8.4 Renegotiation: The Repossession Game

• The players have signed a <u>binding contract</u>,

but in a subsequent subgame,

both might agree to <u>scrap</u> the old contract and write a <u>new one</u>, using the old contract as a starting point in their negotiations.

 Here we use a model of hidden actions to illustrate <u>renegotiation</u>,
 a model in which a bank that wants to lend money to a consumer to buy a car must worry about whether he will work hard enough to repay the loan. • As we will see, the outcome is <u>Pareto superior</u>

if renegotiation is not possible.

- Repossession Game I
 - Players
 - \checkmark a bank and a consumer

- The order of play
 - The bank can do nothing or it can at cost 11 offer the consumer an <u>auto loan</u> which allows him to buy a car that costs 11, but requires him to pay back *L* or lose possession of the car to the bank.
 - 2 The consumer accepts the loan and buys the car, or rejects it.
 - 3 The consumer chooses to *Work*, for an income of 15, or *Play*, for an income of 8. The disutility of work is 5.
 - 4 The consumer repays the loan or defaults.
 - 5 If the bank has not been paid *L*, it repossesses the car.

• Payoffs

- ✓ If the consumer chooses *Work*, his income is W = 15 and his disutility of effort is D = 5.
- \checkmark If the consumer chooses *Play*, then W = 8 and D = 0.
- ✓ If the bank does not make any loan or the consumer rejects it, the bank's payoff is zero and the consumer's payoff is W - D.
- ✓ The value of the car is 12 to the consumer and 7 to the bank,
 so the bank's payoff if the loan is made is

$$\pi_{bank} = L - 11$$
 if the loan is repaid

7-11 if the car is repossessed.

 \checkmark The consumer's payoff is

$$\pi_{consumer} = W + 12 - L - D \quad \text{if the loan is repaid}$$
$$W - D \qquad \qquad \text{if the car is repossessed.}$$

• The model allows <u>commitment</u> in the sense of

legally binding agreements over transfers of money and wealth but it does <u>not</u> allow the consumer to commit <u>directly</u> to *Work*.

• It does <u>not</u> allow <u>renegotiation</u>.

• In equilibrium

- The bank's <u>strategy</u> is to offer L = 12.
- The consumer's <u>strategy</u>
 - \checkmark Accept if $L \leq 12$
 - ✓ Work if $L \le 12$ and he has accepted the loan or if he has rejected the loan (or if the bank does not make any loan)
 - \checkmark Repay if $W + 12 L D \ge W D$

- The equilibrium <u>outcome</u> is that the bank offers L = 12, the concumer accepts, he works, and he repays the loan.
- The bank's equilibrium payoff is 1.
- This outcome is <u>efficient</u> because the consumer does buy the car, which he values at more than its cost to the car dealer.
- The bank ends up with the <u>surplus</u>,

because of our assumption that the bank has

all the bargaining power over the terms of the loan.

- Repossession Game II
 - Players
 - \checkmark a bank and a consumer
 - The order of play
 - 1 The bank can do nothing or
 it can at cost 11 offer the consumer an <u>auto loan</u> which allows him
 to buy a car that costs 11, but requires him to pay back *L* or
 lose possession of the car to the bank.
 - 2 The consumer accepts the loan and buys the car, or rejects it.

- 3 The consumer chooses to *Work*, for an income of 15, or *Play*, for an income of 8.
 The disutility of work is 5.
- 4 The consumer repays the loan or defaults.
- 4a The bank offers to settle for an amount *S* and leave possession of the car to the consumer.
- 4b The consumer accepts or rejects the <u>settlement</u> *S*.
- 5 If the bank has not been paid *L* or *S*, it repossesses the car.

- Payoffs
 - ✓ If the consumer chooses *Work*, his income is W = 15 and his disutility of effort is D = 5.
 - \checkmark If the consumer chooses *Play*, then W = 8 and D = 0.
 - ✓ If the bank does not make any loan or the consumer rejects it, the bank's payoff is zero and the consumer's payoff is W - D.

 \checkmark The value of the car is 12 to the consumer and 7 to the bank, so the bank's payoff if the loan is made is

$$\pi_{bank} = L - 11$$
 if the original loan is repaid
 $S - 11$ if a settlement is made
 $7 - 11$ if the car is repossessed.

 \checkmark The consumer's payoff is

 $\pi_{consumer} = W + 12 - L - D$ if the original loan is repaid W + 12 - S - D if a settlement is made W - D if the car is repossessed.

