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Table 1: Ranked Coordination

Jones

Large Small

Large 2,2 ← −1,−1
Smith ↑ ↓

Small −1,−1 → 1,1

Payoffs to: (Smith, Jones). Arrows show how a player can increase his payoff.
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The normal form or strategic form consists of

1 All possible strategy profiles s1, s2, . . . , sp.

2 Payoff functions mapping si onto the payoff n-vector πi, (i = 1, 2, . . . , p).

Follow-the-Leader I

Smith has a strategy set of two strategies: Small or Large.

Jones has a strategy set of four different strategies:
(L|L, L|S),

(L|L, S|S),

(S|L, L|S),

(S|L, S|S)



3



Combining one strategy for each player, we get a strategy profile.

That results in an action for each player, and a payoff. The normal

form shows the strategies and payoffs, omitting the actions.

Table 2: Strategic Form for Follow-the-Leader I

Jones

J1 J2 J3 J4

L|L, L|S L|L, S|S S|L, L|S S|L, S|S

S1 : Large 2 , 2 (E1) 2 , 2 (E2) −1, −1 −1,−1
Smith

S2 : Small −1,−1 1,1 −1,−1 1 , 1 (E3)

Payoffs to: (Smith, Jones). Best-response payoffs are boxed (with dashes, if

weak)
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Table 2: Strategic Form for Follow-the-Leader I

Jones

J1 J2 J3 J4

L|L, L|S L|L, S|S S|L, L|S S|L, S|S

S1 : Large 2 , 2 (E1) 2 , 2 (E2) −1, −1 −1,−1
Smith

S2 : Small −1,−1 1,1 −1,−1 1 , 1 (E3)

Payoffs to: (Smith, Jones). Best-response payoffs are boxed (with dashes, if

weak)

Equilibrium Strategies Outcome

E1 {Large, (L|L, L|S)} Both pick Large

E2 {Large, (L|L, S|S)} Both pick Large

E3 {Small,(S|L, S|S)} Both pick Small
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The Extensive Form

A node is a point in the game at which some player or Nature takes an action,

or the game ends.

A successor to node X is a node that may occur later in the game if X has been

reached.

A predecessor to node X is a node that must be reached before X can be reached.

A starting node is a node with no predecessors.

An end node or end point is a node with no successors.

A branch is one action in a player’s action set at a particular node.

A path is a sequence of nodes and branches leading from the starting node to an

end node.
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The extensive form is a description of a game consisting of

1 A configuration of nodes and branches running without any closed loops from a

single starting node to its end nodes.

2 An indication of which node belongs to which player.

3 The probabilities that Nature uses to choose different branches at its nodes.

4 The information sets into which each player’s nodes are divided.

5 The payoffs for each player at each end node.
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Follow-the-Leader I Ranked Coordination
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The Time Line

Figure 3: The Time Line for Stock Underpricing: (a) A Good Time

Line; (b) A Bad Time Line

decision time versus real time
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Player i’s information set ωi at any particular point of the game is the set of

different nodes in the game tree that he knows might be the actual node, but between

which he cannot distinguish by direct observation.
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Figure 4: Information Sets and Information Partitions.

One node cannot belong to two different information sets of a single

player.

If node J3 belonged to information sets {J2,J3} and {J3,J4} (unlike in

Figure 4), then if the game reached J3, Jones would not know whether

he was at a node in {J2, J3} or a node in {J3, J4}— which would imply

that they were really the same information set.
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Player i’s information partition is a collection of his information sets such that

1 Each path is represented by one node in a single information set in the partition,

and

2 The predecessors of all nodes in a single information set are in one information

set.

Figure 4: Information Sets and Information Partitions.
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Figure 4: Information Sets and Information Partitions.

One of Smith’s information partitions is ({J1},{J2},{J3},{J4}).

The definition rules out information set {S1} being in that partition,

because the path going through S1 and J1 would be represented by two

nodes.

Instead, {S1} is a separate information partition, all by itself.
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Jones has the information partition ({J1},{J2},{J3,J4}). There are

two ways to see that his information is worse than Smith’s. First is

the fact that one of his information sets, {J3,J4}, contains more ele-

ments than Smith’s, and second, that one of his information partitions,

({J1},{J2},{J3,J4}), contains fewer elements.
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Partition II is coarser, and partition I is finer.

