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7 Moral Hazard: Hidden Actions

PRINCIPAL-AGENT MODELS

The principal (or uninformed player) is the player
who has the coarser information partition.

The agent (or informed player) is the player who
has the finer information partition.

Production Game I: Full Information

Players
The principal and the agent.

The order of play
1 The principal offers the agent a wage w.
2 The agent decides whether to accept or reject the con-
tract.
3 If the agent accepts, he exerts effort e.
4 Output equals q(e), where q′ > 0.

Payoffs
If the agent rejects the contract, then πagent = Ū and
πprincipal = 0.
If the agent accepts the contract, then πagent = U(e, w), Ue <
0, Uw > 0 and πprincipal = V (q − w), V ′ > 0.

reservation utility, Ū
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Production Game I: Full Information

In the first version of the game, every move is common
knowledge and the contract is a function w(e).

The agent must be paid some amount w̃(e) to exert
effort e, where w̃(e) is the function that makes him just
willing to accept the contract, so

U(e, w(e)) = U. (1)

Thus, the principal’s problem is

Maximize V (q(e)− w̃(e))
e

(2)

The first-order condition for this problem is

V ′(q(e)− w̃(e))

(
∂q

∂e
− ∂w̃

∂e

)
= 0, (3)

which implies that

∂q

∂e
=

∂w̃

∂e
. (4)

From condition (1), using the implicit function theorem
(see section 13.4), we get

∂w̃

∂e
= −

(
∂U
∂e
∂U
∂w̃

)
. (5)

Combining equations (4) and (5) yields(
∂U

∂w̃

)(
∂q

∂e

)
= −

(
∂U

∂e

)
. (6)
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Figure 2: The Efficient Effort Level in
Production Game I

Under perfect competition among the principals the
profits are zero, so the reservation utility, U , will be at
the level such that at the profit-maximizing effort e∗,
w̃(e∗) = q(e∗), or

U(e∗, q(e∗)) = U. (7)

The principal selects the point on the U = U indifference
curve that maximizes his profits, at effort e∗ and wage
w∗.
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The principal must then design a contract that will
induce the agent to choose this effort level. The following
three contracts are equally effective under full informa-
tion.

1 The forcing contract sets w(e∗) = w∗ and w(e 6=
e∗) = 0. This is certainly a strong incentive for the agent
to choose exactly e = e∗.

2 The threshold contract sets w(e ≥ e∗) = w∗ and
w(e < e∗) = 0. This can be viewed as a flat wage for
low effort levels, equal to 0 in this contract, plus a bonus
if effort reaches e∗. Since the agent dislikes effort, the
agent will choose exactly e = e∗.

3 The linear contract sets w(e) = α + βe, where α
and β are chosen so that w∗ = α+βe∗ and the contract
line is tangent to the indifference curve U = Ū at e∗.
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Let’s now fit out Production Game I with specific
functional forms. Suppose the agent exerts effort e ∈
[0,∞], and output equals

q(e) = 100 ∗ log(1 + e), (8)

so q′ = 100
1+e > 0 and q′′ = −100

(1+e)2
< 0. If the agent rejects

the contract, let πagent = Ū = 3 and πprincipal = 0,
whereas if the agent accepts the contract, let πagent =
U(e, w) = log(w)− e2 and πprincipal = q(e)− w(e).

The agent must be paid some amount w̃(e) to exert
effort e, where w̃(e) is defined to be the wage that makes
the agent willing to participate, i.e., as in equation (1),

U(e, w(e)) = U, so log(w̃(e))− e2 = 3. (9)

Knowing the particular functional form as we do, we can
solve (9) for the wage function:

w̃(e) = Exp(3 + e2), (10)

where we use Exp(x) to mean Euler’s constant (about
2.718) to the power x, since the conventional notation of
ex would be confused with e as effort.

