to

produce more.

(6.1b) Let Apex’s cost c be cmax with probability θ and 0 with probability

(1 − θ), so Apex is one of two types. Brydox does not know Apex’

type. What are the outputs of each firm?
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Answer. Apex’s payoff function is the same as in part (a), because

πApex = (120− qa − qb − c)qa, (13)

which yields the reaction function

qa = 60− qb + c
2

. (14)

Brydox’s expected payoff is

πBrydox = (1− θ)(120− qa(c = 0)− qb)qb+ θ(120− qa(c = cmax)− qb)qb.
(15)

The first order condition is

∂πBrydox
∂qb

= (1−θ)(120−qa(c = 0)−2qb)+θ(120−qa(c = cmax)−2qb) = 0.
(16)

Now substitute the reaction function of Apex, equation (14), into ( 16)

and condense a few terms to obtain

120− 2qb − [1− θ][60− qb + 0
2

]− θ[60− qb + cmax
2

] = 0. (17)

Solving for qb yields

qb = 40 +
θcmax
3

(18)

One can then use equations (14) and (18) to find

qa = 40− θcmax
6
− c
2
. (19)

Note that the outputs do not depend on θ or cmax separately, only on

the expected value of Apex’s cost, θcmax.

(6.1c) Let Apex’ cost c be drawn from the interval [0, cmax] using the uniform

distribution, so there is a continuum of types. Brydox does not know

Apex’ type. What are the outputs of each firm?

Answer. Apex’s payoff function is the same as in parts (a) and (b),

πApex = (120− qa − qb − c)qa, (20)
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which yields the reaction function

qa = 60− qb + c
2

. (21)

Brydox’s expected payoff is (letting the density of possible values of c

be f(c))

πBrydox =
Z cmax

0
(120− qa(c)− qb)qbf(c)dc. (22)

The probability density is uniform, so f(c) = 1
cmax

. Substituting this

into (22), the first order condition is

∂πBrydox
∂qb

=
Z cmax

0
(120− qa(c)− 2qb)

µ
1

cmax

¶
dc = 0. (23)

Now substitute in the reaction function of Apex, equation (21), which

gives Z cmax

0
(120− [60− qb + c

2
]− 2qb)

µ
1

cmax

¶
dc = 0. (24)

Simplifying by integrating out the terms in (24) which depend on c

only through the probability density yields

60− 3qb
2
+
Z cmax

0

µ
c

2cmax

¶
dc = 0. (25)

Integrating and rearranging yields

qb = 40 +
cmax
6

(26)

One can then use equations (21) and (26) to find

qa = 40− cmax
12
− c
2
. (27)

(6.1d) Outputs were 40 for each firm in the zero- cost game in Chapter 3.

Check your answers in parts (b) and (c) by seeing what happens if

cmax = 0.

Answer. If cmax = 0, then in part (b), qa = 40 − 0
6
− 0

2
= 40 and

qb = 40 +
0
3
= 40, which is as it should be.

If cmax = 0, then in part (c), qa = 40− 0
12
− 0
2
= 40 and qb = 40+

0
6
= 40,

which is as it should be.
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(6.1e) Let cmax = 20 and θ = 0.5, so the expectation of Apex’ average cost is

10 in parts (a), (b), and (c) . What are the average outputs for Apex

in each case?

Answer. In part (a), under full information, the outputs were qa = 33

1/3 and qb = 43 1/3 . In part (b), with two types, qb = 43 1/3 from

equation (18), and the average value of qa is

Eqa = (1−θ)(40− 0.5(20)
6
− 0
2
)+θ(40− 0.5(20)

6
− 20
2
) = 33 1/3. (28)

In part (c), with a continuum of types, qb = 43 1/3 and qa is found

from
Eqa =

R cmax
0 (40− cmax

8
− c

2
)
³

1
cmax

´
dc

= 40− 20
8
− c2max

4cmax
= 33 1/3.

(29)

(6.1f) Modify the model of part (b) so that cmax = 20 and θ = 0.5, but some-

how c = 30. What outputs do your formulas from part (b) generate?

Is there anything this could sensibly model?

Answer. The purpose of Nature’s move is to represent Brydox’s beliefs

about Apex, not necessarily to represent reality. Here, Brydox believes

that Apex’s costs are either 0 or 20 but he is wrong and they are actually

30. In this game that does not cause problems for the analysis. Using

equations (18) and (19), the outputs are qb = 43 1/3 (= 40 + 0.5(20)
3
)

and qa = 26 2/3 (= 40− 0.5(20)
6
− 30

2
).

If the game were dynamic, however, a problem would arise. When

Brydox observes the first-period output of qa = 24 1/6, what is he to

believe about Apex’s costs? Should he deduce that c = 30, or increase

his belief that c = 20, or believe something else entirely? This departs

from standard modelling.

6.3: Symmetric Information and Prior Beliefs. In the Expensive-Talk

Game of Table 6.1, the Battle of the Sexes is preceded by by a communication

move in which the man chooses Silence or Talk. Talk costs 1 payoff unit,

and consists of a declaration by the man that he is going to the prize fight.

This declaration is just talk; it is not binding on him.
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Table 6.1 Subgame Payoffs in The Expensive-Talk Game

Woman
Fight Ballet

F ight 3,1 0, 0
Man:

Ballet 0, 0 1,3
Payoffs to: (Man, Woman).

(6.3a) Draw the extensive form for this game, putting the man’s move first in

the simultaneous-move subgame.

Answer. See Figure A.5.

Figure A.5 The Extensive Form for the “Expensive Talk Game”

(6.3b) What are the strategy sets for the game? (start with the woman’s)

Answer. The woman has two information sets at which to choose moves,

and the man has three. Table A.10 shows the woman’s four strategies.

Table A.10 The Woman’s Strategies in “The Expensive Talk

Game”

Strategy W1,W2 W3,W4

1 F F
2 F B
3 B F
4 B B
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Table A.11 shows the man’s eight strategies, of which only the boldfaced

four are important, since the others differ only in portions of the game

tree that the man knows he will never reach unless he trembles at M1.

Table A.11 The Man’s Strategies in “The Expensive Talk

Game”

Strategy M1 M2 M3

1 T F F
2 T F B
3 T B B
4 T B F
5 S F F
6 S B F
7 S B B
8 S F B

( 6.3c) What are the three perfect pure-strategy equilibrium outcomes in terms

of observed actions? (Remember: strategies are not the same thing as

outcomes.)

Answer. SFF, SBB, TFF.5

(6.3d) Describe the equilibrium strategies for a perfect equilibrium in which

the man chooses to talk.

Answer. Woman: (F |T,B|S) and Man: (T, F |T,B|S).
(6.3e) The idea of “forward induction” says that an equilibrium should remain

an equilibrium even if strategies dominated in that equilibrium are

removed from the game and the procedure is iterated. Show that this

procedure rules out SBB as an equilibrium outcome.6

Answer. First delete the man’s strategy of (T,B), which is dominated

by (S,B) whatever the woman’s strategy may be. Without this strat-

egy in the game, if the woman sees the man deviate and choose Talk,

she knows that the man must choose Fight. Her strategies of (B|T, F |S)
5The equilibrium that supports SBB is [(S,B), (B|S,B|T )].
6See Van Damme (1989). In fact, this procedure rules out TFF (Talk, Fight, Fight)

also.
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and (B|T,B|S) are now dominated, so let us drop those. But then the
man’s strategy of (S,B) is dominated by (T, F |T,B|S). The man will
therefore choose to Talk, and the SBB equilibrium is broken.

This is a strange result. More intuitively: if the equilibrium is SBB,

but the man chooses Talk, the argument is that the woman should

think that the man would not do anything purposeless, so it must be

that he intends to choose Fight. She therefore will choose Fight her-

self, and the man is quite happy to choose Talk in anticipation of her

response. Taking forward induction one step further: TFF is not an

equilibrium, because now that SBB has been ruled out, if the man

chooses Silence, the woman should conclude it is because he thinks he

can thereby get the SFF payoff. She decides that he will choose Fight,

and so she will choose it herself. This makes it profitable for the man

to deviate to SFF from TFF .

PROBLEMS FOR CHAPTER 7: Moral Hazard: Hidden Actions

7.1: First-Best Solutions in a Principal- Agent Model. Suppose an

agent has the utility function of U =
√
w−e, where e can assume the levels 0

or 1. Let the reservation utility level be U = 3. The principal is risk neutral.

Denote the agent’s wage, conditioned on output, as w if output is 0 and w if

output is 100. Table 7.5 shows the outputs.

Table 7.5 A Moral Hazard Game

Probability of Output of
Effort 0 100 Total

Low (e = 0) 0.3 0.7 1

High (e = 1) 0.1 0.9 1

(7.1a) What would the agent’s effort choice and utility be if he owned the

firm?
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Answer . The agent gets everything in this case. His utility is

either

U(High) = 0.1(0) + 0.9
√
100− 1 = 8 (30)

or

U(Low) = 0.3(0) + 0.7
√
100− 0 = 7. (31)

So the agent chooses high effort and a utility of 8.

(7.1b) If agents are scarce and principals compete for them, what will the

agent’s contract be under full information? His utility?

Answer. The efficient effort level is High, which produces an expected

output of 90. The principal’s profit is zero, because of competition.

