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3 Mixed and Continuous Strategies

A pure strategy maps each of a player’s possible
information sets to one action. si : ωi → ai.

A mixed strategy maps each of a player’s possi-
ble information sets to a probability distribution over
actions.

si : ωi → m(ai), where m ≥ 0 and

∫
Ai

m(ai)dai = 1.
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Table 1: The Welfare Game

Pauper
Work (γw) Loaf (1− γw)

Aid (θa) 3,2 → −1, 3
Government ↑ ↓

No Aid (1− θa) −1, 1 ← 0,0
Payoffs to: (Government, Pauper). Arrows show
how a player can increase his payoff.

If the government plays Aid with probability θa and
the pauper plays Work with probability γw, the govern-
ment’s expected payoff is

πGovernment = θa[3γw + (−1)(1− γw)] + [1− θa][−1γw + 0(1− γw)]

= θa[3γw − 1 + γw]− γw + θaγw

= θa[5γw − 1]− γw.
(1)

Differentiate the payoff function with respect to the
choice variable to obtain the first-order condition.

0 = dπGovernment
dθa

= 5γw − 1

⇒ γw = 0.2.

(2)

We obtained the pauper’s strategy by differentiating
the government’s payoff!
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THE LOGIC

1 I assert that an optimal mixed strategy exists
for the government.

2 If the pauper selects Work more than 20
percent of the time, the government always selects
Aid. If the pauper selects Work less than 20
percent of the time, the government never selects
Aid.

3 If a mixed strategy is to be optimal for the
government, the pauper must therefore select Work
with probability exactly 20 percent.
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To obtain the probability of the government choosing
Aid:

πPauper = γw(2θa + 1[1− θa]) + (1− γw)(3θa + [0][1− θa])

= 2γwθa + γw − γwθa + 3θa − 3γwθa

= −γw(2θa − 1) + 3θa.
(3)

The first-order condition is
dπPauper
dγw

= −(2θa − 1) = 0,

⇒ θa = 1/2.

(4)
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The Payoff-Equating Method

In equilibrium, each player is willing to mix only be-
cause he is indifferent between the pure strategies he is
mixing over. This gives us a better way to find mixed
strategies.

First, guess which strategies are being mixed between.

Then, see what mixing probability for the other player
makes a given player indifferent.

Table 1: The Welfare Game

Pauper
Work (γw) Loaf (1− γw)

Aid (θa) 3,2 → −1, 3
Government ↑ ↓

No Aid (1− θa) −1, 1 ← 0,0

Here,

πg(Aid) = γw(3)+(1−γw)(−1) = πg(No aid) = γw(−1)+(1−γw)(0)

So γw(3 + 1 + 1) = 1, so γw = .2.

πp(Work) = θa(2)+(1−θa)(1) = πp(Loaf ) = θa(3)+(1−θa)(0)

so θa(2− 1− 3) = −1 and θa = .5.
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Interpreting Mixed Strategies

A player who selects a mixed strategy is always indif-
ferent between two pure strategies and an entire contin-
uum of mixed strategies.

What matters is that a player’s strategy appear ran-
dom to other players, not that it really be random.

It could be based on time of day, temperature, etc.

It could be there is a population of identical players,
each of whom picks a pure strategy. But each would still
be indifferent about his strategy.
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Or, mixing could be based on unknown characteristics
of the player. Harsanyi (1973).

Let the payoffs not be exactly as in the matrix. In-
stead, the pauper payoff of 3 is distributed on the con-
tinuum [2.9, 3.1 ] with median 3.

πPauper = γw(2θa + 1[1− θa]) + (1− γw)(Xθa + [0][1− θa])

= 2γwθa + γw − γwθa + Xθa −Xγwθa

= (1−X)γwθa + (1−X)γw + Xθa.
(5)

The first-order condition is
dπPauper
dγw

= (1−X)γw = 0,

⇒ θa = 1
X−1.

(6)

With probability 1, the Government has an strongly
optimal pure strategy— either AID or NO AID, θa = 1
or θa = 0. But to the pauper, it seems there is a 50%
chance of the pure strategy AID.