Equation (10) makes sense. As effort rises, the wage
must rise to compensate, and rise more than exponen-
tially if utility is to be kept equal to 3.
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Now that we have a necessary-wage function w̃(e), we
can attack the principal’s problem, which is

Maximize V (q(e)− w̃(e)) = 100 ∗ log(1 + e)− Exp(3 + e2)
e

(11)
The first-order condition for this problem is

V ′(q(e)− w̃(e))

(
∂q

∂e
− ∂w̃

∂e

)
= 0, (12)

so for our problem,(
100

1 + e

)
− 2e(Exp(3 + e2)) = 0, (13)

which cannot be solved analytically. Using the computer
program Mathematica, I found that e∗ ≈ 0.77, from
which, using the formulas above, we get q∗ ≈ 57 and
w∗ ≈ 37. The payoffs are πagent = 3 and πprincipal ≈ 20.

If U were high enough, the principal’s payoff would
be zero. If the market for agents were competitive, this
is what would happen, since the agent’s reservation pay-
off would be the utility of working for another principal
instead of U = 3.
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Figure 3: Three Contracts that Induce Effort
e∗ for Wage w∗

To obtain e∗ = 0.77, a number of styles of contract
could be used.

1 The forcing contract sets w(e∗) = w∗ and w(e 6=
0.77) = 0. Here, w(0.77) = 37 (rounding up) and w(e 6=
e∗) = 0.

2 The threshold contract sets w(e ≥ e∗) = w∗

and w(e < e∗) = 0. Here, w(e ≥ 0.77) = 37 and
w(e < 0.77) = 0.
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Figure 3: Three Contracts that Induce Effort
e∗ for Wage w∗

3 The linear contract sets w(e) = α+βe, where α
and β are chosen so that w∗ = α+βe∗ and the contract
line is tangent to the indifference curve U = Ū at e∗.
The slope of that indifference curve is the derivative of
the w̃(e) function, which is

∂w̃(e)

∂e
= 2e ∗ Exp(3 + e2). (14)

At e∗ = 0.77, this takes the value 56 (which only coin-
cidentally is near the value of q∗ = 57). That is the β
for the linear contract. The α must solve w(e∗) = 37 =
α + 56(0.77), so α = −7.
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We ought to be a little concerned as to whether the
agent will choose the effort we hope for if he is given
the linear contract. We constructed it so that he would
be willing to accept the contract, because if he chooses
e = 0.77, his utility will be 3. But might he prefer
to choose some larger or smaller e and get even more
utility? No, because his utility is concave. That makes
the indifference curve convex, so its slope is always in-
creasing and no preferable indifference curve touches the
equilibrium contract line.

10



Quasilinearity and Alternative Functional Forms
for the Production Game

Consider the following three functional forms for util-
ity:

U(e, w) = log(w)− e2 (a)

U(e, w) = w − e2 (b)

U(e, w) = log(w − e2) (c)

(15)

Utility function (a) is what we just used in Production
Game I. Utility function (b) is an example of quasilin-
ear preferences, because utility is separable in one
good— money, here— and linear in that good. This
kind of utility function is commonly used to avoid wealth
effects that would otherwise occur in the interactions
among the various goods in the utility function. Sepa-
rability means that giving an agent a higher wage does
not, for example, increase his marginal disutility of ef-
fort. Linearity means furthermore that giving an agent a
higher wage does not change his tradeoff between money
and effort, his marginal rate of substitution, as it would
in function (a), where a richer agent is less willing to ac-
cept money for higher effort. In effort-wage diagrams,
quasilinearity implies that the indifference curves are
parallel along the effort axis (which they are not in Fig-
ure 2).
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If utility is quasilinear, the efficient effort level is inde-
pendent of which side has the bargaining power because
the gains from efficient production are independent of
how those gains are distributed so long as each party
has no incentive to abandon the relationship. This as
the same lesson as the Coase Theorem’s:, under gen-
eral conditions the activities undertaken will be efficient
and independent of the distribution of property rights
(Coase [1960]). This property of the efficient-effort level
means that the modeller is free to make the assumptions
on bargaining power that help to focus attention on the
information problems he is studying.

There are thus three reasons why modellers so often
use take-it-or-leave-it offers. The first two reasons were
discussed earlier in the context of Production Game I:
(1) such offers are a good way to model competitive mar-
kets, and (2) if the reservation payoff of the player with-
out the bargaining power is set high enough, such offers
lead to the same outcome as would be reached if that
player had more bargaining power. Quasi-linear utility
provides a third reason: (3) if utility is quasi-linear, the
optimal effort level does not depend on who has the bar-
gaining power, so the modeller is justified in choosing
the simplest model of bargaining.
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U(e, w) = log(w)− e2 (a)

U(e, w) = w − e2 (b)

U(e, w) = log(w − e2) (c)

(16)

Quasilinear utility functions most often are chosen to
look like (b), but what quasilinearity really requires is
just linearity in the special good (w here) for some mono-
tonic transformation of the utility function.