• The model does allow <u>renegotiation</u>.

- In equilibrium
 - The <u>equilibrium</u> in Repossession Game I <u>breaks down</u> in Repossession Game II.

- \checkmark The consumer would <u>deviate</u> by choosing *Play*.
- \checkmark The bank chooses to renegotiate and offer S = 8.
- \checkmark The offer is accepted by the consumer.
- \checkmark Looking ahead to this, the bank refuses to make the loan.

• The bank's <u>strategy</u> in equilibrium

 \checkmark It does <u>not</u> offer a loan at all.

✓ If it did offer a loan and the consumer accepted and defaulted,
 then it offers

S = 12 if the consumer chose *Work*

and

S = 8 if the consumer chose *Play*.

- The consumer's <u>strategy</u> in equilibrium
 - \checkmark Accept any loan made, whatever the value of L
 - \sqrt{Work} if he rejected the loan

(or if the bank does not make any loan)

Play and Default otherwise

 \checkmark Accept a settlement offer of

S = 12 if he chose *Work*

and

S = 8 if he chose *Play*

• The <u>equilibrium outcome</u> is that the bank does not offer a loan and the consumer chooses *Work*.

• <u>Renegotiation</u> turns out to be <u>harmful</u>,

because it results in an equilibrium in which the bank refuses to make the loan, reducing the payoffs of the bank and the consumer to (0,10) instead of (1,10).

 \checkmark The gains from trade vanish.

• Renegotiation is paradoxical.

In the subgame starting with consumer default,
 it <u>increases</u> efficiency,
 by allowing the players to make a <u>Pareto improvement</u>
 over an inefficient punishment.

 In the game as a whole, however, it <u>reduces</u> efficiency by preventing players from using punishments to deter inefficient actions.

- The Repossession Game illustrates other ideas too.
 - It is a game of <u>perfect</u> information,

but it has the feel of a game of moral hazard with hidden actions.

- This is because it has an <u>implicit bankruptcy constraint</u>, so that the contract <u>cannot</u> sufficiently punish the consumer for an inefficient choice of effort.
- Restricting the <u>strategy space</u> has the same effect as restricting the <u>information</u> available to a player.
- It is another example of the distinction between <u>observability</u> and <u>contractibility</u>.

8.5 State-Space Diagrams: Insurance Games I and II

 Suppose Smith (the agent) is considering buying <u>theft insurance</u> for a car with a value of 12.

- A state-space diagram
 - A diagram whose axes measure the values of one variable in two different <u>states of the world</u>
 - His endowment is $\omega = (12, 0)$.

- Insurance Game I: Observable Care
 - Players
 - \checkmark Smith and two insurance companies
 - The order of play
 - 1 Smith chooses to be either *Careful* or *Careless*, <u>observed</u> by the insurance company.
 - Insurance company 1 offers a <u>contract</u> (x, y),
 in which Smith pays premium x and receives compensation y
 if there is a theft.

- 3 Insurance company 2 also offers a contract of the form (x, y).
- 4 Smith picks a contract.
- 5 Nature chooses whether there is a theft,
 with probability 0.5 if Smith is *Careful* or
 0.75 if Smith is *Careless*.

• Payoffs

- \checkmark Smith is <u>risk-averse</u> and the insurance companies are <u>risk-neutral</u>.
- \checkmark The insurance company not picked by Smith has a payoff of zero.
- \checkmark Smith's utility function U is such that U' > 0 and U'' < 0.
- \checkmark If Smith chooses *Careful*, the payoffs are

$$\pi_{Smith} = 0.5 \ U(12 - x) + 0.5 \ U(0 + y - x)$$

and

 $\pi_{company} = 0.5 x + 0.5 (x - y)$ for his insurer.

 \checkmark If Smith chooses *Careless*, the payoffs are

$$\pi_{Smith} = 0.25 \ U(12 - x) + 0.75 \ U(0 + y - x) + \epsilon$$

and

$$\pi_{company} = 0.25 x + 0.75 (x - y)$$
 for his insurer.

• The <u>optimal contract</u> with only the *Careful* type

If the insurance company <u>can</u> require Smith to park <u>carefully</u>, it offers him insurance at a premium of 6, with a payout of 12 if theft occurs, leaving him with an allocation of C₁ = (6, 6).

$$\sqrt{(x, y)} = (6, 12)$$

• This satisfies the <u>competition constraint</u>

because it is the most attractive contract any company can offer without making losses.