How about if the mixing probability does not come
out to .5? Well, let’s think about the government having
a payoff from (Aid, Loaf) ranging from -.9 to -1.1 with
cumulative distribution F (z).
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πGovernment = θa[3γw + (z)(1− γw)] + [1− θa][−1γw + 0(1− γw)]

= θa[3γw + z − zγw + γw)− γw

= θa[(4 + z)γw + z]− γw.
(7)

The first order condition tells us that the government
prefers to make θa as big as possible (that is, 1) if (4 −
z)γw + z > 0. We need the pauper Su to think there is
an

unfinished
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Table 2: Pure Strategies Dominated by a
Mixed Strategy

Column
North South

North 0,0 4,-4

Row South 4,-4 0,0

Defense 1,-1 1,-1

Payoffs to: (Row, Column)

For Row, Defense is strictly dominated by (0.5 North,
0.5 South). In equilibrium, both players choose that.

His expected payoff from this mixed strategy if Col-
umn plays North with probability N is

0.5(N)(0)+0.5(1−N)(4)+0.5(N)(4)+0.5(1−N)(0) = 2,
(8)

so whatever response Column picks, Row’s expected pay-
off is higher from the mixed strategy than his payoff of
1 from Defense.

Lesson: It is dangerous to assume away mixed strate-
gies. It is better to allow them, and then to say you will
only look at pure-strategy equilibria.
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Table 3: Chicken

Jones
Continue (θ) Swerve (1− θ)

Continue (θ) −3,−3 → 2, 0
Smith: ↓ ↑

Swerve (1− θ) 0, 2 ← 1, 1

πJones(Swerve) = (θSmith) · (0) + (1− θSmith) · (1)

= (θSmith) · (−3) + (1− θSmith) · (2) = πJones(Continue).
(9)

From equation (9) we can conclude that 1− θSmith =
2− 5θSmith, so θSmith = 0.25.

In the symmetric equilibrium, both players choose the
same probability, so we can replace θSmith with simply
θ.

The two teenagers will survive with probability 1 −
(θ · θ) = 0.9375.
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Jones
Continue (θ) Swerve (1− θ)

Continue (θ) −x,−x → 2, 0
Smith: ↓ ↑

Swerve (1− θ) 0, 2 ← 1, 1

θ =
1

1− x
. (10)

If x = −3, this yields θ = 0.25, as was just calculated.

If x = −9, it yields θ = 0.10.

If x = 0.5, the equilibrium probability of continuing
appears to be θ = 2.
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The War of Attrition

The possible actions are Exit and Continue. In each
period that both Continue, each earns −1. If a firm
exits, its losses cease and the remaining firm obtains the
value of the market’s monopoly profit, which we set equal
to 3. We will set the discount rate equal to r > 0.

(1) Continue in each period, Exit in each period

(2) Each exits with probability θ if it hasn’t yet.

Let Smith’s payoffs be Vstay if he stays and Vexit if he
exits.

Vexit = 0.

Vstay = θ · (3) + (1− θ)

(
−1 +

[
Vstay
1 + r

])
, (11)

which, after a little manipulation, becomes

Vstay =

(
1 + r

r + θ

)
(4θ − 1) . (12)

Thus, θ = 0.25.
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Timing games

A pre-emption game, in which the reward goes to
the player who chooses the move which ends the game,
and a cost is paid if both players choose that move,
but no cost is incurred in a period when neither player
chooses it.

Grab the Dollar. A dollar is placed on the table
between Smith and Jones, who each must decide whether
to grab for it or not. If both grab, each is fined one
dollar. This could be set up as a one-period game, a T
period game, or an infinite- period game, but the game
definitely ends when someone grabs the dollar.

Table 4: Grab the Dollar

Jones
Grab Don’t Grab

Grab −1,−1 → 1,0
Smith: ↓ ↑

Don’t Grab 0,1 ← 0, 0

A noisy duel: if a player shoots and misses, the
other player observes the miss and can kill the first player
at his leisure.

A silent duel: , a player does not know when the
other player has fired, and the equilibrium is in mixed
strategies.
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Patent Race for a New Market (an all-pay
auction)

Players
Three identical firms, Apex, Brydox, and Central.

The Order of Play
Each firm simultaneously chooses research spending xi ≥
0, (i = a, b, c).