Since the agent is risk averse, he should be fully insured in equilibrium:

w = w = 90 But he should get this only if his effort is high. Thus,

the contract is w=90 if effort is high, w=0 if effort is low. The agent’s

utility is 8.5 (=
√
90− 1, rounded).

(7.1c) If principals are scarce and agents compete to work for them, what

would the contract be under full information? What will the agent’s

utility and the principal’s profit be in this situation?

Answer . The efficient effort level is high. Since the agent is risk averse,

he should be fully insured in equilibrium: w = w = w. The contract

must satisfy a participation constraint for the agent, so
√
w − 1 = 3.

This yields w = 16, and a utility of 3 for the agent. The actual contract

specified a wage of 16 for high effort and 0 for low effort. This is

incentive compatible, because the agent would get only 0 in utility if

he took low effort. The principal’s profit is 74 (= 90-16).

(7.1d) Suppose that U = w− e. If principals are the scarce factor and agents
compete to work for principals, what would the contract be when the

principal cannot observe effort? (Negative wages are allowed.) What

will be the agent’s utility and the principal’s profit be in this situation?

Answer . The contract must satisfy a participation constraint for the

agent, so U = 3. Since effort is 1, the expected wage must equal 4.

One way to produce this result is to allow the agent to keep all the
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output, plus 4 extra for his labor, but to make him pay the expected

output of 90 for this privilege (“selling the store”). Let w = 14 and

w = −86 (other contracts also work). Then expected utility is 3 (=
0.1(−86) + 0.9(14) − 1 = −8.6 + 12.6 − 1). Expected profit is 86 (=
0.1(0−−86) + 0.9(100− 14) = 8.6 + 77.4).

7.3: Why Entrepreneurs Sell Out. Suppose an agent has a utility func-

tion of U =
√
w−e, where e can assume the levels 0 or 2.4, and his reservation

utility is U = 7. The principal is risk neutral. Denote the agent’s wage, con-

ditioned on output, as w(0), w(49), w(100), or w(225). Table 7.7 shows the

output.

Table 7.7 Entrepreneurs Selling Out

Probability of Output of
Method 0 49 100 225 Total

Safe (e = 0) 0.1 0.1 0.8 0 1

Risky (e = 2.4) 0 0.5 0 0.5 1

(7.3a) What would the agent’s effort choice and utility be if he owned the

firm?

Answer. U(safe) = 0 + 0.1
√
49 + 0.8

√
100 + 0 − 0 = 0.7 + 8 = 8.7.

U(risky) = 0+0.5
√
49+0.5

√
225−2.4 = 3.5+7.5−2.4 = 8.6. Therefore

he will choose the safe method, e=0, and utility is 8.7.

(7.3b) If agents are scarce and principals compete for them, what will the

agent’s contract be under full information? His utility?

Answer. Agents are scarce, so π = 0. Since agents are risk averse, it

is efficient to shield them from risk. If the risky method is chosen,

then w = 0.5(49) + 0.5(225) = 24.5 + 112.5 = 137. Utility is 9.3
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(
√
137 − 2.4 = 11.7 − 2.4). If the safe method is chosen, then w =

0.1(49) + 0.8(100) = 84.9. Utility is U =
√
84.9 = 9.21 . Therefore,

the optimal contract specifies a wage of 137 if the risky method is used

and 0 (or any wage less than 49) if the safe method is used. This is

better for the agent than if he ran the firm by himself and used the safe

method.

(7.3c) If principals are scarce and agents compete to work for principals, what

will the contract be under full information? What will the agent’s

utility and the principal’s profit be in this situation?

Answer. Principals are scarce, so U = U = 7 , but the efficient effort

level does not depend on who is scarce, so it is still high. The agent is

risk averse, so he is paid a flat wage. The wage satisfies the participation

constraint
√
w− 2.4 = 7, if the method is risky. The contract specifies

a wage of 88.4 (rounded) for the risky method and 0 for the safe. Profit

is 48.6 (= 0.5(49) + 0.5(225)− 88.4).
(7.3d) If agents are the scarce factor, and principals compete for them, what

will the contract be when the principal cannot observe effort? What

will the agent’s utility and the principal’s profit be in this situation?

Answer. A boiling in oil contract can be used. Set either w(0) = -1000

or w(100) = -1000, which induces the agent to pick the risky method.

In order to protect the agent from risk, the wage should be flat except

for those outputs, so w(49) = w(225) = 137. π = 0, since agents are

scarce. U= 9.3, from part (b).

7.5: Worker Effort. A worker can be Careful or Careless, efforts which

generate mistakes with probabilities 0.25 and 0.75. His utility function is

U = 100 − 10/w − x, where w is his wage and x takes the value 2 if he is
careful, and 0 otherwise. Whether a mistake is made is contractible, but

effort is not. Risk-neutral employers compete for the worker, and his output

is worth 0 if a mistake is made and 20 otherwise. No computation is needed

for any part of this problem.
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(7.5a) Will the worker be paid anything if he makes a mistake?

Answer . Yes. He is risk averse, unlike the principal, so his wage should

be even across states.

(7.5b) Will the worker be paid more if he does not make a mistake?

Answer. Yes. Careful effort is efficient, and lack of mistakes is a good

statistic for careful effort, which makes it useful for incentive compati-

bility.

(7.5c) How would the contract be affected if employers were also risk averse?

Answer . The wage would vary more across states, because the work-

ers should be less insured– and perhaps should even be insuring the

employer.

(7.5d) What would the contract look like if a third category, “slight mistake,”

with an output of 19, occurs with probability 0.1 after Careless effort

and with probability zero after Careful effort?

Answer . The contract would pay equal amounts whether or not a

mistake was made, but zero if a slight mistake was made, a “boiling in

oil” contract.

PROBLEMS FOR CHAPTER 8: Further Topics in Moral Hazard

8.1: Monitoring with Error. An agent has a utility function U =
q
(w)−

αe, where α = 1 and e is either 0 or 5. His reservation utility level is U = 9,

and his output is 100 with low effort and 250 with high effort. Principals are

risk neutral and scarce, and agents compete to work for them. The principal

cannot condition the wage on effort or output, but he can, if he wishes,

spend five minutes of his time, worth 10 dollars, to drop in and watch the

agent. If he does that, he observes the agentDaydreaming orWorking, with

probabilities that differ depending on the agent’s effort. He can condition the

wage on those two things, so the contract will be {w,w}. The probabilities
are given by Table 8.1.
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Table 8.1 Monitoring with Error

Probability of
Effort Daydreaming Working
Low(e = 0) 0.6 0.4
High(e = 5) 0.1 0.9

(8.1a) What are profits in the absence of monitoring, if the agent is paid

enough to make him willing to work for the principal?

Answer. Without monitoring, effort is low. The participation constraint

is 9 ≥ √w − 0, so w = 81. Output is 100, so profit is 19.
(8.1b) Show that high effort is efficient under full information.

Answer . High effort yields output of 250. U ≥ √w−αe or 9 =
√
w−5

is the participation constraint, so 14 =
√
w and w = 196. Profit is then

54. This is superior to the profit of 19 from low effort (and the agent

is no worse off), so high effort is more efficient.

(8.1c) If α = 1.2, is high effort still efficient under full information?

Answer . If α = 1.2, then the wage must rise to 225, for profits of 25,

so high effort is still efficient. The wage must rise to 225 because the

participation constraint becomes 9 ≥ √w − 1.2(5).
(8.1d) Under asymmetric information, with α = 1, what are the participation

and incentive compatibility constraints?

Answer . The incentive compatibility constraint is

0.6
√
w + 0.4

√
w ≤ 0.1√w + 0.9√w − 5.

The participation constraint is 9 ≤ 0.1√w + 0.9√w − 5.
(8.1e) Under asymmetric information, with α = 1, what is the optimal con-

tract?

Answer. From the participation constraint, 14 = 0.1
√
w + 0.9

√
w, and√

w = 14
0.9
−(1

9
)
√
w. The incentive compatibility constraint tells us that
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0.5
√
w = 5 + 0.5

√
w, so

√
w = 10 +

√
w. Thus,

10 +
√
w = 15.6− 0.11√w (32)

and
√
w = 5.6/1.11 = 5.05. Thus, w = 25.5. It follows that

√
w =

10 + 5.05, so w = 226.5 .

8.3: Bankruptcy Constraints. A risk- neutral principal hires an agent

with utility function U = w−e and reservation utility U = 7. Effort is either
0 or 20. There is a bankruptcy constraint: w ≥ 0. Output is given by Table
8.4.

Table 8.4 Bankruptcy

Probability of Output of
Effort 0 400 Total
Low (e = 0) 0.5 0.5 1
High (e = 10) 0.2 0.8 1

(8.3a) What would the agent’s effort choice and utility be if he owned the

firm?

(8.3b) If agents are scarce and principals compete for them, what will the

agent’s contract be under full information? His utility?

(8.3c) If principals are scarce and agents compete to work for them, what will

the contract be under full information? What will the agent’s utility

be?

(8.3d) If principals are scarce and agents compete to work for them, what will

the contract be when the principal cannot observe effort? What will

the payoffs be for each player?

