Chapter 10 Mechanism Design and Postcontractual Hidden Knowledge

10.1 Mechanisms, Unravelling, Cross Checking, and the Revelation Principle

 A <u>mechanism</u> is a <u>set of rules</u> that one player constructs and another freely accepts in order to convey <u>information</u> from the second player to the first.

 The mechanism contains an <u>information report</u> by the second player and a <u>mapping</u> from each possible report to some <u>action</u> by the first.

- <u>Adverse selection</u> models can be viewed as problems of <u>mechanism design</u>.
 - The contract offers are a mechanism for getting the agents to <u>truthfully</u> report their types.

- Mechanism design goes <u>beyond</u> simple adverse selection.
 - It can be useful

even when players begin a game with <u>symmetric</u> information or when both players have <u>hidden</u> information that they would like to exchange.

Postcontractual Hidden Knowledge

- Moral hazard games
 - \checkmark complete information
- Moral hazard with hidden knowledge

 (also called postcontractual adverse selection)
 - \checkmark symmetric information at the time of contracting
 - \checkmark asymmetric information after a contract is signed
 - ✓ The principal's concern is to give agents <u>incentives</u> to disclose their types later.

 \checkmark The <u>participation</u> constraint is based on the agent's <u>expected</u> payoffs across the different <u>types</u> of agent he might become.

 \checkmark There is just one participation constraint

even if there are <u>eventually</u> n possible types of agents in the model, rather than the n participation constraints that would be required in a <u>standard</u> adverse selection model.

- What makes postcontractual hidden knowledge an <u>ideal setting</u> for the paradigm of <u>mechanism design</u> is that the problem is to set up a contract that
 - \checkmark induces the agent to make a <u>truthful report</u> to the principal, and
 - \checkmark is <u>acceptable</u> to both the principal and the agent.

• Production Game VIII: Mechanism Design

- Players
 - \checkmark the principal and the agent

- The order of play
 - 1 The principal offers the agent a wage <u>contract</u> of the form w(q, m), where q is <u>output</u> and m is a <u>message</u> to be sent by the agent.
 - 2 The agent accepts or rejects the principal's contract.

3 Nature chooses the <u>state of the world</u> *s*, according to probability distribution *F*(*s*), where the state *s* is *good* with probability 0.5 and *bad* with probability 0.5.

The agent <u>observes</u> s, but the principal does <u>not</u>.

- 4 If the agent accepted, he exerts <u>effort</u> e unobserved by the principal, and sends <u>message</u> $m \in \{good, bad\}$ to him.
- 5 Output is q(e, s), where q(e, good) = 3e and q(e, bad) = e, and the wage is paid.

• Payoffs

- ✓ If the agent rejects the contract, then $\pi_{agent} = \overline{U} = 0$ and $\pi_{principal} = 0$.
- \checkmark If the agent accepts the contract,

then $\pi_{agent} = U(e, w, s) = w - e^2$ and

$$\pi_{principal} = V(q - w) = q - w.$$

• The agent does <u>not</u> know his type at the point in time at which he must accept or reject the contract.

• The message *m* is <u>cheap talk</u> – it does not affect payoffs directly and there is no penalty for lying.

• The principal <u>cannot</u> observe effort, but can observe <u>output</u>.

• The principal implements a <u>mechanism</u> to extract the agent's <u>information</u>.

• In noncooperative games,

we ordinarily assume that agents have <u>no moral sense</u>.

 Since the agent's words are <u>worthless</u>, the principal must try to design a <u>contract</u> that either provides incentive for <u>truth telling</u> or takes <u>lying</u> into account. • The <u>first-best</u> effort depends on the state of the world.

• The principal can <u>observe</u> the state of the world and the agent's effort level.

• In the good state, the <u>social surplus</u> maximization problem is

 \checkmark the optimal effort $e_g^* = 1.5$

$$\sqrt{q_g^*} = 4.5$$

• In the bad state, the <u>social surplus</u> maximization problem is

$$\checkmark$$
 the optimal effort $e_b^* = 0.5$

$$\sqrt{q_b^*} = 0.5$$

• The optimal contract

• The optimal contract must satisfy just one participation constraint, with the <u>two</u> incentive compatibility constraints.

• The principal must solve the problem:

$$\underset{q_g, q_b, w_g, w_b}{\text{Maximize}} \quad [0.5 (q_g - w_g) + 0.5 (q_b - w_b)] \quad (10.1)$$

such that

- ✓ the agent is paid under a forcing contract, (q_g, w_g) , if he reports m = good, and under a forcing contract, (q_b, w_b) , if he reports m = bad,
- \checkmark producing a <u>wrong</u> output for a given contract results in <u>boiling in oil</u>,

and

 \checkmark the contracts must induce <u>participation</u> and <u>self selection</u>.