Payoffs
Firms are risk neutral and the discount rate is zero. In-
novation occurs at time T (xi) where T ′ < 0. The value
of the patent is V , and if several players innovate simul-
taneously they share its value. Let us look at the payoff
of firm i = a, b, c, with j and k indexing the other two
firms:

πi =



V − xi if T (xi) < Min{T (xj, T (xk)} (wins)

V
2 − xi if T (xi) = Min{T (xj), T (xk)} ( shares with 1)

< Max{T (xj), T (xk)}

V
3 − xi if T (xi) = T (xj = T (xk) (shares with 2)

2 other firms)

−xi if T (xi) > Min{T (xj, T (xk)} (loses)
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The game Patent Race for a New Market does not
have any pure strategy Nash equilibria, because the pay-
off functions are discontinuous.

A slight difference in research by one player can make
a big difference in the payoffs, as shown in Figure 1 for
fixed values of xb and xc. The research levels shown
in Figure 1 are not equilibrium values. If Apex chose
any research level xa less than V , Brydox would respond
with xa + ε and win the patent. If Apex chose xa = V ,
then Brydox and Central would respond with xb = 0
and xc = 0, which would make Apex want to switch to
xa = ε.
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Figure 1: The Payoffs in Patent Race for a New
Market
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Denote the probability that firm i chooses a research
level less than or equal to x as Mi(x). This function
describes the firm’s mixed strategy.

Since we know that the pure strategies xa = 0 and
xa = V yield zero payoffs, if Apex mixes over [0, V ] then
the expected payoff for every strategy mixed between
must also equal zero.

πa(xa) = V ·Pr(xa ≥ Xb, xa ≥ Xc)−xa = 0 = πa(xa = 0),
(13)

which can be rewritten as

V · Pr(Xb ≤ xa)Pr(Xc ≤ xa)− xa = 0, (14)

or
V ·Mb(xa)Mc(xa)− xa = 0. (15)

We can rearrange equation (15) to obtain

Mb(xa)Mc(xa) =
xa
V
. (16)

If all three firms choose the same mixing distribution M ,
then

M(x) =
( x
V

)1/2

for 0 ≤ x ≤ V. (17)

“all-pay auction”, and the techniques and findings of
auction theory can be quite useful when modelling this
kind of conflict.
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Correlated Strategies

Aumann (1974, 1987) has pointed out that it is often
important whether players can use the same randomizing
device for their mixed strategies. If they can, we refer to
the resulting strategies as correlated strategies.

Consider Chicken. The only mixed-strategy equilib-
rium is the symmetric one in which each player chooses
Continue with probability 0.25 and the expected payoff
is 0.75. A correlated equilibrium would be for the two
players to flip a coin and for Smith to choose Continue
if it comes up heads and for Jones to choose Continue
otherwise. Each player’s strategy is a best response to
the other’s, the probability of each choosing Continue
is 0.5, and the expected payoff for each is 1.0, which is
better than the 0.75 achieved without correlated strate-
gies.
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Cheap talk (Crawford & Sobel [1982]). Cheap talk
refers to costless communication when players can lie
without penalty.

In Ranked Coordination, cheap talk instantly allows
the players to make the desirable outcome a focal point,
though it does not get rid of the other equilibria.
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Table 7: The Civic Duty Game

Jones
Ignore (γ) Telephone (1− γ)

Ignore (γ) 0, 0 → 10,7
Smith: ↓ ↑

Telephone (1− γ) 7,10 ← 7, 7

Payoffs to: (Row, Column). Arrows show how a
player can increase his payoff.

In the N-player version of the game, the payoff to
Smith is 0 if nobody calls, 7 if he himself calls, and 10 if
one or more of the other N − 1 players calls.

If all players use the same probability γ of Ignore, the
probability that the other N − 1 players besides Smith
all choose Ignore is γN−1, so the probability that one
or more of them chooses Telephone is 1− γN−1

. Thus, equating Smith’s pure-strategy payoffs using
the payoff-equating method of equilibrium calculation
yields

πSmith(Telephone) = 7 = πSmith(Ignore) = γN−1(0)+(1−γN−1)(10).
(18)

Equation (18) tells us that

γN−1 = 0.3 (19)

and
γ∗ = 0.3

1
N−1 . (20)
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γ∗ = 0.3
1

N−1 . (21)

If N = 2, Smith chooses Ignore with a probability of
0.30. As N increases, Smith’s expected payoff remains
equal to 7 whether N = 2 or N = 38, since his ex-
pected payoff equals his payoff from the pure strategy
of Telephone. The probability of Ignore, γ∗, however,
increases with N . If N = 38, the value of γ∗ is about
0.97.