(8.3e) Suppose there is no bankruptcy constraint. If principals are the scarce

factor and agents compete to work for them, what will the contract be

when the principal cannot observe effort? What will the payoffs be for

principal and agent?
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8.5: Efficiency Wages and Risk Aversion .7 In each of two periods

of work, a worker decides whether to steal amount v, and is detected with

probability α and suffers legal penalty p if he, in fact, did steal. A worker who

is caught stealing can also be fired, after which he earns the reservation wage

w0. If the worker does not steal, his utility in the period is U(w); if he steals,

it is U(w + v)− αp, where U(w0 + v)− αp > U(w0). The worker’s marginal

utility of income is diminishing: U 0 > 0, U 00 < 0, and limx→∞U 0(x) = 0.

There is no discounting. The firm definitely wants to deter stealing in each

period, if at all possible.

(8.5a) Show that the firm can indeed deter theft, even in the second period,

and, in fact, do so with a second-period wage w∗2 that is higher than
the reservation wage w0.

Answer. It is easiest to deter theft in the first period, since a high

second-period wage increases the penalty of being fired. If w2 is in-

creased enough, however, the marginal utility of income becomes so

low that U(w2+ v) and U(w2) become almost identical, and the differ-

ence is less than αP , so theft is deterred even in the second period.

(8.5b) Show that the equilibrium second-period wage w∗2 is higher than the
first-period wage w∗1.

Answer. We already determined that w2 > w0. Hence, the worker looks

hopefully towards being employed in period 2, and in Period 1 he is

reluctant to risk his job by stealing. This means that he can be paid

less in Period 1, even though he may still have to be paid more than

the reservation wage.

PROBLEMS FOR CHAPTER 9 Adverse Selection

9.1: Insurance with Equations and Diagrams.

7See Rasmusen (1992c).
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The text analyzes Insurance Game III using diagrams. Here, let us use

equations too. Let U(t) = log(t).

(9.1a) Give the numeric values (x, y) for the full- information separating con-

tracts C3 and C4 from Figure 9.6. What are the coordinates for C3 and

C4?

Answer. C3 : 0.25x + 0.75(y − x) = 0, and 12 − x = y − x. Put
together, these give y = 4x/3 and y = 12, so x∗ = 9 and y∗ = 12.

C3 = (3, 3) because 12-9 = 3.

C4 is such that 0.5x+0.5(y−x) = 0, and 12−x = y−x. Put together,
these give y = 2x and y = 12, so x∗ = 6 and y∗ = 12.

C4 = (6, 6) because 12-6 = 6.

(9.1b) Why is it not necessary to use the U(t) = log(t) function to find the

values?

Answer. We know there is full insurance at the first-best with any

risk-averse utility function, so the precise function does not matter.

(9.1c) At the separating contract under incomplete information, C5 , x = 2.01.

What is y? Justify the value 2.01 for x. What are the coordinates of

C5?

Answer. At C5, the incentive compatibility constraints require

that 0.5x + 0.5(x − y) = 0, so y = 2x; and πu(C5) = πu(C3), so

0.25log(12 − x) + 0.75log(y − x) = 0.25log(3) + 0.75log(3). Solving

these equations yields x∗ = 2.01 and y = 4.02.

C5 = (9.99, 2.01) because 9.99=12-2.01 and 2.01 = 4.02− 2.01.
(9.1d) What is a contract C6 that might be profitable and that would lure

both types away from C3 and C5?

Answer. One possibility is C6 = (8, 3), or x = 4, y = 7). The utility

of this to the Highs is 1.59 (= 0.5log(8) + 0.5log(3)), compared to 1.57

(=0.5log(10.99) + 0.5log(2.01)), so the High’s prefer it to C5, and that

means the Lows will certainly prefer it. If there are not many Lows,
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the contract can make a profit, because if it is only Highs, the profit is

0.5 (=0.5(4) + 0.5(4− 7)).

9.3: Finding the Mixed-Strategy Equilibrium in a Testing Game. 8

Half of high school graduates are talented, producing output a = x, and half

are untalented, producing output a = 0. Both types have a reservation wage

of 1 and are risk neutral. At a cost of 2 to himself and 1 to the job applicant,

an employer can test a graduate and discover his true ability. Employers

compete with each other in offering wages but they cooperate in revealing

test results, so an employer knows if an applicant has already been tested

and failed. There is just one period of work. The employer cannot commit

to testing every applicant or any fixed percentage of them.

(9.3a) Why is there no equilibrium in which either untalented workers do not

apply or the employer tests every applicant?

Answer. If no untalented workers apply, the employer would deviate

and save 2 by skipping the test and just hiring everybody who applies.

Then the untalented workers would start to apply. If the employer tests

every applicant, however, and pays only wH , then no untalented worker

will apply. Again, the employer would deviate and skip the test.

(9.3b) In equilibrium, the employer tests workers with probability γ and pays

those who pass the test w, the talented workers all present themselves

for testing, and the untalented workers present themselves with prob-

ability α, where possibly γ = 1 or α = 1 . Find an expression for the

equilibrium value of α in terms of w. Explain why α is not directly

a function of x in this expression, even though the employer’s main

concern is that some workers have a productivity advantage of x.

Answer. Using the payoff-equating method of calculating a mixed strat-

egy, and remembering that one must equate player 1’s payoffs to find

player 2’s mixing probability, we must focus on the employer’s profits.

8This is the slightly modified July 23, 2001 version.
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In the mixed-strategy equilibrium, the employer’s profits are the same

whether it tests a particular worker or not. Fraction 0.5 + 0.5α of the

workers will take the test, and the employer’s cost for each one that

applies is 2, whether he is hired or not, so

π(test) =
³

0.5
0.5+0.5α

´
(x− w)− 2

= π(no test) =
³

0.5
0.5+0.5α

´
(x− w) +

³
0.5α

0.5+0.5α

´
(0− w),

(33)

which yields

α =
2

w − 2 . (34)

The naive answer to why expression (34) does not depend on x is that

α is the worker’s strategy, so there is no reason why it should depend

on a parameter that enters only into the employer’s payoffs. That is

wrong, because usually in mixed strategy equilibria that is precisely

the case, because the worker is choosing his probability in a way that

makes the employer indifferent between his payoffs. Rather, what is

going on here is that a talented worker’s productivity is irrelevant to

the decision of whether to test or not. The employer already knows he

will hire all the talented workers, and the question for him in deciding

whether to test is how costly it is to test and how costly it is to hire

untalented workers.

(9.3c) If x = 9, what are the equilibrium values of α, γ, and w?

Answer. We already have an expression for α from part (b). The next

step is to find the the wage. Profits are zero in equilibrium, which

requires that

π(no test) =
µ

0.5

0.5 + 0.5α

¶
(x− w) +

µ
0.5α

0.5 + 0.5α

¶
(0− w) = 0. (35)

This implies that

α =
x− w
w

. (36)

Solving (34) and (35) together yields 2
w−2 =

x−w
w
, so

2w = (w − 2)(x− w) (37)
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Substituting x = 9 and solving equation (37) for w yields

w∗ = 6 and α∗ = 9−6
6
= .5.

There is also a root w = 3 to equation (37), but it would violate an

implicit assumption: that α ≤ 1, since it would make α = 9−3
3
= 2.

We still need to find γ∗. In the mixed-strategy equilibrium, the untal-
ented worker’s profits are the same whether he applies or not, so

π(apply) = γ(−1 + 1) + (1− γ)(−1 + w) = π(not apply) = 1. (38)

Substituting w = 6 and solving for γ yields (1 − γ)(−1 + 6) = 1, so

(1− γ) = .2 and

γ∗ = .8.

(9.3d) If x = 8, what are the equilibrium values of α, γ, and w?

Answer. Substituting x = 8 and solving equation (37) for w yields

w∗ = 4 and α∗ = 8−4
4
= 1.

Thus, now all the untalented workers apply in equilibrium.

Now let us find γ∗. We need to make all the untalented workers want
to apply, so we need

π(apply) = γ(−1 + 1) + (1− γ)(−1 + w) ≥ π(not apply) = 1. (39)

Making equation (39) an equality, substituting w = 6 and solving for

γ yields (1− γ)(−1 + 4) = 1, so (1− γ) = 1/3 and

γ∗ ≤ 2/3.
There is not a single equilibrium when x = 8, because the employer is

indifferent over all values of γ (that is how we calculated α and w), and

values over the entire range γ ∈ [0, 2/3] will induce all the untalented
workers to apply.

9.5: Insurance and State-Space Diagrams. Two types of risk-averse

people, clean-living and dissolute, would like to buy health insurance. Clean-

living people become sick with probability 0.3, and dissolute people with
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probability 0.9. In state-space diagrams with the person’s wealth if he is

healthy on the vertical axis and if he is sick on the horizontal, every person’s

initial endowment is (5,10), because his initial wealth is 10 and the cost of

medical treatment is 5.

(9.5a) What is the expected wealth of each type of person?

Answer. E(Wc) = 8.5(= 0.7(10) + 0.3(5)). E(Wd) = 5.5(= 0.1(10) +

0.9(5)).

(9.5b) Draw a state-space diagram with the indifference curves for a risk-

neutral insurance company that insures each type of person separately.

Draw in the post-insurance allocations C1 for the dissolute and C2
for the clean-living under the assumption that a person’s type is con-

tractible.

Answer. See Figure A.6.

Figure A.6 A State-Space Diagram Showing Indifference Curves

for the Insurance Company

(9.5c) Draw a new state-space diagram with the initial endowment and the

indifference curves for the two types of people that go through that

point.
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Answer. See Figure A.7.