- The self-selection constraints
 - \checkmark in the good state

$$\pi_{agent}(q_g, w_g \mid good) = w_g - (q_g/3)^2$$
(10.2)

$$\geq w_b - (q_b/3)^2 = \pi_{agent}(q_b, w_b \mid good)$$

 \checkmark in the bad state

$$\pi_{agent}(q_b, w_b \mid bad) = w_b - q_b^2$$
(10.3)

$$\geq w_g - q_g^2 = \pi_{agent}(q_g, w_g \mid bad)$$

• The single participation constraint

 \checkmark At the time of contracting,

the agent does <u>not</u> know what the state will be.

$$\vee \quad 0.5 \ \pi_{agent}(q_g, w_g \mid good) \ + \ 0.5 \ \pi_{agent}(q_b, w_b \mid bad) \tag{10.4}$$

$$= 0.5 \{ w_g - (q_g/3)^2 \} + 0.5 (w_b - q_b^2) \ge 0.$$

• The single <u>participation</u> constraint (10.4) is <u>binding</u>.

 \checkmark The principal wants to pay the agent as little as possible.

$$\sqrt{0.5 \{w_g - (q_g/3)^2\}} + 0.5 (w_b - q_b^2) = 0$$

• The good state's <u>self-selection</u> constraint (10.2) will be <u>binding</u>.

In the good state, the agent will be <u>tempted</u>
 to take the <u>easier contract</u> appropriate for the bad state,
 and so the principal has to <u>increase</u> the agent's payoff from
 the good-state contract

to yield him at least as much as in the bad state.

$$\sqrt{w_g - (q_g/3)^2} = w_b - (q_b/3)^2$$

• From the two <u>binding</u> constraints, we obtain the following expressions

for w_b and w_g .

$$\sqrt{w_b} = (5/9) q_b^2$$

$$\sqrt{w_g} = (1/9) q_g^2 + (4/9) q_b^2$$

- The bad state's <u>self-selection</u> constraint (10.3) will <u>not</u> be binding.
 - \checkmark Let the agent <u>not</u> be tempted to produce a large amount for a large wage.

$$\checkmark \quad w_b \ - \ q_b^2 \ > \ w_g \ - \ q_g^2$$

 \checkmark Solve the <u>relaxed problem</u> without this constraint, and then <u>check</u> that this constraint is indeed <u>satisfied</u>.

- The <u>second-best</u> contract
 - The principal's maximization problem (10.1) <u>rewritten</u>

$$\begin{array}{ll} Maximize \\ q_g, q_b \end{array} \quad \left[0.5 \left\{ q_g - (1/9)q_g^2 - (4/9)q_b^2 \right\} + 0.5 \left\{ q_b - (5/9)q_b^2 \right\} \right] \end{array}$$

✓ Eliminate w_b and w_g from the maximand using the two <u>binding</u> constraints, and perform the <u>unconstrained</u> maximization.

•
$$q_g^{**} = 4.5$$
 $q_b^{**} = 0.5$
 $w_g^{**} \approx 2.36$ $w_b^{**} \approx 0.14$

• The bad state's <u>self-selection</u> constraint (10.3) is <u>satisfied</u>.

$$\sqrt{w_b^{**} - (q_b^{**})^2} > w_g^{**} - (q_g^{**})^2$$

- Note that, if the <u>realization</u> of the state of the world is the bad state, then the agent's payoff is <u>negative</u>.
 - \checkmark Does a breach of the contract or renegotiation occur?
- In both states, effort is at the <u>first-best</u> level.
- The agent does <u>not</u> earn informational rents.
 - \checkmark At the time of contracting, he has <u>no</u> private information.

 The principal in Production Game VIII is <u>less</u> constrained, compared to Production Game VII,

> and thus able to come <u>closer</u> to the first-best when the state is <u>bad</u>, and <u>reduce</u> the rents to the agent.

Observable but Nonverifiable Information and the Maskin Matching Scheme

- <u>Three</u> players involved in the contracting situation
 - \checkmark the principal who <u>offers</u> the contract
 - \checkmark the agent who <u>accepts</u> it
 - \checkmark the court that <u>enforces</u> it

• We say that the variable *s* is <u>nonverifiable</u> if contracts based on it <u>cannot</u> be enforced. What if the state is <u>observable</u> by both the principal and the agent, but is <u>not</u> public information?

 $\sqrt{}$ nonverifiable

 \checkmark Mutual observability can help.