Partition II is thus a coarsening of partition I, and partition I is a

refinement of partition II.

The ultimate refinement is for each information set to be a singleton,

containing one node.

A finer information partition is the definition of “better information.”
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Coarse information can have a number of advantages.

(a) It may permit a player to engage in trade because other players

do not fear his superior information.

(b) It may give a player a stronger strategic position because he usually

has a strong position and is better off not knowing that in a particular

realization of the game his position is weak.

(c) Poor information may permit players to insure each other.
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(c) Poor information may permit players to insure each other.

Suppose Smith and Jones, both risk averse, work for the same em-

ployer, and both know that one of them chosen randomly will be fired

at the end of the year while the other will be promoted. The one who

is fired will end with a wealth of 0 and the one who is promoted will

end with 100.

The two workers will agree to insure each other by pooling their

wealth: they will agree that whoever is promoted will pay 50 to whoever

is fired. Each would then end up with a guaranteed utility of U(50).

If a helpful outsider offers to tell them who will be fired before they

make their insurance agreement, they should cover their ears and refuse

to listen.
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Common Knowledge

Information is common knowledge if it is known to all the players, if each

player knows that all the players know it, if each player knows that all

the players know that all the players know it, and so forth ad infinitum.

Models are set up so that the extensive form is assumed to be common

knowledge.
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Information Categories:

Perfect: each information set is a singleton

Certain: Nature makes no moves

Symmetric: No player has information different from any other

Complete: Nature does not move first, or her initial move is public

information.
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In a game of perfect information each information set is a singleton. Otherwise

the game is one of imperfect information.

The strongest informational requirements are met by a game of perfect

information, because in such a game each player always knows exactly

where he is in the game tree. No moves are simultaneous, and all players

observe Nature’s moves. Ranked Coordination is a game of imperfect

information because of its simultaneous moves, but Follow-the-Leader I

is a game of perfect information. Any game of incomplete or asymmetric

information is also a game of imperfect information.
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A game of certainty has no moves by Nature after any player moves. Otherwise

the game is one of uncertainty.

Figure 5: Follow-the-Leader II

von Neumann-Morgenstern utility functions are necessary when there

is either uncertainty or random (mixed) strategies.

The players can differ in how they map money to utility– introducing

risk aversion. It could be that (0,0) represents ($0, $5,000), (10,10)

represents ($100,000, $100,000), and (2,2), the expected utility, could

here represent a non-risky ($3,000, $7,000).

21



In a game of symmetric information, a player’s information set at

1 any node where he chooses an action, or

2 an end node

contains at least the same elements as the information sets of every

other player. Otherwise the game is one of asymmetric information.

The one point at which information may differ is when the player

not moving has superior information because he knows what his own

move was; for example, if the two players move simultaneously. Such

information does not help the informed player, since by definition it

cannot affect his move.
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In a game of incomplete information, Nature moves first and is unob-

served by at least one of the players. Otherwise the game is one of

complete information.

This is also known as a Bayesian Game.
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2.4 The Harsanyi Transformation and Bayesian Games

Follow-the-Leader III serves to illustrate the Harsanyi transformation.

Suppose that Jones does not know the game’s payoffs precisely. He does

have some idea of the payoffs, and we represent his beliefs by a sub-

jective probability distribution. He places a 70 percent probability on

the game being game (A) in Figure 6 (which is the same as Follow-the-

Leader I), a 10 percent chance on game (B), and a 20 percent on game

(C). In reality the game has a particular set of payoffs, and Smith knows

what they are. This is a game of incomplete information (Jones does not

know the payoffs), asymmetric information (when Smith moves, Smith

knows something Jones does not), and certainty (Nature does not move

after the players do.)
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A player’s type is the strategy set, information partition, and payoff function

which Nature chooses for him at the start of a game of incomplete information.