Figure A.7 A State-Space Diagram Showing Indifference Curves

for the Customers

(9.5d) Explain why, under asymmetric information, no pooling contract C3
can be part of a Nash equilibrium.

Answer. Call the pooling contract C3. Because indifference curves for

the the clean-living are flatter than for the dissipated, a contract C4
can be found which yields positive profits because it attracts the clean-

living but not the dissipated. See Figure A.8.

Figure A.8 Why A Pooling Contract Cannot be Part of an

Equilibrium
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(9.5e) If the insurance company is a monopoly, can a pooling contract be part

of a Nash equilibrium?

Answer. Yes. If the insurance company is a monopoly, then a pooling

contract can be part of a Nash equilibrium, because there is no other

player who might deviate by offering a cream- skimming contract.

PROBLEMS FOR CHAPTER 10: Mechanism Design in Adverse

Selection and in Moral Hazard with Hidden Information

10.1: Unravelling (formerly Problem 8.3). An elderly prospector owns a

gold mine worth an amount θ drawn from the uniform distribution U [0, 100]

which nobody knows, including himself. He will certainly sell the mine, since

he is too old to work it and it has no value to him if he does not sell it.

The several prospective buyers are all risk neutral. The prospector can, if

he desires, dig deeper into the hill and collect a sample of gold ore that will

reveal the value of θ. If he shows the ore to the buyers, however, he must

show genuine ore, since an unwritten Law of the West says that fraud is

punished by hanging offenders from joshua trees as food for buzzards.
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(10.1a) For how much can he sell the mine if he is clearly too feeble to have dug

into the hill and examined the ore? What is the price in this situation

if, in fact, the true value is θ = 70?

Answer. The price is 50 — the expected value of the uniform distribution

from 0 to 100. Even if the mine is actually worth θ = 70, the price

remains at 50.

(10.1b) For how much can he sell the mine if he can dig the test tunnel at zero

cost? Will he show the ore? What is the price in this situation if, in

fact, the true value is θ = 70?

Answer . The expected price is 50. Unravelling occurs, so he will show

the ore, and the buyer can discover the true value, which is 50 on

average. If the true value is θ = 70, the buyer receives 70.

(10.1c) For how much can he sell the mine if, after digging the tunnel at zero

cost and discovering θ, it costs him an additional 10 to verify the results

for the buyers? What is his expected payoff?

Answer. He shows the ore iff θ ∈ [20, 100]. This is because if the

minimum quality ore he shows is b, then the price at which he can sell

the mine without showing the ore is b
2
. If b = 20 and the true value is

20, then he can sell the mine for 10, and showing the ore to raise the

price to 20 would not increase his net profit, given the display cost of

10.

With probability 0.2, his price is 10, and with probability 0.8, it is

an average price of 60 but he pays 10 to display the ore. Thus, the

prospector’s expected payoff is 42 (= 0.2(10)+0.8(60− 10) = 2+40 =
42.)

(10.1d) What is the prospector’s expected payoff if with probability 0.5 digging

the tunnel is costless, but with probability 0.5 it costs 120? (Assume,

as usual, that all these parameters are common knowledge, although

only the prospector learns whether the cost is actually 0 or 120.)

Answer. In equilibrium there exists some number c such that if the

prospector has dug the tunnel and found the value of the mine to be
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θ ≥ c he will show the ore. If he does not show any ore, the buyers’
expected value for the mine is 0.5

³
100−0
2

´
+0.5

³
c−0
2

´
= c

4
+25. Having

dug the tunnel, he will therefore show the ore if θ ≥ c
4
+ 25 , because

then he can get a price of θ instead. Since c is defined as the minimal

level he will disclose, it follows that c = c
4
+ 25 , which implies that

c = 33 1
3
(and the price is (1

4
)(33 1

3
) + 25 = 33 1

3
if he does not show

the ore).

With probability 0.5, the prospector will not dig the tunnel, and will

receive a price of 33 1
3
. With probability 0.5 he will dig the tunnel,

and will refuse to disclose with probability 1
3
, for a price of 33 1

3
, and

disclose with probability 2
3
, for an average price of 66 2

3
, for an expected

payoff of about 44.4.

10.3: Agency Law. Mr. Smith is thinking of buying a custom-designed

machine from either Mr. Jones or Mr. Brown. This machine costs 5000 dol-

lars to build, and it is useless to anyone but Smith. It is common knowledge

that with 90 percent probability the machine will be worth 10,000 dollars

to Smith at the time of delivery, one year from today, and with 10 percent

probability it will only be worth 2,000 dollars. Smith owns assets of 1,000

dollars. At the time of contracting, Jones and Brown believe there is there is

a 20 percent chance that Smith is actually acting as an “undisclosed agent”

for Anderson, who has assets of 50,000 dollars.

Find the price be under the following two legal regimes: (a) An undis-

closed principal is not responsible for the debts of his agent; and (b) even an

undisclosed principal is responsible for the debts of his agent. Also, explain

(as part [c]) which rule a moral hazard model like this would tend to support.

Answer. (a) The zero profit condition, arising from competition between

Jones and Brown, is

−5000 + .9P + .1(1000) = 0, (40)

because Smith will only pay for the machine with probability 0.9, and oth-

erwise will default and only pay up to his wealth, which is 1. This yields
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P ≈ 5, 444.
(b) If Anderson is responsible for Smith’s debts, then Smith will pay the

5,000 dollars. Hence, zero profits require

−5000 + .9P + .1(.2)P + .1(.8)(1000) = 0, (41)

which yields P ≈ 5, 348.
(c) Moral hazard tends to support rule (b). This is because it reduces

bankruptcy and the agent will be more reluctant to order the machine when

there is a high chance it is unprofitable. In the model as constructed, this

does not arise, because there is only one type of agent, but more generally

it would, because there would be a continuum of types of agents, and some

who would buy the machine under rule (b) would find it too expensive under

rule (a).

Even in the model as it stands, rule (a) leads to the inefficient outcome

that a machine worth 2,000 to Smith is not give to Smith. Rather, he pays

his wealth and lets the seller keep the machine, which is inefficient since the

machine really is worth 2000 to Smith.

Nobody in my class answered this question correctly, which surprised

me. It basically is a question about zero-profit prices. Guessing would have

been a good idea here: it is very intuitive that the price would always be

above $5,000, and that it would be higher if the principal never had to cover

the agent’s debts. You should be able to tell that P > 10, 000 is impossible,

because Smith would never pay it. Also, the sellers compete, so it is their

profits that provide a participation constraint, not the benefit to the buyer.

PROBLEMS FOR CHAPTER 11: Signalling

11.1: Is Lower Ability Better? Change Education I so that the two

possible worker abilities are a ∈ {1, 4}.
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(11.1a) What are the equilibria of this game? What are the payoffs of the

workers (and the payoffs averaged across workers) in each equilibrium?

Answer. The pooling equilibrium is

sL = sH = 0, w0 = w1 = 2.5, Pr(L|s = 1) = 0.5, (42)

which uses passive conjectures. The payoffs are UL = UH = 2.5, for an

average payoff of 2.5.

The separating equilibrium is

sL = 0, sH = 1, w0 = 1, w1 = 4. (43)

The payoffs are UL = 1 and UH = 2, for an average payoff of 1.5 . This

equilibrium can be justified by the self selection constraints

UL(s = 0) = 1 > UL(s = 1) = 4− 8/1 = −4 (44)

and

UH(s = 0) = 1 < UH(s = 1) = 4− 8/4 = 2. (45)

(11.1b) Apply the Intuitive Criterion (see N6.2). Are the equilibria the same?

Answer. Yes. The intuitive criterion does not rule out the pooling

equilibrium in the game with ah = 4. There is no incentive for either

type to deviate from s = 0 even if the deviation makes the employers

think that the deviator is high-ability. The payoff to a persuasive high-

ability deviator is only 2, compared the 2.5 that he can get in the

pooling equilibrium.

(11.1c) What happens to the equilibrium worker payoffs if the high-ability is 5

instead of 4?

Answer. The pooling equilibrium is

sL = sH = 0, w0 = w1 =, Pr(L|s = 1) = 0.5, (46)

which uses passive conjectures. The payoffs are UL = UH = 3, with an

average payoff of 3.
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The separating equilibrium is

sL = 0, sH = 1, w0 = 1, w1 = 5. (47)

The payoffs are UL = 1 and UH = 3.4 with an average payoff of 2.2.

The self selection constraints are

UH(s = 0) = 1 < UH(s = 1) = 5− 8
5
= 3.4 (48)

and

UL(s = 0) = 1 > UL(s = 1) = 5− 8
1
= −3. (49)

(11.1d) Apply the Intuitive Criterion to the new game. Are the equilibria the

same?

Answer. No. The strategy of choosing s = 1 is dominated for the Lows,

since its maximum payoff is −3, even if the employer is persuaded that
he is High. So only the separating equilibrium survives.

(11.1e) Could it be that a rise in the maximum ability reduces the average

worker’s payoff? Can it hurt all the workers?

Answer. Yes. Rising ability would reduce the average worker payoff if

the shift was from a pooling equilibrium when ah = 4 to a separating

equilibrium when ah = 5. Since the Intuitive Criterion rules out the

pooling equilibrium when ah = 5, it is plausible that the equilibrium

is separating when ah = 5. Since the pooling equilibrium is pareto-

dominant when ah = 4, it is plausible that it is the equilibrium played

out. So the average payoff may well fall from 2.5 to 2.2 when the high

ability rises from 4 to 5. This cannot make every player worse

off, however; the high-ability workers see their payoffs rise from 2.5 to

3.4.