 \checkmark Maskin (1977) suggests <u>cross checking</u>.

- <u>Cross checking</u> for Production Game VIII
 - 1 Principal and agent <u>simultaneously</u> send <u>messages</u> m_p and m_a to the court saying whether the state is good or bad.

If $m_p \neq m_a$,

then <u>no contract</u> is chosen and both players earn zero payoffs.

If $m_p = m_a$, the court enforces <u>part 2</u> of the scheme.

2 The agent is <u>paid</u> the wage (w | q) with either the good-state forcing contract (2.25 | 4.5) or the bad-state forcing contract (0.25 | 0.5), depending on his <u>report</u> m_a,
or is <u>boiled in oil</u> if the output is inappropriate to his report.

✓ There exists an <u>equilibrium</u> in which both players are willing to send <u>truthful messages</u>,

because a deviation would result in zero payoffs.

✓ The agent earns a payoff of <u>zero</u>,
 because the principal has all of the bargaining power.

 \checkmark The principal's payoff is <u>positive</u>, and efforts are at the <u>first-best</u> level.

- Usually this kind of scheme has <u>multiple</u> equilibria.
 - <u>perverse</u> ones in which both players send <u>false messages</u>
 which match and <u>inefficient</u> actions result

 A bigger <u>problem</u> than the multiplicity of equilibria is <u>renegotiation</u> due to players' <u>inability</u> to commit to the mechanism.

Unravelling: Information Disclosure When Lying Is Prohibited

- Another special case in which <u>hidden</u> information can be forced into the open when the agent is prohibited from lying and only has a choice between <u>telling</u> the thruth or remaining <u>silent</u>
- Production Game VIII
 - $\sqrt{m} = bad$ in the bad state
 - \checkmark If m = silent, the principal knows the state must be <u>good</u>.
 - \checkmark The option to remain silent is <u>worthless</u> to the agent.

• $s \sim U[0, 10]$

- \checkmark The agent's payoff is <u>increasing</u> in the principal's estimate of *s*.
- \checkmark The agent <u>cannot</u> lie but he <u>can</u> conceal information.
- ✓ The principal would continue this process of <u>logical unravelling</u> to conclude that s = 2.
- ✓ The principal would make the <u>same</u> deduction from $m \ge 2$ as from m = 2.

- The unique equilibrium must be <u>fully separating</u>.
 - ✓ Somebody would deviate from any partially pooling equilibrium.

• Perfect unravelling is <u>paradoxical</u>.

The Revelation Principle

- A principle can design and offer a <u>contract</u> that induces his agent to <u>lie</u> in equilibrium.
 - \checkmark He can take <u>lying</u> into account.
 - \checkmark This complicates the analysis.

• The revelation principle helps us <u>simplify</u> contract design.

• <u>The revelation principle</u>

✓ For every <u>contract</u> w(q, m) that leads to <u>lying</u> (i.e., to $m \neq s$), there is a <u>contract</u> $w^*(q, m)$ with the <u>same</u> payoff for every *s* but <u>no incentive</u> for the agent to lie.

- There are two levels of <u>simplification</u> in mechanism design.
 - ✓ If there are n possible types of agent, we can restrict the agent's <u>message</u> to take only n values.
 - ✓ We can require the mechanism to be constructed to elicit <u>truthful messages</u> from the agent.

- Direct and indirect mechanisms
 - ✓ If a mechanism restricts the agent's <u>messages</u> to the set of <u>types</u>,
 it is called a <u>direct</u> mechanism.
 - ✓ If a mechanism allows <u>more</u> possible <u>messages</u> than <u>types</u>,
 it is called a <u>indirect</u> mechanism.
- We can add a <u>third constraint</u> to the incentive compatibility and participation constraints to help calculate the equilibrium.
 - $\sqrt{}$ truth-telling

The equilibrium contract makes the agent willing to choose m = s.

- The revelation principle depends heavily on the following assumption.
 - \checkmark The principal <u>cannot</u> breach his contract.

- Throughout this chapter, we will be assuming that the principal can <u>commit</u> to his mechanism.
 - ✓ He can <u>commit</u> to not using all the information he receives from the agent.

The Sender-Receiver Game of Crawford and Sobel:

Coarse Information Transmission

 Even if the informed and uninformed players have <u>different</u> incentives, can <u>lie</u>, and <u>can't</u> commit to a mechanism,

if their incentives are <u>close</u> enough,

truthful (if imperfect) messages can be sent in equilibrium.