Utility function (c) is a logarithmic transformation of
(b), which is a monotonic transformation, so it too is
quasilinear. That is because marginal rates of substitu-
tion, which is what matter here, are a feature of general
utility functions, not the Von Neumann-Morgenstern func-
tions we typically use.

Thus, utility function (c) is also a quasi-linear func-
tion, because it is just a monotonic function of (b).
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U(e, w) = log(w)− e2 (a)

U(e, w) = w − e2 (b)

U(e, w) = log(w − e2) (c)

(17)

Returning to the solution of Production Game I, let us
now use a different approach to get to the same answer
as we did using the principal’s maximization problem
(11). Instead, we will return to the general optimality
condition(6), here repeated.(

∂U

∂w̃

)(
∂q

∂e

)
= −∂U

∂e
(6)

For any of our three utility functions we will continue
using the same output function q(e) = 100 ∗ log(1 + e)
from (8), which has the first derivative q′ = 100

1+e.

Using utility function (a), ∂U
∂w̃ = 1/w. and ∂U

∂e = −2e, so
equation (6) becomes(

1

w

)(
100

1 + e

)
= −(−2e). (18)

If we substitute for w using the function w̃(e) = Exp(3+
e2) that we found in equation (10), we get essentially the
same equation as (13), and so outcomes are the same—
e∗ ≈ 0.77, q∗ ≈ 57 , and w∗ ≈ 37, πagent = 3, and
πprincipal ≈ 20.
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U(e, w) = log(w)− e2 (a)

U(e, w) = w − e2 (b)

U(e, w) = log(w − e2) (c)

(19)

Returning to the solution of Production Game I, let us
now use a different approach to get to the same answer
as we did using the principal’s maximization problem
(11). Instead, we will return to the general optimality
condition(6), here repeated.(

∂U

∂w̃

)(
∂q

∂e

)
= −∂U

∂e
(6)

For any of our three utility functions we will continue
using the same output function q(e) = 100 ∗ log(1 + e)
from (8), which has the first derivative q′ = 100

1+e.

Using utility function (b), ∂U
∂w̃ = 1 and ∂U

∂e = −2e, so
equation (6) becomes

(1)

(
100

1 + e

)
= − (−2e) (20)

Notice that w has disappeared. The optimal effort no
longer depends on the agent’s wealth. Thus, we don’t
need to use the wage function to solve for the optimal
effort. Solving directly, we get e∗ ≈ 6.59 and q∗ ≈
203. The wage function will be different now, solving
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w − e2 = 3, so w∗ ≈ 43, πagent = 3, and πprincipal ≈
160. (These numbers are not really comparable to when
we used utility function (a), but they will be useful in
Production Game II.)
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U(e, w) = log(w)− e2 (a)

U(e, w) = w − e2 (b)

U(e, w) = log(w − e2) (c)

(21)

Returning to the solution of Production Game I, let us
now use a different approach to get to the same answer
as we did using the principal’s maximization problem
(11). Instead, we will return to the general optimality
condition(6), here repeated.(

∂U

∂w̃

)(
∂q

∂e

)
= −∂U

∂e
(6)

For any of our three utility functions we will continue
using the same output function q(e) = 100 ∗ log(1 + e)
from (8), which has the first derivative q′ = 100

1+e.

Using utility function (c), ∂U
∂w̃ = 1/(w− e2) and ∂U

∂e =
−2e/(w − e2), so equation (6) becomes(

1

w − e2

)(
100

1 + e

)
= −

(
−2e

w − e2

)
(22)

and with a little simplification,

100

1 + e
= 2e. (23)

The variable w has again disappeared, so as with utility
function (b) the optimal effort does not depend on the
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agent’s wealth. Solving for the optimal effort yields e∗ ≈
6.59 and q∗ ≈ 203, the same as with utility function (b).
The wage function is different, however. Now it solves
log(w − e2) = 3, so w = e2 + exp(3) and w∗ ≈ 63,
πagent = 3, and πprincipal ≈ 140.
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Production Game III: A Flat Wage Under
Certainty

In this version of the game, the principal can condi-
tion the wage neither on effort nor on output. This is
modelled as a principal who observes neither effort nor
output, so information is asymmetric. In Production
Game III, we have finally reached “moral hazard”.