All players begin the game with the same beliefs about the probabil-

ities of the moves Nature will make— the same priors, to use a term

that will shortly be introduced. This modelling assumption is known as

the Harsanyi doctrine.
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If the modeller is following the Harsanyi doctrine, his model can never

reach a situation where two players possess exactly the same information

but disagree as to the probability of some past or future move of Nature.

A model cannot, for example, begin by saying that Germany believes its

probability of winning a war against France is 0.6 and France believes

it is 0.4, so they are both willing to go to war. Rather, he must assume

that beliefs begin the same but diverge because of private information.

Here is way beliefs could diverge. Both players initially think that the

probability of a German victory is 0.4 but that if General Schmidt is

a genius the probability rises to 0.6, that if he isn’t, it falls to .2, and

that he is a genius with probability .5. Then Germany discovers that

Schmidt is indeed a genius. Now, the two players have different beliefs.

We model it as one of them observing a new move by Nature.
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Updating Beliefs with Bayes’s Rule

When we classify a game’s information structure we do not try to decide

what a player can deduce from the other players’ moves. Player Jones

might deduce, upon seeing Smith choose Large, that Nature has chosen

state (A), but we do not draw Jones’s information set in Figure 7 to take

this into account. In drawing the game tree we want to illustrate only

the exogenous elements of the game, uncontaminated by the equilibrium

concept. But to find the equilibrium we do need to think about how

beliefs change over the course of the game.
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One part of the rules of the game is the collection of prior beliefs (or

priors) held by the different players, beliefs that they update in the

course of the game. A player holds prior beliefs concerning the types of

the other players, and as he sees them take actions he updates his beliefs

under the assumption that they are following equilibrium behavior.

The term bayesian equilibrium is used to refer to a Nash equilibrium

in which players update their beliefs according to Bayes’s Rule. But

the two-step procedure of checking a Nash equilibrium has now become

a three-step procedure:

1 Propose a strategy profile.

2 See what beliefs the strategy profile generates when players update

their beliefs in response to each others’ moves.

3 Check that given those beliefs together with the strategies of the other

players each player is choosing a best response for himself.
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The rules of the game specify each player’s initial beliefs, and Bayes’s

Rule is the rational way to update beliefs. Suppose, for example, that

Jones starts with a particular prior belief, Prob(Nature chose (A)). In

Follow-the- Leader III, this equals 0.7. He then observes Smith’s move

— Large, perhaps. Seeing Large should make Jones update to the poste-

rior belief, Prob(Nature chose (A))|Smith chose Large), where the symbol

“|” denotes “conditional upon” or “given that.”
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Bayes’s Rule shows how to revise the prior belief in the light of new

information such as Smith’s move. It uses two pieces of information, the

likelihood of seeing Smith choose Large given that Nature chose state of

the world (A), Prob(Large|(A)), and the likelihood of seeing Smith choose

Large given that Nature did not choose state (A), Prob(Large|(B) or (C)).

From these numbers, Jones can calculate Prob(Smith chooses Large), the

marginal likelihood of seeing Large as the result of one or another of the

possible states of the world that Nature might choose.

Prob(Smith chooses Large) = Prob(Large|A)Prob(A) + Prob(Large|B)Prob(B)

+Prob(Large|C)Prob(C).
(1)

To find his posterior, Prob(Nature chose (A))|Smith chose Large), Jones

uses the likelihood and his priors. The joint probability of both seeing

Smith choose Large and Nature having chosen (A) is

Prob(Large, A) = Prob(A|Large)Prob(Large) = Prob(Large|A)Prob(A). (2)
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Since what Jones is trying to calculate is Prob(A|Large), rewrite the

last part of (2) as follows:

Prob(A|Large) = Prob(Large|A)Prob(A)
Prob(Large)

. (3)

Jones needs to calculate his new belief — his posterior — using Prob(Large),

which he calculates from his original knowledge using (1). Substituting

the expression for Prob(Large) from (1) into equation (3) gives the final

result, a version of Bayes’s Rule.

Prob(A|Large) = Prob(Large|A)Prob(A)
Prob(Large|A)Prob(A) + Prob(Large|B)Prob(B) + Prob(Large|C)Prob(C)

.