The probability that nobody calls is γ∗N . Equation
(19) shows that γ∗N−1 = 0.3, so γ∗N = 0.3γ∗, which is
increasing in N because γ∗ is increasing in N . If N = 2,
the probability that neither player phones the police is
γ∗2 = 0.09. When there are 38 players, the probability
rises to γ∗38, about 0.29. The more people that watch a
crime, the less likely it is to be reported.
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Randomizing Is Not Always Mixing:

Assume that the benefit of preventing or catching
cheating is 4, the cost of auditing is C, where C < 4,
the cost to the suspects of obeying the law is 1, and the
cost of being caught is the fine F > 1.

Table 8: Auditing Game I

Suspects
Cheat (θ) Obey (1− θ)

Audit (γ) 4− C,−F → 4− C,−1
IRS: ↑ ↓

Trust (1− γ) 0,0 ← 4,−1
Payoffs to: (IRS, Suspects). Arrows show how a
player can increase his payoff.

Probability(Cheat) = θ∗ = 4−(4−C)
(4−(4−C))+((4−C)−0)

= C
4

(22)
and

Probability(Audit) = γ∗ = −1−0
(−1−0)+(−F−−1)

= 1
F .

(23)
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Table 8: Auditing Game I

Suspects
Cheat (θ) Obey (1− θ)

Audit (γ) 4− C,−F → 4− C,−1
IRS: ↑ ↓

Trust (1− γ) 0,0 ← 4,−1
Payoffs to: (IRS, Suspects). Arrows show how a
player can increase his payoff.

The payoffs are

πIRS(Audit) = πIRS(Trust) = θ∗(0) + (1− θ∗)(4)

= 4− C.
(24)

and

πSuspect(Obey) = πSuspect(Cheat) = γ∗(−F ) + (1− γ∗)(0)

= −1.
(25)
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Auditing Game II: the sequential game, the IRS
chooses government policy first, and the suspects react
to it. The equilibrium in Auditing Game II is in pure
strategies, a general feature of sequential games of per-
fect information. In equilibrium, the IRS chooses Audit,
anticipating that the suspect will then choose Obey.

The payoffs are (4 − C) for the IRS and −1 for the
suspects, the same for both players as in Auditing Game
I, although now there is more auditing and less cheating
and fine-paying.
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In Auditing Game I, the equilibrium strategy was to
audit all suspects with probability 1/F and none of them
otherwise.

That is different from announcing in advance that the
IRS will audit a random sample of 1/F of the suspects.

For Auditing Game III, suppose the IRS move first,
but let its move consist of the choice of the proportion
α of tax returns to be audited.

We know that the IRS is willing to deter the suspects
from cheating, since it would be willing to choose α = 1
and replicate the result in Auditing Game II if it had
to.

It chooses α so that

πsuspect(Obey) ≥ πsuspect(Cheat), (26)

i.e.,
−1 ≥ α(−F ) + (1− α)(0). (27)

In equilibrium, therefore, the IRS chooses α = 1/F and
the suspects respond with Obey. The IRS payoff is (4−
αC), which is better than the (4− C) in the other two
games, and the suspect’s payoff is −1, exactly the same
as before.
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The Cournot Game

Players
Firms Apex and Brydox

The Order of Play
Apex and Brydox simultaneously choose quantities qa
and qb from the set [0,∞).

Payoffs
Marginal cost is constant at c = 12. Demand is a func-
tion of the total quantity sold, Q = qa + qb, and we will
assume it to be linear (for generalization see Chapter
14), and, in fact, will use the following specific function:

p(Q) = 120− qa − qb. (28)

Payoffs are profits, which are given by a firm’s price times
its quantity minus its costs, i.e.,

πApex = (120− qa − qb)qa − cqa = (120− c)qa − q2
a − qaqb;

πBrydox = (120− qa − qb)qb − cqb = (120− c)qb − qaqb − q2
b .