✓ An insurance policy (x, y) is <u>actuarially fair</u>
 if the cost of the policy is precisely its expected value.

$$\sqrt{x} = 0.5y$$

- Smith is <u>fully insured</u>.
 - \checkmark His allocation is 6 no matter what happens.

- In equilibrium
 - Smith chooses to be *Careful*

because he foresees that otherwise his insurance will be <u>more</u> expensive.

- Edgeworth box
- The company is <u>risk-neutral</u>,

so its indifference curves are straight lines with a slope of -1.

• Smith is <u>risk-averse</u>,

so (if he is *Careful*) his indifference curves are <u>closest</u> to the origin on the 45° line, where his wealth in the two states is <u>equal</u>.

 \checkmark the <u>slope</u> of an indifference curve

 $p_1 u(x_1) + p_2 u(x_2) = k$

$$p_1 u'(x_1) dx_1 + p_2 u'(x_2) dx_2 = dk = 0$$

$$dx_2/dx_1 = -p_1 u'(x_1)/p_2 u'(x_2)$$

- The <u>equilibrium contract</u> is C_1 .
 - ✓ It satisfies the competition constraint
 by generating the <u>highest</u> expected utility for Smith.
 - \checkmark It allows nonnegative profits to the company.

• Insurance Game I is a game of <u>symmetric</u> information.

- Suppose that Smith's action is a <u>noncontractible</u> variable.
 - We model the situation by putting Smith's move <u>second</u>.

• Insurance Game II: Unobservable Care

- Players
 - \checkmark Smith and two insurance companies

- The order of play
 - Insurance company 1 offers a <u>contract</u> of form (*x*, *y*),
 under which Smith pays premium *x* and receives compensation *y* if there is a theft.
 - 2 Insurance company 2 offers a <u>contract</u> of form (x, y).

- 3 Smith picks a contract.
- 4 Smith chooses either *Careful* or *Careless*.
- 5 Nature chooses whether there is a theft,
 with probability 0.5 if Smith is *Careful* or
 0.75 if Smith is *Careless*.

• Payoffs

- \checkmark Smith is <u>risk-averse</u> and the insurance companies are <u>risk-neutral</u>.
- \checkmark The insurance company not picked by Smith has a payoff of zero.
- \checkmark Smith's utility function U is such that U' > 0 and U'' < 0.
- \checkmark If Smith chooses *Careful*, the payoffs are

$$\pi_{Smith} = 0.5 \ U(12 - x) + 0.5 \ U(0 + y - x)$$

and

$$\pi_{company} = 0.5 x + 0.5 (x - y)$$
 for his insurer.

 \checkmark If Smith chooses *Careless*, the payoffs are

$$\pi_{Smith} = 0.25 \ U(12 - x) + 0.75 \ U(0 + y - x) + \epsilon$$

and

$$\pi_{company} = 0.25 x + 0.75 (x - y)$$
 for his insurer.

- No <u>full-insurance</u> contract will be offered.
 - If Smith is <u>fully</u> insured, his dominant strategy is *Careless*.
 - The company knows the probability of a theft is 0.75.
 - The insurance company must offer a <u>contract</u> with a premium of 9 and a payout of 12 to prevent losses, which leaves Smith with an allocation $C_2 = (3, 3)$.
 - The insurance company's isoprofit curve swivels around ω because that is the point at which the company's profit is <u>independent</u> of how probable it is that Smith's car will be stolen.
 - \checkmark At point ω , the company is <u>not</u> insuring him at all.

• Smith's indifference curve swivels around the intersection of

the $\pi_s = 66$ curve with the 45° line, because on that line the probability of theft does <u>not</u> affect his payoff.

• Smith would like to commit himself to being careful, but he <u>cannot</u> make his commitment credible. The outlook is bright because Smith chooses *Careful* if he only has <u>partial insurance</u>, as with contract C₃.

• The <u>moral hazard</u> is "small"

in the sense that Smith <u>barely</u> prefers *Careless*.

• Deductibles and coinsurance

• The solution of full insurance is "almost" reached.

 Even when the ideal of full insurance and efficient effort <u>cannot</u> be reached, there exists some best choice like C₅ in the set of <u>feasible contracts</u>, a <u>second-best</u> insurance contract that recognizes the <u>constraints</u> of informational asymmetry.