- The Crawford-Sobel Sender-Receiver Game
 - Players
 - \checkmark the sender (the informed player)
 - \checkmark the receiver (the uninformed player)

- The order of play
 - 0 Nature chooses the sender's <u>type</u> to be $t \sim U[0, 10]$.
 - 1 The sender chooses <u>message</u> $m \in [0, 10]$.
 - 2 The receiver chooses <u>action</u> $a \in [0, 10]$.

- Payoffs
 - ✓ The payoffs are quadratic <u>loss functions</u> in which each player has an <u>ideal point</u> and wants a to be <u>close</u> to that ideal point.

$$\sqrt{\pi_{sender}} = \alpha - \{a - (t+1)\}^2$$

$$\sqrt{\pi_{receiver}} = \alpha - (a-t)^2$$

• Equilibria

• There is <u>no</u> fully separating equilibrium

in which each type of sender reports a different message.

 \checkmark Perfect truthtelling <u>cannot</u> happen in equilibrium.

- Pooling Equilibrium 1
 - \checkmark Sender:

Send m = 10 regardless of t.

 \checkmark Receiver:

Choose a = 5 regardless of m.

✓ Out-of-equilibrium belief:

If the sender sends m < 10, the receiver uses <u>passive conjectures</u> and still believes that $t \sim U[0, 10]$.

- Pooling Equilibrium 2
 - \checkmark Sender:

Send m using a <u>mixed-strategy</u> distribution <u>independent</u> of t that has the support [0, 10] with positive density everywhere.

 \checkmark Receiver:

Choose a = 5 regardless of m.

✓ Out-of-equilibrium belief:

Unnecessary,

since any message might be observed in equilibrium.

• In each of these two equilibria,

the sender's message conveys <u>no</u> information, and is <u>ignored</u> by the receiver.

• Averaging over all possible t,

both their payoffs are <u>lower</u> than if the sender could commit to <u>truthtelling</u>.

- Partial Pooling Equilibrium 3
 - \checkmark Sender:

Send m = 0 if $t \in [0, 3]$ or m = 10 if $t \in [3, 10]$.

 \checkmark Receiver:

Choose
$$a = 1.5$$
 if $m < 3$ and $a = 6.5$ if $m \ge 3$.

✓ Out-of-equilibrium belief:

If *m* is something other than 0 or 10, then $t \sim U[0, 3]$ if $m \in [0, 3)$ and $t \sim U[3, 10]$ if $m \in [3, 10]$. • In the Sender-Receiver Game,

the receiver <u>cannot</u> commit to the way he reacts to the message, so this is <u>not</u> a mechanism design problem.

- Instead, this is a <u>cheap-talk game</u>, so called because of these absences:

 - \sqrt{m} does <u>not</u> affect the payoff directly,
 - \checkmark the players <u>cannot</u> commit to future actions, and
 - $\sqrt{1}$ <u>lying brings no direct penalty.</u>

• The sender and the receiver's <u>interests</u> are similar but <u>not</u> identical, and they could both <u>benefit</u> from some <u>transfer</u> of information.

• If <u>expectations</u> are appropriate,

they do so, in the partially pooling equilibrium.

 If they do <u>not</u> expect the cheap talk to be informative, however, it will not be, and <u>coordination</u> will fail.

10.2 Myerson Mechanism Design

 Depending on <u>who</u> offers the contract and <u>when</u> it is offered, various games result.

 We will look at one in which the <u>seller</u> makes the offer, and does so <u>before</u> he knows whether his quality is high or low.

- The Myerson Trading Game: Postcontractual Hidden Knowledge
 - Players
 - \checkmark a buyer and a seller
 - The order of play
 - 1 The <u>seller</u> offers the buyer a <u>contract</u> {q_h, p_h, q_l, p_l}
 under which the <u>seller</u> will declare his <u>quality</u> m to be high or low,
 and the <u>buyer</u> will then buy q_l or q_h units of the 100
 the seller has available, at price p_l or p_h.

The contract is $\{q(m)p(m), q(m)\}$.

Zero is paid if the <u>wrong</u> output is delivered.

- 2 The buyer accepts or rejects the contract.
- 3 <u>Nature</u> chooses whether the <u>type</u> of the seller's good, *s*, is High quality (probability 0.2) or Low (probability 0.8), <u>unobserved</u> by the buyer.
- 4 If the contract was accepted by both sides,
 the <u>seller</u> declares his <u>type</u> to be *L* or *H* and
 sells at the appropriate <u>quantity</u> and <u>price</u> as stated in the contract.