Production Game IV: An Output-Based Wage
under Certainty

In this version, the principal cannot observe effort but
he can observe output and specify the contract to be
w(q).

Unlike in Production Game III, the principal now
picks not a number w but a function w(q).

The forcing contract, for example, would be any wage
function such that U(e∗, w(q∗)) = Ū and U(e, w(q)) <
Ū for e 6= e∗.
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Production Game V: An Output-Based Wage
under Uncertainty.

In this version, the principal cannot observe effort but
can observe output and specify the contract to be w(q).
Output, however, is a function q(e, θ) both of effort and
the state of the world θ ∈ R, which is chosen by Nature
according to the probability density f (θ).

Because of the uncertainty about the state of the
world, effort does not map cleanly onto observed out-
put in Production Game V. A given output might have
been produced by any of several different effort levels, so
a forcing contract based on output will not necessarily
achieve the desired effort. Unlike in Production Game
IV, here the principal cannot deduce e 6= e∗ from q 6= q∗.
Moreover, even if the contract does induce the agent to
choose e∗, if it does so by penalizing him heavily when
q 6= q∗ it will be expensive for the principal. The agent’s
expected utility must be kept equal to Ū so he will accept
the contract, and if he is sometimes paid a low wage be-
cause output happens not to equal q∗ despite his correct
effort, he must be paid more when output does equal
q∗ to make up for it. If the agent is risk averse, this
variability in his wage requires that his expected wage
be higher than the w∗ found earlier, because he must
be compensated for the extra risk. There is a tradeoff
between incentives and insurance against risk.
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Put more technically, moral hazard is a problem when
q(e) is not a one-to- one function and a single value of e
might result in any of a number of values of q, depending
on the value of θ. In this case the output function is
not invertible; knowing q, the principal cannot deduce
the value of e perfectly without assuming equilibrium
behavior on the part of the agent.

A first-best contract achieves the same allocation
as the contract that is optimal when the principal and
the agent have the same information set and all vari-
ables are contractible.

A second-best contract is Pareto optimal given
information asymmetry and constraints on writing
contracts.
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7.3 The Incentive Compatibility and Partici-
pation Constraints

The principal’s objective in Production Game V is to
maximize his utility knowing that the agent is free to re-
ject the contract entirely and that the contract must give
the agent an incentive to choose the desired effort. These
two constraints arise in every moral hazard problem,
and they are named the participation constraint
and the incentive compatibility contraint. Math-
ematically, the principal’s problem is

Maximize EV (q(ẽ, θ)− w(q(ẽ, θ)))
w(·) (24)

subject to

ẽ =
argmax

e EU(e, w(q(e, θ))) (incentive compatibility constraint) (24a)

EU(ẽ, w(q(ẽ, θ))) ≥ Ū (participation constraint) (24b)

To support the effort level e, the wage contract w(q)
must satisfy the incentive compatibility and participa-
tion constraints. Mathematically, the problem of finding
the least cost C(ẽ) of supporting the effort level ẽ com-
bines steps one and two.

C(ẽ) = Minimum Ew(q(ẽ, θ))
w(·) (25)

subject to constraints (24a) and (24b).
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Step three takes the principal’s problem of maximiz-
ing his payoff, expression (24), and restates it as

Maximize EV (q(ẽ, θ)− C(ẽ)).
ẽ

(26)

After finding which contract most cheaply induces each
effort, the principal discovers the optimal effort by solv-
ing problem (26).
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7.1 Categories of Asymmetric Information Mod-
els

It used to be that the economist’s first response to pecu-
liar behavior which seemed to contradict basic price the-
ory was “It must be some kind of price discrimination.”
Today, we have a new answer: “It must be some kind
of asymmetric information.” In a game of asymmetric
information, player Smith knows something that player
Jones does not. This covers a broad range of models (in-
cluding price discrimination itself), so it is not surprising
that so many situations come under its rubric. We will
look at them in five chapters.