(4)
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More generally, for Nature’s move x and the observed data,

Prob(x|data) = Prob(data|x)Prob(x)
Prob(data)

(5)
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(Posterior for Nature′s Move) =
(Likelihood of P layer′s Move) · (Prior for Nature′s Move)

(Marginal likelihood of P layer′s Move)
.

(6)
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Table 5: Bayesian Terminology

Name Meaning

Likelihood Prob(data|event)
Marginal likelihood Prob(data)

Conditional Likelihood Prob(data X|data Y, event)

Prior Prob(event)

Posterior Prob(event|data)
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Updating Beliefs in Follow-the-Leader III

Let us now return to the numbers in Follow-the-Leader III to use the

belief-updating rule that was just derived. Jones has a prior belief that

the probability of event “Nature picks state (A)” is 0.7 and he needs to

update that belief on seeing the data “Smith picks Large”. His prior is

Prob(A) = 0.7, and we wish to calculate Prob(A|Large).

To use Bayes’s Rule from equation (4), we need the values of Prob(Large|A),
Prob(Large|B), and Prob(Large|C). These values depend on what Smith

does in equilibrium, so Jones’s beliefs cannot be calculated indepen-

dently of the equilibrium. This is the reason for the three-step pro-

cedure suggested above, for what the modeller must do is propose an

equilibrium and then use it to calculate the beliefs. Afterwards, he must

check that the equilibrium strategies are indeed the best responses given

the beliefs they generate.
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A candidate for equilibrium in Follow-the-Leader III is for Smith to

choose Large if the state is (A) or (B) and Small if it is (C), and for

Jones to respond to Large with Large and to Small with Small. This

can be abbreviated as (L|A,L|B, S|C;L|L, S|S). Let us test that this is an

equilibrium, starting with the calculation of Prob(A|Large).

If Jones observes Large, he can rule out state (C), but he does not

know whether the state is (A) or (B). Bayes’s Rule tells him that the

posterior probability of state (A) is

Prob(A|Large) = (1)(0.7)
(1)(0.7)+(1)(0.1)+(0)(0.2)

= 0.875.

(7)
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The posterior probability of state (B) must then be 1 − 0.875 = 0.125,

which could also be calculated from Bayes’s Rule, as follows:

(B|Large) = (1)(0.1)
(1)(0.7)+(1)(0.1)+(0)(0.2)

= 0.125.

(8)
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The first line shows the total probability, 1, which is the sum of the

prior probabilities of states (A), (B), and (C).

The second line shows the probabilities, summing to 0.8, which remain

after Large is observed and state (C) is ruled out.

The third line shows that state (A) represents an amount 0.7 of that

probability, a fraction of 0.875.

The fourth line shows that state (B) represents an amount 0.1 of that

probability, a fraction of 0.125.
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Jones must use Smith’s strategy in the proposed equilibrium to find

numbers for Prob(Large|A), Prob(Large|B), and Prob(Large|C). As always

in Nash equilibrium, the modeller assumes that the players know which

equilibrium strategies are being played out, even though they do not

know which particular actions are being chosen.

Given that Jones believes that the state is (A) with probability 0.875

and state (B) with probability 0.125, his best response is Large, even

though he knows that if the state were actually (B) the better response

would be Small. Given that he observes Large, Jones’s expected payoff

from Small is −0.625 ( = 0.875[−1] + 0.125[2]), but from Large it is 1.875

( = 0.875[2] + 0.125[1]). The strategy profile (L|A,L|B, S|C;L|L, S|S) is a

bayesian equilibrium.
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A similar calculation can be done for Prob(A|Small). Using Bayes’s

Rule, equation (4) becomes

Prob(A|Small) = (0)(0.7)

(0)(0.7) + (0)(0.1) + (1)(0.2)
= 0. (9)

Given that he believes the state is (C), Jones’s best response to Small

is Small, which agrees with our proposed equilibrium.

Smith’s best responses are much simpler. Given that Jones will im-

itate his action, Smith does best by following his equilibrium strategy

of (L|A,L|B, S|C).