(29)

26



Figure 2: Reaction Curves in the Cournot
Game

The monopoly output maximizes pQ− cQ = (120−
Q− c)Q with respect to the total output of Q, resulting
in the first-order condition

120− c− 2Q = 0, (30)

which implies a total output of Q = 54 and a price of 66
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To find the “Cournot-Nash” equilibrium, we need to
refer to the best-response functions or reaction
functions for the two players. If Brydox produced 0,
Apex would produce the monopoly output of 54. If Bry-
dox produced qb = 108 or greater, the market price
would fall to 12 and Apex would choose to produce
zero. The best response function is found by maximiz-
ing Apex’s payoff, given in equation (28), with respect to
his strategy, qa. This generates the first-order condition
120− c− 2qa − qb = 0, or

qa = 60−
(qb + c

2

)
= 54−

(
1

2

)
qb. (31)
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Figure 2: Reaction Curves in the Cournot
Game

The reaction functions of the two firms are labelled
Ra and Rb in Figure 2. Where they cross, point E, is the
Cournot-Nash equilibrium, the Nash equilibrium
when the strategies consist of quantities.

Algebraically, it is found by solving the two reaction
functions for qa and qb, which generates the unique equi-
librium, qa = qb = 40− c/3 = 36. The equilibrium price
is then 48 (= 120-36-36).
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The Stackelberg Game

Players
Firms Apex and Brydox

The Order of Play
1 Apex chooses quantity qa from the set [0,∞).
2 . Brydox chooses quantity qb from the set [0,∞).

Payoffs
Marginal cost is constant at c = 12. Demand is a func-
tion of the total quantity sold, Q = qa + qb:

p(Q) = 120− qa − qb. (32)

Payoffs are profits, which are given by a firm’s price times
its quantity minus its costs, i.e.,

πApex = (120− qa − qb)qa − cqa = (120− c)qa − q2
a − qaqb;

πBrydox = (120− qa − qb)qb − cqb = (120− c)qb − qaqb − q2
b .

(33)
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Figure 3: Stackelberg Equilibrium
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Since Apex forecasts Brydox’s output to be qb = 60−
qa+c

2 , Apex can substitute this into his payoff function in
(28) to obtain

πa = (120− c)qa − q2
a − qa(60− qa + c

2
). (34)

Maximizing his payoff with respect to qa yields the
first-order condition

(120− c)− 2qa − 60 + qa +
c

2
= 0, (35)

so qa = 60− c/2 = 54. Once Apex chooses this output,
Brydox chooses his output to be qb = 27.

32



The Bertrand Game

Players
Firms Apex and Brydox

The Order of Play
Apex and Brydox simultaneously choose prices pa and
pb from the set [0,∞).

Payoffs
Marginal cost is constant at c = 12. Demand is a func-
tion of the total quantity sold, Q(p) = 120 − p. The
payoff function for Apex (Brydox’s would be analogous)
is

πa =


(120− pa)(pa − c) if pa ≤ pb

(120−pa)(pa−c)
2 if pa = pb

0 if pa > pb

The Bertrand Game has a unique Nash equilibrium:
pa = pb = c = 12, with qa = qb = 54. That this is a
weak Nash equilibrium is clear: if either firm deviates to
a higher price, it loses all its customers and so fails to in-
crease its profits to above zero. In fact, this is an example
of a Nash equilibrium in weakly dominated strategies.
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That the equilibrium is unique is less clear. To see
why it is, divide the possible strategy profiles into four
groups:

pa < c or pb < c. In either of these cases, the firm
with the lowest price will earn negative profits, and
could profitably deviate to a price high enough to
reduce its demand to zero.

pa > pb > c or pb > pa > c. In either of these cases
the firm with the higher price could deviate to a price
below its rival and increase its profits from zero to
some positive value.

pa = pb > c. In this case, Apex could deviate to a
price ε less than Brydox and its profit would rise, be-
cause it would go from selling half the market quan-
tity to selling all of it with an infinitesimal decline in
profit per unit sale.

pa > pb = c or pb > pa = c. In this case, the firm
with the price of c could move from zero profits to
positive profits by increasing its price slightly while
keeping it below the other firm’s price.
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The Differentiated Bertrand Game

Let us now move to a different duopoly market, where
the demand curves facing Apex and Brydox are

qa = 24− 2pa + pb (36)

and
qb = 24− 2pb + pa, (37)

and they have constant marginal costs of c = 3.