Moral hazard with hidden actions (Chapters 7
and 8)
Smith and Jones begin with symmetric information and
agree to a contract, but then Smith takes an action un-
observed by Jones. Information is complete.

Adverse selection (Chapter 9)
Nature begins the game by choosing Smith’s type, un-
observed by Jones. Smith and Jones then agree to a
contract. Information is incomplete.

Mechanism design in adverse selection and post-
contractual hidden knowledge ) (Chapter 10)
Jones is designing a contract for Smith designed to elicit
Smith’s private information. This may happen under
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adverse selection— in which case Smith knows the infor-
mation prior to contracting— or post-contractual hid-
den knowledge (also called moral hazard with hidden
information)—in which case Smith will learn it after con-
tracting.

Signalling and Screening (Chapter 11)
Nature begins the game by choosing Smith’s type, unob-
served by Jones. To demonstrate his type, Smith takes
actions that Jones can observe. If Smith takes the ac-
tion before they agree to a contract, he is signalling. If
he takes it afterwards, he is being screened. Information
is incomplete.
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Figure 1: Categories of Asymmetric
Information Models
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Production Game II: Full Information. Agent Moves First.

In this version, every move is common knowledge and the contract is a function w(e).
The order of play, however, is now as follows

The Order of Play
1 The agent offers the principal a contract w(e).
2 The principal decides whether to accept or reject the contract.
3 If the principal accepts, the agent exerts effort e.
4 Output equals q(e), where q′ > 0.

Now the agent has all the bargaining power, not the principal. Thus, instead of
requiring that the contract be at least barely acceptable to the agent, our concern is that
the contract be at least barely acceptable to the principal, who must earn zero profits so
q(e)− w(e) ≥ 0.
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The agent will maximize his own payoff by driving the principal to exactly zero profits,
so w(e) = q(e). Substituting q(e) for w(e) to account for this constraint, the maximization
problem for the agent in proposing an effort level e at a wage w(e) can therefore be written
as

Maximize U(e, q(e))
e

(27)

The first-order condition is
∂U

∂e
+

(
∂U

∂q

)(
∂q

∂e

)
= 0. (28)

Since ∂U
∂q

= ∂U
∂w

when the wages equals output, equation (28) implies that(
∂U

∂w

)(
∂q

∂e

)
= −

(
∂U

∂e

)
. (29)
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We can see the wealth effect by solving out optimality equation (29) for the specific
functional forms of Production Game I from expression (21).

Using utility function (a) from expression (21)(
1

w

)(
100

1 + e

)
= −(−2e). (30)

That is the same as in Production Game I, equation (18), but now w is different. It is not
found by driving the agent to his reservation payoff, but by driving the principal to zero
profits: w = q. Since q = 100 ∗ log(1 + e), we can substitute that in for w to get(

1

100 ∗ log(1 + e)

)(
100

1 + e

)
= 2e. (31)

When solved numerically, this yields e∗ ≈ 0.63, and thus q = w ≈ 49, and πprincipal = 0 and
πagent ≈ 3.49. In Production Game I, the optimal effort using this utility function was 0.77
and the agent’s payoff was 3. The difference arises because there the agent’s wealth was
lower because the principal had the bargaining power. In Production Game II the agent is,
in effect, wealthier, and since his marginal utility of money is lower, he chooses to convert
some (but not all) of that extra wealth into what we might call leisure— working less hard.

Using the quasilinear utility functions (b) and (c) from expression (21), recall that
both have the same optimality condition, the one we found in equations (20) and (23):

100

1 + e
= 2e (23)

As we observed before, w does not appear in equation (23), so the wage equation does not
matter to e∗. But that means that in Production Game II, e∗ ≈ 6.59 and q∗ ≈ 203, just
as in Production Game I. With quasilinear utility, the efficient action does not depend on
bargaining power. Of course, the wage and payoffs do depend on who has the bargaining
power. In Production Game II, w∗ = q∗ ≈ 203, and πprincipal = 0. The agent’s payoff is
higher than in Production Game I, but it differs, of course, depending on the payoff function.
For utility function (b) it is πagent ≈ 160 and for utility function (c) it is πagent ≈ 5.08.
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