11.3: Price and Quality. Consumers have prior beliefs that Apex produces

low-quality goods with probability 0.4 and high- quality with probability 0.6.

A unit of output costs 1 to produce in either case, and it is worth 10 to the
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consumer if it is high- quality and 0 if low-quality. The consumer, who is

risk neutral, decides whether to buy in each of two periods, but he does not

know the quality until he buys. There is no discounting.

(11.3a) What is Apex’ price and profit if it must choose one price, p∗, for both
periods?

Answer. A consumer’s expected consumer surplus is

CS = 0.4(0− p∗) + 0.6(10− p∗) + 0.6(10− p∗) = −1.6p∗ + 12. (50)

Apex maximizes its profits by setting CS = 0, in which case p∗ = 7.5
and profit is πH = 13 ( = 2(7.5 - 1)) or πL = 6.5 ( (=7.5-1).

(11.3b) What is Apex’ price and profit if it can choose two prices, p1 and p2,

for the two periods, but it cannot commit ahead to p2?

Answer. If Apex is high quality, it will choose p2 = 10, since the

consumer, having learned the quality first period, is willing to pay that

much. Thus consumer surplus is

CS = 0.4(0− p1) + 0.6(10− p1) + 0.6(10− 10) = −p1 + 6, (51)

and, setting this equal to zero, p1 = 6, for a profit of πH = 14 (= (6-1)

+ (10-1) ) or πL = 5 (= 6-1 ).

(11.3c) What is the answer to part (b) if the discount rate is r = 0.1?

Answer. Apex cannot do better than the prices suggested in part (b).

(11.3d) Returning to r = 0, what if Apex can commit to p2?

Answer. Commitment makes no difference in this problem, since Apex

wants to charge a higher price in the second period anyway if it has high

quality– a high price in the first period would benefit the low-quality

Apex too, at the expense of the high-quality Apex.

(11.3e) How do the answers to (a) and (b) change if the probability of low

quality is 0.95 instead of 0.4? (There is a twist to this question.)
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Answer. With a constant price, a consumer’s expected consumer sur-

plus is

CS = 0.95(0−p∗)+0.05(10−p∗)+0.05(10−p∗) = −1.05p∗+0.5 (52)
Apex would set CS = 0, in which case p∗ = 5

21
, but since this is less

than cost, Apex in fact would not sell anything at all, and would earn

zero profit.

With changing prices, high-quality Apex will choose p2 = 10, since the

consumer, having learned the quality first period, is willing to pay that

much. Thus consumer surplus is

CS = 0.95(0− p1) + 0.05(10− p1) + 0.05(10− 10) = −p1 + 0.5. (53)
and, setting this equal to zero, you might think that p1 = 0.5, for a

profit of πH = 8.5(= (0.5− 1) + (10− 1)). But notice that if the low-
quality Apex tries to follow this strategy, his payoff is πL = 0.5−1 < 0.
Hence, only the high-quality Apex will try it. But then the consumers

know the product is high-quality, and they are willing to pay 10 even

in the first period. What the high-quality Apex can do is charge up to

p1 = 1 in the first period, for profits of 9 (=(1− 1) + (10− 1)).

11.5: Advertising. Brydox introduces a new shampoo which is actually

very good, but is believed by consumers to be good with only a probability

of 0.5. A consumer would pay 10 for high quality and 0 for low quality, and

the shampoo costs 6 per unit to produce. The firm may spend as much as

it likes on stupid TV commercials showing happy people washing their hair,

but the potential market consists of 100 cold- blooded economists who are

not taken in by psychological tricks. The market can be divided into two

periods.

(11.5a) If advertising is banned, will Brydox go out of business?

Answer. No. It can sell at a price of 5 in the first period and 10 in

the second period. This would yield profits of 300 (=(100)(5-6) +(100)

(10-6)).
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(11.5b) If there are two periods of consumer purchase, and consumers discover

the quality of the shampoo if they purchase in the first period, show

that Brydox might spend substantial amounts on stupid commercials.

Answer. If the seller produces high quality, it can expect repeat pur-

chases. This makes expenditure on advertising useful if it increases the

number of initial purchases, even if the firm earns losses in the first

period. If the seller produces low quality, there will be no repeat pur-

chases. Hence, advertising expenditure can act as a signal of quality:

consumers can view it as a signal that the seller intends to stay in

business two periods.

(11.5c) What is the minimum and maximum that Brydox might spend on

advertising, if it spends a positive amount?

Answer. If there is a separating signalling equilibrium, it will be as

follows. Brydox would spend nothing on advertising if its shampoo

is low quality, and consumers will not buy from any company that

advertises less than some amount X, because such a company is believed

to produce low quality. Brydox would spend X on advertising if its

quality is high, and charge a price of 10 in both periods.

Amount X is between 400 and 500. If a low-quality firm spends X

on advertising, consumers do buy from it for one period, and it earns

profits of (100)(10-6)-X = 400-X. Thus, the high-quality firm must

spend at least 400 to distinguish itself. If a high-quality firm spends

X on advertising, consumers buy from it for both periods, and it earns

profits of (2) (100)(10-6)-X = 800-X. Since it can make profits of 300

even without advertising, a high-quality firm will spend up to 500 on

advertising.

PROBLEMS FOR CHAPTER 12: Bargaining

12.1: A Fixed Cost of Bargaining and Grudges. Smith and Jones are

trying to split 100 dollars. In bargaining round 1, Smith makes an offer at

cost 0, proposing to keep S1 for himself and Jones either accepts (ending the
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game) or rejects. In round 2, Jones makes an offer at cost 10 of S2 for Smith

and Smith either accepts or rejects. In round 3, Smith makes an offer of S3
at cost c, and Jones either accepts or rejects. If no offer is ever accepted, the

100 dollars goes to a third player, Dobbs.

(12.1a) If c = 0, what is the equilibrium outcome?

Answer. S1 = 100 and Jones accepts it. If Jones refused, he would

have to pay 10 to make a proposal that Smith would reject, and then

Smith would propose S3 = 100 again. S1 < 100 would not be an

equilibrium, because Smith could deviate to S1 = 100 and Jones would

still be willing to accept.

(12.1b) If c = 80, what is the equilibrium outcome?

Answer. If the game goes to Round 3, Smith will propose S3 = 100 and

Jones will accept, but this will cost Smith 80. Hence, if Jones proposes

S2 = 20, Smith will accept it, leaving 80 for Jones–who would, however

pay 10 to make his offer. Hence, in Round 1 Smith must offer S1 = 30

to induce Jones to accept, and that will be the equilibrium outcome.

(12.1c) If c = 10, what is the equilibrium outcome?

Answer. If the game goes to Round 3, Smith will propose S3 = 100

and Jones will accept, but this will cost Smith 10. Hence, if Jones

proposes S2 = 90, Smith will accept it, leaving 10 for Jones–who

would, however pay 10 to make his offer. Hence, in Round 1 Smith

need only offer S1 = 100 to induce Jones to accept, and that will be

the equilibrium outcome.

(12.1d) What happens if c = 0, but Jones is very emotional and would spit

in Smith’s face and throw the 100 dollars to Dobbs if Smith proposes

S = 100? Assume that Smith knows Jones’s personality perfectly.

Answer. However emotional Jones may be, there is some minimum offer

M that he would accept, which probably is less than 50 (but you never

know–some people think they are entitled to everything, and one could

imagine a utility function such that Jones would refuse S = 5 and prefer
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to bear the cost 10 in the second round in order to get the whole 100

dollars). The equilibrium will be for Smith to propose exactly S-M in

Round 1, and for Jones to accept.

12.3: The Nash Bargaining Solution. Smith and Jones, shipwrecked on

a desert island, are trying to split 100 pounds of cornmeal and 100 pints of

molasses, their only supplies. Smith’s utility function is Us = C +0.5M and

Jones’ is Uj = 3.5C + 3.5M . If they cannot agree, they fight to the death,

with U = 0 for the loser. Jones wins with probability 0.8.

(12.3a) What is the threat point?

Answer. The threat point gives the expected utility for Smith and Jones

if they fight. This is 560 for Jones (= 0.8(350 + 350) + 0), and 30 for

Smith (=0.2(100+50) + 0).

(12.3b) With a 50-50 split of the supplies, what are the utilities if the two

players do not recontract? Is this efficient?

Answer. The split would give the utilities Us = 75 (= 50 + 25) and

Uj = 350. If Smith then traded 10 pints of molasses to Jones for 8

pounds of cornmeal, the utilities would become Us = 78 (= 58+20)

and Uj = 357 (=3.5(60) + 3.5(42)), so both would have gained. The

50-50 split is not efficient.

(12.3c) Draw the threat point and the Pareto frontier in utility space (put Us
on the horizontal axis).

Answer. See Figure A.9.

Figure A.9 The Threat Point and Pareto Frontier
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To draw the diagram, first consider the extreme points. If Smith gets

everything, his utility is 150 and Jones’s is 0. If Jones gets everything,

his utility is 700 and Smith’s is 0. If we start at (150,0) and wish to effi-

ciently help Jones at the expense of Smith, this is done by giving Jones

some molasses, since Jones puts a higher relative value on molasses.