The payoffs are

πa = (24− 2pa + pb)(pa − c) (38)

and
πb = (24− 2pb + pa)(pb − c). (39)

Apex and Brydox simultaneously choose prices pa and
pb from the set [0,∞).
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Figure 4: Bertrand Reaction Functions with
Differentiated Products
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Maximizing Apex’s payoff by choice of pa, we obtain the
first- order condition,

dπa
dpa

= 24− 4pa + pb + 2c = 0, (40)

and the reaction function,

pa = 6 +

(
1

2

)
c +

(
1

4

)
pb = 7.5 +

(
1

4

)
pb. (41)

Since Brydox has a parallel first-order condition, the
equilibrium occurs where pa = pb = 10. The quantity
each firm produces is 14, which is below the 21 each
would produce at prices of pa = pb = c = 3. Figure
4 shows that the reaction functions intersect. Apex’s
demand curve has the elasticity(

∂qa
∂pa

)
·
(
pa
qa

)
= −2

(
pa
qa

)
, (42)

which is finite even when pa = pb, unlike in the undifferentiated-
goods Bertrand model.
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Figure 5: Cournot vs. Differentiated
Bertrand Reaction Functions (Strategic
Substitutes vs. Strategic Complements)

Esther Gal-Or (1985) notes that if reaction curves
slope down (as with strategic substitutes and Cournot)
there is a first-mover advantage, whereas if they slope
upwards (as with strategic complements and Differenti-
ated Bertrand) there is a second-mover advantage.
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Four common reasons why an equilibrium
might not exist

(1) An unbounded strategy space

Smith can borrow money and buy as much tin as he
wants for $6/pound. He knows that the price will be
$7/pound tomorrow. What quantity x will he buy, if his
borrowing is unlimited?

Choosing x in the strategy set [0,∞) when his payoff
function is π = (1)x, there is no best strategy.

(2) An open strategy space

Now say that government regulations constrain him
to buy less than 1,000 pounds. His strategy is x ∈
[0, 1, 000), which is bounded by 1000.
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(3) A discrete strategy space (or, more gener-
ally, a nonconvex strategy space)

Suppose we start with an arbitrary pair of strate-
gies s1 and s2 for two players. If the players’ strategies
are strategic complements, then if player 1 increases his
strategy in response to s2, then player 2 will increase
his strategy in response to that. An equilibrium will
occur where the players run into diminishing returns or
increasing costs.

If the strategies are strategic substitutes, then if player
1 increases his strategy in response to s2, player 2 will in
turn want to reduce his strategy. If the strategy spaces
are discrete, player 2 cannot reduce his strategy just a
little bit– he has to jump down a discrete level. That
could then induce Player 1 to increase his strategy by
a discrete amount. This jumping of responses can be
never- ending–there is no equilibrium.

This is a problem of “gaps” in the strategy space.
Suppose we had a game in which the government was
not limited to amount 0 or 100 of aid, but could choose
any amount in the space {[0, 10], [90, 100]}. That is a
continuous, closed, and bounded strategy space, but it
is non-convex.
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(4) A discontinuous reaction function arising
from nonconcave or discontinuous payoff func-
tions

For a Nash equilibrium to exist, we need for the reac-
tion functions of the players to intersect. If the reaction
functions are discontinuous, they might not.

Figure 6: Continuous and Discontinuous
Reaction Functions

In Panel (a) a Nash equilibrium exists, at the point,
E, where the two reaction functions intersect.

In Panel (b), however, no Nash equilibrium exists.
The problem is that Firm 2’s reaction function s2(s1)
is discontinuous at the point s1 = 0.5. It jumps down
from s2(0.5) = 0.6 to s2(0.50001) = 0.4. As a result,
the reaction curves never intersect, and no equilibrium
exists.
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If the two players can use mixed strategies, then an
equilibrium will exist even for the game in Panel (b).
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A first reason why Player 1’s reaction function might
be discontinuous in the other players’ strategies is that
his payoff function is discontinuous in either his own or
the other players’ strategies. This is what happens in
Chapter 14’s Hotelling Pricing Game, where if Player
1’s price drops enough (or Player 2’s price rises high
enough), all of Player 2’s customers suddenly rush to
Player 1.

A second reason why Player 1’s reaction function might
be discontinuous in the other players’ strategies is that
his payoff function is not concave.
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