- Payoffs
 - ✓ If the buyer rejects the contract, $\pi_{buyer} = 0$, $\pi_{seller H} = 40 \times 100$, and $\pi_{seller L} = 20 \times 100$.
 - ✓ If the buyer accepts the contract and the seller declares a <u>type</u> that has <u>price</u> p and <u>quantity</u> q, then

$$\pi_{buyer | L} = (30 - p) q,$$

 $\pi_{buyer | H} = (50 - p) q,$

 $\pi_{seller\,H} = 40 \,(100 - q) + pq$, and

 $\pi_{seller L} = 20 (100 - q) + pq.$

 \checkmark The seller has an <u>opportunity cost</u>

(a personal value or production cost) of40 per high-quality unit and 20 per low-quality unit.

• For <u>efficiency</u>, all of the good should be transferred from the seller to the buyer.

• The only way to get the seller to <u>truthfully</u> reveal the quality of the good, however, is for the buyer to say that if the seller <u>admits</u> the quality is <u>bad</u>,

he will buy <u>more</u> units than if the seller <u>claims</u> it is <u>good</u>.

• The <u>first-best</u> quantities

$$\circ q_h^* = 100 \text{ and } q_l^* = 100$$

- The optimal contract
 - The <u>seller</u> wants to design a <u>contract</u> subject to two sets of <u>constraints</u>.
 - The <u>participation</u> constraint for the buyer

$$\sqrt{0.8 \pi_{buyer | L}} + 0.2 \pi_{buyer | H} \ge 0$$

$$0.8 (30 - p_l)q_l + 0.2 (50 - p_h)q_h \ge 0$$

 \checkmark This constraint will be <u>binding</u>.

$$\checkmark$$
 $p_l = 30$ and $p_h = 50$

• We do not need to write out the seller's <u>participation</u> constraint separately.

 \checkmark the acceptable (if vacuous) null contract

 $\{q_h, p_h, q_l, p_l\} = \{0, 0, 0, 0\}$

- Two <u>incentive compatibility</u> constraints for the <u>seller</u> himself
 - \checkmark The <u>seller</u> must design a <u>contract</u> that will induce himself to tell the <u>truth</u> later once he discovers his type.
 - \checkmark The seller is trying to sell not just a <u>good</u>, but a <u>contract</u>, and so he must make the contract to be <u>attractive</u> to the buyer.
 - \checkmark when he has <u>low</u> quality

 $\pi_{seller L}(q_l, p_l) \geq \pi_{seller L}(q_h, p_h)$

 $20 (100 - q_l) + 30 q_l \ge 20 (100 - q_h) + 50 q_h$

 $q_l \geq 3q_h \quad \Rightarrow \quad q_l > q_h$

 \checkmark when he has <u>high</u> quality

 $\pi_{seller H}(q_h, p_h) \geq \pi_{seller H}(q_l, p_l)$

 $40 (100 - q_h) + 50 q_h \ge 40 (100 - q_l) + 30 q_l$

$$q_h \geq -q_l$$

\Rightarrow satisfied for all possible q_l and q_h

• The seller's maximization problem

 $\sqrt{q_l} = 3q_h$ at the optimum

(from the low-quality incentive compatibility constraint)

 \checkmark The seller's payoff function

$$\pi_{s} = 0.8 \pi_{seller L}(q_{l}, p_{l}) + 0.2 \pi_{seller H}(q_{h}, p_{h})$$

 $= 0.8 \{ 20 (100 - q_l) + 30q_l \} + 0.2 \{ 40 (100 - q_h) + 50q_h \}$

 \checkmark The seller must solve the problem:

$$Maximize_{q_l, q_h} \{0.8 (2,000 + 10q_l) + 0.2 (4,000 + 10q_h)\}$$

subject to

$$q_l = 3q_h, \quad q_l \le 100, \quad \text{and} \quad q_h \le 100.$$

$$\circ \quad q_h^{**} = 100/3$$

$$q_l^{**} = 100$$

- The <u>equilibrium</u> follows the general <u>pattern</u> for these games.
 - The <u>participation</u> constraint is <u>binding</u> (for the buyer).
 - The <u>incentive compatibility</u> constraint is <u>binding</u> for the <u>type</u> with the <u>most temptation</u> to lie, and not for the other type.
 - Using the two binding constraints,

we can solve out for the values of some of the <u>choice variables</u> in terms of other choice variables.

 We can maximize the payoff of the <u>player</u> making the <u>offer</u> (the seller) to solve for values of those remaining variables. • The mechanism will <u>not</u> work

if further offers <u>can</u> be made <u>after</u> the end of the game.

• The mechanism is <u>not</u> first-best efficient.

• The importance of <u>commitment</u> is a general <u>feature</u> of mechanisms.

- We could have set it up <u>instead</u> as (w, q),
 a total price amount w for the quantity q.
 - That would be <u>more</u> in the style of mechanism design.