This can be done until Jones has all the molasses, at utility point (100,

350). Beyond there, one must take cornmeal away from Smith if one is

to help Jones further, so the Pareto frontier acquires a flatter slope.

(12.3d) According to the Nash bargaining solution, what are the utilities? How

are the goods split?

Answer. To find the Nash bargaining solution, maximize (Us−30)(Uj−
560). Note from the diagram that it seems the solution will be on

the upper part of the Pareto frontier, above (100,350), where Jones is

consuming all the molasses, and where if Smith loses one utility unit,

Jones gets 3.5. If we let X denote the amount of cornmeal that Jones

gets, we can rewrite the problem as

Maximize

X (100−X − 30)(350 + 3.5X − 560) (54)

This maximand equals (70−X)(3.5X−210) = −14, 700+455X−3.5X2.
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The first order condition is 455 − 7X = 0, so X∗ = 65. Thus, Smith
gets 35 pounds of cornmeal, Jones gets 65 pounds of cornmeal and 100

of molasses, and Us = 35 and Uj = 577.5.

(12.3e) Suppose Smith discovers a cookbook full of recipes for a variety of

molasses candies and corn muffins, and his utility function becomes

Us = 10C + 5M . Show that the split of goods in part (d) remains the

same despite his improved utility function.

Answer. The utility point at which Jones has all the molasses and Smith

has the molasses is now (1000, 350), since Smith’s utility is (10) (100).

Smith’s new threat point utility is 300(= 0.2((10)(100) + (5)(100)).

Thus, the Nash problem of equation (54) becomes

Maximize

X (1000− 10X − 300)(350 + 3.5X − 560). (55)

But this maximand is the same as (10)(100−X−30)(350+3.5X−560),
so it must have the same solution as was found in part (d).

12.5: A Fixed Cost of Bargaining and Incomplete Information.

Smith and Jones are trying to split 100 dollars. In bargaining round 1,

Smith makes an offer at cost c, proposing to keep S1 for himself. Jones

either accepts (ending the game) or rejects. In round 2, Jones makes an offer

of S2 for Smith, at cost 10, and Smith either accepts or rejects. In round 3,

Smith makes an offer of S3 at cost c, and Jones either accepts or rejects. If

no offer is ever accepted, the 100 dollars goes to a third player, Parker.

(12.5a) If c = 0, what is the equilibrium outcome?

Answer. Answer. S1 = 100 and Jones accepts it. If Jones refused, he

would have to pay 10 to make a proposal that Smith would reject, and

then Smith would propose S3 = 100 again. S1 < 100 would not be an

equilibrium, because Smith could deviate to S1 = 100 and Jones would

still be willing to accept .
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(12.5b) If c = 80, what is the equilibrium outcome?

Answer. If the game goes to Round 3, Smith will propose S3 = 100

and Jones will accept, but this will cost Smith 80. Hence, if Jones pro-

poses S2 = 20, Smith will accept it, leaving 80 for Jones–who would,

however, pay 10 to make his offer. Hence, in Round 1 Smith must

offer S1 = 30 to induce Jones to accept, which will be the equilibrium

outcome.

(12.5c) If Jones’ priors are that c = 0 and c = 80 are equally likely, but only

Smith knows the true value, what is the equilibrium outcome? (Hint:

the equilibrium uses mixed strategies.)

Answer. Smith’s equilibrium strategy is to offer S1 = 100 with prob-

ability 1 if c = 0 and probability 1
7
if c = 80 ; to offer S1 = 30 with

probability 6/7 if c = 80. He accepts S2 ≥ 20 if c = 80 and S2 = 100 if
c = 0, and proposes S3 = 100 regardless of c. Jones accepts S1 = 100

with probability 1
8
, rejects S1 ∈ (30, 100), and accepts S1 ≤ 30. He

proposes S2 = 20 and accepts S3 = 100. Out of equilibrium, a sup-

porting belief for Jones to believe that if S1 equals neither 30 nor 100,

then Prob(c = 80) = 1.

If c = 0, the equilibrium outcome is for Smith to propose S1 = 100,

for Jones to accept with probability 1
8
and to propose S2 = 20 other-

wise and be rejected, and for Smith to then propose S3 = 100 and be

accepted. If c = 80, the equilibrium outcome is with probability 6/7

for Smith to propose S1 = 30 and be accepted, with probability (
1
7
)(1
8
)

to propose S1 = 100 and be accepted, and with probability (
1
7
) (7

8
) to

propose S1 = 100, be rejected, and then to be proposed S2 = 20 and

to accept.

The rationale behind the equilibrium strategies is as follows. In Round

3, either type of Smith does best by proposing a share of 100, and Jones

might as well accept. In Round 2, anything but S2 = 100 would be

rejected by Smith if c = 0, so Jones should give up on that and offer

S2 = 20, which would be accepted if c = 80 because if that type of

Smith were to wait, he would have to pay 80 to propose S3 = 100.
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In Round 1, if c = 0, Smith should propose S1 = 100, since he can

wait until Round 3 and get that anyway at zero extra cost. There is

no pure strategy equilibrium, because if c = 80, Smith would pretend

that c = 0 and propose S1 = 100 if Jones would accept that. But

if Jones accepts only with probability θ, then Smith runs the risk of

only getting 20 in the second period, less than S1 = 30, which would

be accepted by Jones with probability 1. Similarly, if Smith proposes

S1 = 100 with probability γ when c = 80, Jones can either accept it,

or wait, in which case Jones might either pay a cost of 10 and end up

with S3 = 100 anyway, or get Smith to accept S2 = 20.

The probability γ must equate Jones’s two pure- strategy payoffs. Us-

ing Bayes’s Rule for the probabilities in (57), the payoffs are

πj(accept S1 = 100) = 0 (56)

and

πj(reject S1 = 100) = −10 +
Ã

0.5γ

0.5γ + 0.5

!
(80) +

Ã
0.5

0.5γ + 0.5

!
(0) ,

(57)

which yields γ = 1
7
.

The probability θ must equate Smith’s two pure- strategy payoffs:

πs(S1 = 30) = 30 (58)

and

πs(S1 = 100) = θ100 + (1− θ)20, (59)

which yields θ = 1
8
.

12.7: Myerson-Satterthwaite. The owner of a tract of land values his

land at vs and a potential buyer values it at vb. The buyer and seller do not

know each other’s valuations, but guess that they are uniformly distributed

between 0 and 1. The seller and buyer suggest ps and pb simultaneously, and

they have agreed that the land will be sold to the buyer at price p = (pb+ps)
2

if ps ≤ pb.
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The actual valuations are vs = .2 and vb = .8. What is one equilibrium

outcome given these valuations and this bargaining procedure? Explain why

this can happen.

Answer. This game is Bilateral Trading III. It has multiple equilibria,

even for this one pricing mechanism.

The One Price Equilibrium described in Chapter 12 is one possibility.

The Buyer offers pb = x and the Seller offers ps = x, with x ∈ [.2, .8], so that
p = x. If either player tries to improve the price from his point of view, he

will lose all gains from trade. And he of course will not want to give the other

player a better price when that does not increase the probability of trade.

A degenerate equilibrium is for the Buyer to offer pb = 0 and the Seller

to offer ps = 1, in which case trade will not occur. Neither player can gain

by unilaterally altering his strategy, which is why this is a Nash equilibrium.

You will be able to think of other degenerate no-trade equilibria too.

The Linear Equilibrium described in Chapter 12 uses the following

strategies:

pb =
2

3
vb +

1

12

and

ps =
2

3
vs +

1

4
.

Substituting in our vb and vs yields a buyer price of pb = (2/3)(.8) +

1/12 = 192/360 + 30/360 = 222/360 and a seller price of ps = (2/3)(.2) +

1/4 = 16/120 + 30/120 = 23/60 = 138/360. Trade will occur, and at a price

halfway between these values, which is p = (1/2)(222 + 138)/360 = 1/2.

This will be an equilibrium because although we have specified vsand

vb , the players do not both know those values till after the mechanism is

played out.

PROBLEMS FOR CHAPTER 13: Auctions
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13.1: Rent-Seeking. Two risk- neutral neighbors in 16th century England,

Smith and Jones, have gone to court and are considering bribing a judge.

Each of them makes a gift, and the one whose gift is the largest is awarded

property worth $2,000. If both bribe the same amount, the chances are 50

percent for each of them to win the lawsuit. Gifts must be either $0, $900,

or $2, 000.

13.1a) ( What is the unique pure-strategy equilibrium for this game?

Answer. Each bids $900, for expected profits of 100 each (=-900 +

0.5(2000)). Table A.12 shows the payoffs (but also includes the payoffs

for when the strategy of a bid of 1,500 is allowed). A player who

deviates to 0 has a payoff of 0; a player who deviates to 2,000 has a

payoff of 0. (0,0) is not an equilibrium, because the expected payoff is

1,000, but a player who deviated to 900 would have a payoff of 1,100.

Table A.12 “Bribes I00

Jones
$0 $900 $1500 $2000

$0 1000,1000 0,1100 0,500 0,0
Smith: $900 1100,0 100,100 -900, 500 - 900,0

$1500 500,0 500,−900 −500,−500 −1500, 0
$2000 0,0 0,−900 0,−1500 −1000,−1000

Payoffs to: (Smith, Jones).

(13.1b) Suppose that it is also possible to give a $1500 gift. Why does there

no longer exist a pure-strategy equilibrium?