43



The calculations are relatively simple because Smith uses a nonrandom

strategy in equilibrium, so, for instance, Prob(Small|A) = 0 in equation

(9). Consider what happens if Smith uses a random strategy of picking

Large with probability 0.2 in state (A), 0.6 in state (B), and 0.3 in

state (C) (we will analyze such “mixed” strategies in Chapter 3). The

equivalent of equation (7) is

Prob(A|Large) = (0.2)(0.7)

(0.2)(0.7) + (0.6)(0.1) + (0.3)(0.2)
= 0.54 (rounded). (10)

If he sees Large, Jones’s best guess is still that Nature chose state (A),

even though in state (A) Smith has the smallest probability of choos-

ing Large, but Jones’s subjective posterior probability, Pr(A|Large), has

fallen to 0.54 from his prior of Pr(A) = 0.7.
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The Blue-Eyed Islander Puzzle. An island starts with 2 blue-eyed

people and 48 brown-eyed, but the people do not know these numbers.

If a person ever decides his eyes are blue, he must leave the island at

dawn the next day. There are no mirrors and people may not talk about

eye color, but they see each others’ faces.

What will happen? – nobody leaves.

Now an outsider comes to the island and says, ”At least one of you

has blue eyes”. The next dawn, nobody leaves, but on the second dawn,

both blue-eyed people leave.

The reason: Both blue-eyed people realize there are either 1 or 2 blue-

eyed people. When nobody leaves on the first dawn, each realizes that

there must be 2– and he is one of them.
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The White-Hat Black-Hat Puzzle

A group of 30 people is told, ”At least one of you has a white hat.

How many of you have white hats? I will ask you several times, with

a pause in between. If anybody knows, he should raise his hand. ” It

turns out that they can all deduce how many have white hats.

Let w be the number of people with white hats. A player’s information

partition at the start is that he can see how many other people have

white hats, but he cannot tell if he himself has a white hat or not.

Suppose he sees m white hats. His information partition has eliminated

most states as a result. His information set by observation contains two

kinds of states of the world:

(States of the world in which m other people have white hats and I

have a black hat so w = m, States of the world in which m other people

have white hats, and I have a white hat so w = m + 1.)

Together, these represent the event that “I saw m other people with

white hats.”
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Let w be the number of people with white hats. Suppose our player

sees m white hats.

Each player has a different partition, because “I” is different. De-

pending on what the truth is, m will vary. Each of the players can

immediately deduce that either w = m or w = m + 1 from the m that he

observes.

But each player has extra information: that at least one person has a

white hat. That rules out the single state of the world in which nobody

has a white hat. Notice that that rules out the state “States of the

world in which m = 0 other people have white hats, and I have a black

hat so w = 0.” So for m = 0, he puts 100% probability on:

(States of the world in which m = 0 other people have white hats and

I have a white hat)

So he knows that exactly 1 person has a white hat, himself.

Okay— so that says that in the case that just one person has a white

hat, that person will tell the announcer: “I know that w = 1; just one
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person has a white hat!”

But what if the number is greater?

Well, in that case, nobody knows in the first round. But by the second

round, they have acquired information from the silence of everyone

else— that w = 1 is impossible, as well as w = 0. Suppose for someone

that m = 1. That person had the information set in the first round:

(States of the world in which m = 1 other people have white hats and

I have a black hat so w = 1, States of the world in which m = 1 other

people have white hats, and I have a white hat so w = 2.)

That person will speak up at the second round and say, “I know there

are two white hats!” He can rule out the w = 1 state of the world by

deduction.
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We’ll go one more round. If that does NOT happen, and nobody

speaks up in the second round, then they have learned that w = 2 is

impossible also. Suppose someone had the information set

(States of the world in which m = 2 other people have white hats and

I have a black hat so w = 2, States of the world in which m = 2 other

people have white hats, and I have a white hat so w = 3.)

That person can rule out the w = 2 event, so he can conclude that 3

people have white hats. And if nobody sees m = 2 we can continue to

m = 3 and beyond, until eventually even if w = 30 the people will realize

it.

The value of this example is in showing how the modeller starts by

narrowing down players’ information to what they might be seeing from

direct information, and then goes on to see what they can deduce from

extra information.
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