Answer. If Smith bids 0 or 900, Jones would bid 1500. If Smith bids

1500, Jones would bid 2000. If both bid 2000, then one can profit by

deviating to 0. But if Smith bids 2000 and Jones bids 0, Smith will

deviate to 900. This exhausts all the possibilities.

(13.1c) What is the symmetric mixed-strategy equilibrium for the expanded

game? What is the judge’s expected payoff?
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Answer. Let (θ0, θ900, θ1500 ,θ2000) be the probabilities. It is pointless

ever to bid 2000, because it can only yield zero or negative profits, so

θ2000 = 0. In a symmetric mixed-strategy equilibrium, the return to

the pure strategies is equal, and the probabilities add up to one, so

πSmith(0) = πSmith(900) = πSmith(1500)

0.5θ0(2000) = −900 + θ0(2000) + 0.5θ900(2000) = −1500 + θ0(2000) + θ900(2000) + 0.5θ1500(
(60)

and

θ0 + θ900 + θ1500 = 1. (61)

Solving out these three equations for three unknowns, the equilibrium

is (0.4, 0.5, 0.1, 0.0).

The judge’s expected payoff is 1200 (=2(0.5(900) + 0.1(1500)))

Note: The results are sensitive to the bids allowed. Can you speculate as

to what might happen if the strategy space were the whole continuum

from 0 to 2000?

(13.1d) In the expanded game, if the losing litigant gets back his gift, what are

the two equilibria? Would the judge prefer this rule?

Answer. Table A.13 shows the new outcome matrix. There are three

equilibria: x1 = (900, 900), x2 = 1500, 1500), and x3 = (2000, 2000).

Table A.13 “Bribes II”

Jones
$0 $900 $1500 $2000

$0 1000 , 1000 0,1100 0,500 0,0

Smith: $900 1100 ,0 550 , 550 0, 500 0,0

$1500 500,0 500, 0 250 , 250 0, 0

$2000 0,0 0, 0 0, 0 0 , 0

Payoffs to: (Smith, Jones).

The judge’s payoff was 1200 under the unique mixed-strategy equilib-

rium in the original game. Now, his payoff is either 900, 1500, or 2000.

63



Thus, whether he prefers the new rules depends on which equilibrium

is played out in it.

13.3: Government and Monopoly. Incumbent Apex and potential

entrant Brydox are bidding for government favors in the widget market. Apex

wants to defeat a bill that would require it to share its widget patent rights

with Brydox. Brydox wants the bill to pass. Whoever offers the chairman

of the House Telecommunications Committee more campaign contributions

wins, and the loser pays nothing. The market demand curve is P = 25−Q,
and marginal cost is constant at 1.

(13.3a) Who will bid higher if duopolists follow Bertrand behavior? How much

will the winner bid?

Answer. Apex bids higher, because it gets monopoly profits from win-

ning, and Bertrand profits equal zero. Apex can bid some small ² and

win.

(13.3b) Who will bid higher if duopolists follow Cournot behavior? How much

will the winner bid?

Answer. Monopoly profits are found from the problem

MaximizeQa Qa(25−Qa − 1), (62)

which has the first order condition 25− 2Qa − 1 = 0, so that Qa = 12
and πa = 144 (= 12(25− 12− 1)).
Apex’s Cournot duopoly profit is found by solving the problem

Maximize

Qa Qa(25− [Qa +Qb]− 1), (63)

which has the first order condition 25−2Qa−Qb−1 = 0, so that if the
equilibrium is symmetric and Qb = Qa, then Qa = 8 and πa = 64 (=

8(25− [8 + 8]− 1)).
Brydox will bid up to 64, since that is its gain from being a duopolist

rather than out of the industry altogether. Apex will bid up to 80(=

144− 64), and so will win the auction at a price of 64.
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(13.3c) What happens under Cournot behavior if Apex can commit to giving

away its patent freely to everyone in the world if the entry bill passes?

How much will Apex bid?

Answer. Apex will bid some small ² and win. It will commit to

giving away its patent if the bill succeeds, which means that if the

bill succeeds, the industry will have zero profits and Brydox has no

incentive to bid a positive amount to secure entry.

PROBLEMS FOR CHAPTER 14: Pricing

14.1: Differentiated Bertrand with Advertising. Two firms that pro-

duce substitutes are competing with demand curves

q1 = 10− αp1 + βp2 (64)

and

q2 = 10− αp2 + βp1. (65)

Marginal cost is constant at c = 3. A player’s strategy is his price. Assume

that α > β/2.

(14.1a) What is the reaction function for Firm 1? Draw the reaction curves for

both firms.

Answer. Firm 1’s profit function is

π1 = (p1 − c)q1 = (p1 − 3)(10− αp1 + βp2). (66)

Differentiating with respect to p1 and solving the first order condition

gives the reaction function

p1 =
10 + βp2 + 3α

2α
. (67)

This is shown in Figure A.10.

Figure A.10 The Reaction Curves in a Bertrand Game with

Advertising
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(14.1b) What is the equilibrium? What is the equilibrium quantity for Firm

1?

Answer. Using the symmetry of the problem, set p1 = p2 in the reac-

tion function for Firm 1 and solve, to give p∗1 = p
∗
2 =

10+3α
2α−β . Using the

demand function for Firm 1, q1 =
10α+3α(β−α)

2α−β .

(14.1c) Show how Firm 2’s reaction function changes when β increases. What

happens to the reaction curves in the diagram?

Answer. The slope of Firm 2’s reaction curve is ∂p2
∂p1
= β

2α
. The change

in this when β changes is ∂2p2
∂p1∂β

= 1
2α
> 0. Thus, Firm 2’s reaction

curve becomes steeper, as shown in Figure A.11.

Figure A.11 How Reaction Curves Change When β Increases
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(14.1d) Suppose that an advertising campaign could increase the value of β by

one, and that this would increase the profits of each firm by more than

the cost of the campaign. What does this mean? If either firm could

pay for this campaign, what game would result between them?

Answer. The meaning of an increase in β is that a firm’s quantity de-

manded becomes more responsive to the other firm’s price, if it charges

a high price. The meaning is really mixed: partly, the goods become

closer substitutes, and partly, total demand for the two goods increases.

If either firm could pay, then a game of “Chicken” results, with pay-

offs something like in Table A.14, where the ad campaign costs 1 and

yields extra profits of B to each firm.

Table A.14 An Advertising “Chicken” Game

Firm 2
Advertise Do not advertise

Advertise B-1,B-1 → B-1,B
Firm 1: ↓ ↑

Do not advertise B,B-1 ← 0,0
Payoffs to: (Firm 1, Firm 2).
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14.3: Differentiated Bertrand. Two firms that produce substitutes have

the demand curves

q1 = 1− αp1 + β(p2 − p1) (68)

and

q2 = 1− αp2 + β(p1 − p2), (69)

where α > β. Marginal cost is constant at c, where c < 1/α. A player’s

strategy is his price.

14.3a) (What are the equations for the reaction curves p1(p2) and p2(p1)?

Draw them.

Answer. Firm 1 solves the problem of maximizing π1 = (p1 − c)q1 =
(p1− c)(1−αp1+β[p2− p1]) by choice of p1 . The first order condition
is 1−2(α+β)p1+βp2+(α+β)c = 0, which gives the reaction function

p1 =
1+βp2+(α+β)c

2(α+β)
. For p2: p2 =

1+βp1+(α+β)c
2(α+β)

. Figure A.12 shows the

reaction curves. Note that β > 0, because the goods are substitutes.

Figure A.12 Reaction Curves for the Differentiated Bertrand

Game
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(14.3b) What is the pure-strategy equilibrium for this game?

Answer. This game is symmetric, so we can guess that p∗1 = p
∗
2. In that

case, using the reaction curves, p∗1 = p
∗
2 =

1+(α+β)c
2α+β

.

(14.3c) What happens to prices if α, β, or c increase?

Answer. The response of p∗ to an increase in α is:

∂p∗

∂α
=

c

2α+ β
−2[1 + (α+ β)c]

(2α+ β)2
=

Ã
1

(2α+ β)2

!
(2αc+ βc− 2− 2αc− 2βc) < 0.

(70)

The derivative has the same sign as −βc− 2 < 0, so, since β > 0, the
price falls as α rises. This makes sense– α represents the responsive-

ness of the quantity demanded to the firm’s own price.

The increase in p∗ when β increases is:

∂p∗

∂β
=

c

(2α+ β)
−1 + (α+ β)c

(2α+ β)2
=

Ã
1

(2α+ β)2

!
(2αc+ βc− 1− αc− βc) < 0.

(71)

The price falls with β, because c < 1/α.

The increase in p∗ when c increases is:

∂p∗

∂c
=

α+ β

2α+ β
> 0. (72)

When the marginal cost rises, so does the price.

(14.3d) What happens to each firm’s price if α increases, but only Firm 2

realizes it (and Firm 2 knows that Firm 1 is uninformed)? Would Firm

2 reveal the change to Firm 1?

Answer. From the equation for the reaction curve of Firm 1, it can

be seen that the reaction curve will shift and swivel as in Figure A.13.

This is because ∂p2
∂p1
= β

2(α+β
, so ∂2p2

∂p1∂β
= − β

2(α+β)2
< 0. Firm 2’s reaction

curve does not change, and it believes that Firm 1’s reaction curve has

not changed either, so Firm 2 has no reason to change its price. The

equilibrium changes from E0 to E1: Firm 1 maintains its price, but

Firm 2 reduces its price. Firm 2 would not want to reveal the change
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to Firm 1, because then Firm 1 would also reduce its price (and Firm

2 would reduce its price still further), and the new equilibrium would

be E2.

Figure A.13 Changes in the Reaction Curves

PROBLEMS FOR CHAPTER 15: Entry9

15.1: Crazy Predators. (adapted from Gintis [2000], Problem 12.10.)

Apex has a monopoly in the market for widgets, earning profits of m per

period, but Brydox has just entered the market. There are two periods and

no discounting. Apex can either Prey on Brydox with a low price or accept

Duopoly with a high price, resulting in profits to Apex of −pa or da and to
Brydox of −pb or db. Brydox must then decide whether to stay in the market
for the second period, when Brydox will make the same choices. If, however,

Professor Apex, who owns 60 percent of the company’s stock, is crazy, he

thinks he will earn an amount p∗ > da from preying on Brydox (and he does
not learn from experience). Brydox initially assesses the probability that

Apex is crazy at θ.

9xxx Move ot other chapters.
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(15.1a) Show that under the following condition, the equilibrium will be sepa-

rating, i.e., Apex will behave differently in the first period depending

on whether the Professor is crazy or not:

−pa +m < 2da (73)

Answer. In any equilibrium, Apex will choose Prey both periods if the

Professor is crazy. In any equilibrium, Apex will choose Duopoly in the

second period if the Professor is not crazy, by subgame perfectness.

If the equilibrium is separating, Apex will choose Duopoly in the first

period if the Professor is not crazy, and Brydox will respond by staying

in for the second period. This will yield Apex an equilibrium payoff

of 2da. The alternative is to deviate to Prey. The best this can do is

to induce Brydox to exit, leaving Apex an overall payoff of −pa + m
for the two periods, but if −pa +m < 2da, deviation is not profitable.

(And if Brydox would not exit in response to Prey, Prey is even less

profitable.)

(15.1b) Show that under the following condition, the equilibrium can be pool-

ing, i.e., Apex will behave the same in the first period whether the

Professor is crazy or not:

θ ≥ db
pb + db

(74)

Answer. The only reason for Apex to choose Prey in the first period if the

Professor is not crazy is to induce Brydox to choose Exit. Thus, we

should focus on Brydox’s decision. Brydox’s payoff from Exit is 0. Its

payoff from staying in is

θ(−pb) + (1− θ)db.

Exiting is as profitable as staying in if

0 ≥ θ(−pb) + (1− θ)db,

which implies that

(pb + db)θ ≥ db, and thus θ ≥ db
pb + db

.
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(15.1c) If neither two condition (73) nor (74) apply, the equilibrium is hybrid,

i.e., Apex will use a mixed strategy and Brydox may or may not be

able to tell whether the Professor is crazy at the end of the first period.

Let α be the probability that a sane Apex preys on Brydox in the first

period, and let β be the probability that Brydox stays in the market

in the second period after observing that Apex chose Prey in the first

period. Show that the equilibrium values of α and β are:

α =
θpb

(1− θ)db
(75)

β =
−pa +m− 2da

m− da (76)

Answer. An equilibrium mixing probability equates the payoffs from its two pure

strategy components. First, consider Apex. Apex’s two pure-strategy

payoffs are:

πa(Prey) = −pa + βda + (1− β)m = da + da = πa(Duopoly), (77)

so β(da −m) = −m+ pa + 2da and we reach equation (76).
Note that we know the numerator of equation (76) is positive, because

we have ruled out a separating equilibrium by not having the inequality

in part 15.1a hold. Also, the mixing probability is less than one because

the numerator is less than the denominator.

Now consider Brydox. Brydox’s prior that Apex is crazy is θ, but on

observing Prey, it must modify its beliefs. There was some chance

that Apex, if sane (which has probability (1 − θ), would have chosen

Duopoly, but that didn’t happen. That had probability (1−α)(1− θ)

ex ante. Using Bayes’ Rule, the posterior probability that Apex is crazy

is
θ

1− (1− α)(1− θ)
, (78)

and the probability that Apex is sane is

(α)(1− θ)

1− (1− α)(1− θ)
, (79)
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Brydox’s two pure-strategy payoffs after observing Prey are therefore

πb(Exit) = −pb = −pb+ θ

1− (1− α)(1− θ)
(−pb)+ (α)(1− θ)

1− (1− α)(1− θ)
db = πb(Stay in),

(80)

so 0 = θ(−pb) + (α)(1− θ)db and

α =
θpb

(1− θ)db
(81)

If condition (74) is false, then expression (e15.a3e) is less than 1, a nice

check that we have calculated the mixing probability correctly (and it

is clearly greater than zero).

(15.1d) Is this behavior related to any of the following phenomenon?— Sig-

nalling, Signal Jamming, Reputation, Efficiency Wages.

Answer. This is an example of signal jamming. Apex alters its behavior

in the first period so as to avoid conveying information to Brydox.

It is not signalling,because Apex is not trying to signal its type. It

is not reputation, because this is just a two- period model, not an

infinite-period one. In loose language, one might call it reputation,

because Apex is trying to avoid acquiring a reputation for sanity, but

it has nothing in common with Klein- Leffler reputation models. It

is not efficiency wages because no agent is being paid more than his

reservation utility so as to maintain incentives, nor is even any firm

being rewarded highly under the threat of losing the reward if it behaves

badly.

15.3: A Patent Race. See what happens in Patent Race for an Old

Market when specific functional forms and parameters are assumed. Set

f(x) = log(x), and for w = f(xi)− f(xe), g(w) = .5[1+w/(1+w)] if w ≥ 0,
g(w) = .5[1+w/(1−w)] if w ≤ 0, y = 2, and z = 1. Figure out the research
spending by each firm for the three cases of (a) v = 10, (b) v = 4, and (c)

v = 2.
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Answer. Under these parameters, equation (15.13) from the book be-

comes
1/xi
1/xe

=
v − 1

Max(v − 1, 2) , (82)

or
xe
xi
=

v − 1
Max(v − 1, 2) . (83)

(15.3a) If v = 10, then equation (83) tells us that

xe
xi
=

9

Max(9, 2)
= 1. (84)

Thus, xi = xe. But what do they equal? Use equation (15.10) from the book,

the first-order condition for the entrant. Equation (15.10) is

dπe
dxe

= −(1− g) + g0f 0e(v − xe − Z)− g + g0f 0exe = 0.

The equation includes g0, so let us first figure that out for the functional form
of this problem. It will be, for w ≥ 0,

g0 =
.5

1 + w
− .5w

(1 + w)2
. (85)

Since f(xe) = log(xe), it follows that f
0(xe) = 1/xe. Thus, equation (15.10)

becomes, once we use our knowledge that xe = xi,

−(1− .5) + .5(1/xe)(v − xe − 1)− .5 +
³
.5
xe

´
xe = 0,

−.5 + .5(v−xe−1
xe

− .5 + .5 = 0
xe = v − xe − 1

(86)

Solving this for v = 10 yields xe = 4.5. xi must take the same value.

(15.3b) If v = 4, nothing in the analysis changes except the last line. Subsi-

tuting in v now yields xe = xi = 1.5.

(15.3c)If v = 2, the analysis changes, because now in equation ( 83),Max(v−
1, 2) = 2. Thus,

xe
xi
=

v − 1
Max(v − 1, 2) =

1

2
, (87)

74



so xi = 2xe.

That is where I would be content for my students to stop, but we can

go further, if at the cost of messy algebra and some numerical calculation.

Since it is no longer true that xi = xe, we cannot use the simplification

of equation (15.10) in parts (a) and (b). Since xi > xe, the g function is

g(w) = .5[1 + w/(1 + w)], and g0 = .5
1+w
− .5w

(1+w)2
, as in part (a). Equation

(15.10) becomes, for w = log(xi)− log(xe),
dπe
dxe

= −(1− .5[1 + w
1+w

]) +
³

.5
1+w
− .5w

(1+w)2

´
(1/xe)(v − xe − Z)

−.5[1 + w
1+w

] +
³

.5
1+w
− .5w

(1+w)2

´
(1/xe)xe = 0.

(88)

or
−(1− .5[1 + w

1+w
]) +

³
.5
1+w
− .5w

(1+w)2

´
(1/xe)(v − xe − Z)

−.5[1 + w
1+w

] +
³

.5
1+w
− .5w

(1+w)2

´
= 0.

(89)

This can be rewritten, substituting for V and Z, as

−1+.5+.5( w

1 + w
))

Ã
.5

1 + w
− .5w

(1 + w)2

!
(2− xe − 1)

xe
−.5− .5w

1 + w
]+

Ã
.5

1 + w
− .5w

(1 + w)2

!
= 0.

(90)

so

−(1 + w)2 + .5((1 + w)− .5w) 1
xe
= 0, (91)

and

−(1 + w)2 + .5

xe
= 0. (92)

Substituting w = log(xi)− log(xe) and for xi = 2xe yields

−(1 + log(2xe)− log(xe))2 + .5

xe
= 0. (93)

This can be solved numerically. I used the Excel spreadsheet, setting up

the left-hand-side of equation (93) as a formula and trying half a dozen xe
values till I found one that made the formula’s value approximately zero (I

was content with 0.007). That value was xe = .174, in which case xi = .348.
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