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3 Mixed and Continuous Strategies

A pure strategy maps each of a player’s possible
information sets to one action. si : ωi → ai.

A mixed strategy maps each of a player’s possible
information sets to a probability distribution over
actions.

si : ωi → m(ai), where m ≥ 0 and

∫
Ai

m(ai)dai = 1.
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Table 1: The Welfare Game

Pauper
Work (γw) Loaf (1− γw)

Aid (θa) 3,2 → −1, 3
Government ↑ ↓

No Aid (1− θa) −1, 1 ← 0,0
Payoffs to: (Government, Pauper). Arrows show how a
player can increase his payoff.

If the government plays Aid with probability θa
and the pauper plays Work with probability γw, the
government’s expected payoff is

πGovernment = θa[3γw + (−1)(1− γw)] + [1− θa][−1γw + 0(1− γw)]

= θa[3γw − 1 + γw]− γw + θaγw

= θa[5γw − 1]− γw.
(1)

Differentiate the payoff function with respect
to the choice variable to obtain the first-order
condition.

0 = dπGovernment
dθa

= 5γw − 1

⇒ γw = 0.2.

(2)

We obtained the pauper’s strategy by differen-
tiating the government’s payoff!
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THE LOGIC

1 I assert that an optimal mixed strategy exists
for the government.

2 If the pauper selects Work more than 20 per-
cent of the time, the government always selects
Aid. If the pauper selects Work less than 20 per-
cent of the time, the government never selects
Aid.

3 If a mixed strategy is to be optimal for the
government, the pauper must therefore select Work
with probability exactly 20 percent.

To obtain the probability of the government
choosing Aid:

πPauper = γw(2θa + 1[1− θa]) + (1− γw)(3θa + [0][1− θa])

= 2γwθa + γw − γwθa + 3θa − 3γwθa

= −γw(2θa − 1) + 3θa.
(3)

The first- order condition is
dπPauper
dγw

= −(2θa − 1) = 0,

⇒ θa = 1/2.

(4)
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The Payoff-Equating Method

In equilibrium, each player is willing to mix only
because he is indifferent between the pure strate-
gies he is mixing over. This gives us a better way
to find mixed strategies.

First, guess which strategies are being mixed
between.

Then, see what mixing probability for the other
player makes a given player indifferent.

The Welfare Game

Pauper
Work (γw) Loaf (1− γw)

Aid (θa) 3,2 → −1, 3
Government ↑ ↓

No Aid (1− θa) −1, 1 ← 0,0

Here,

πg(Aid) = γw(3)+(1−γw)(−1) = πg(No aid) = γw(−1)+(1−γw)(0)

So γw(3 + 1 + 1) = 1, so γw = .2.

πp(Work) = θa(2)+(1−θa)(1) = πp(Loaf ) = θa(3)+(1−θa)(0)

so θa(2− 1− 3) = −1 and θa = .5.
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Interpreting Mixed Strategies

A player who selects a mixed strategy is always
indifferent between two pure strategies and an
entire continuum of mixed strategies.

What matters is that a player’s strategy ap-
pear random to other players, not that it really
be random.

It could be based on time of day, temperature,
etc.

It could be there is a population of identical
players, each of whom picks a pure strategy. But
each would still be indifferent about his strategy.

Harsanyi based an interpretation on this: model
it as an incomlpete info game,a nd let the incom-
plete info shrink to zero.

Here do the Gintis example of mixing.

Then do the soccer example, which is true ran-
domization.
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Pure Strategies Dominated by a Mixed Strategy

Column
North South

North 0,0 4,-9

Row South 4,-6 0,0

Defense 1,-1 1,-1

Payoffs to: (Row, Column)

For Row, Defense is strictly dominated by (0.5 North, 0.5 South), though that is
not the Nash equilibrium.

Row’s expected payoff from (.5,.5) if Column plays North is .5(0) + .5(4) = 2.
Row’s expected payoff from it if Column plays South is .5(4) + .5(0)= 2.

Row’s expected payoff from this mixed strategy if Column plays North with prob-
ability N is

0.5(N)(0) + 0.5(1−N)(4) + 0.5(N)(4) + 0.5(1−N)(0) = 2, (5)

so whatever response Column picks, Row’s expected payoff is higher from the mixed
strategy than his payoff of 1 from Defense.

Column’s strategy must make Row willing to randomize, for a Nash equilibrium.
Thus, if c is Column’s probability of North, we need πr(North) = c(0) + (1 − c)4 =
πr(South) = c(4) + (1− c)(0), so 4− 4c = 4c so c = 1/2.

Row’s strategy must make Column willing to randomize, for a Nash equilibrium.
Thus, if r is Row’s probability of North, we need πc(North) = r(0) + (1 − c)(−6) =
πc(South) = c(−9) + (1− c)(0), so −6− 6c = −9c so c = 3/5.

Note that c = 3/5 is even better than c = .5 for Row in equilibrium. He gets a
payoff of πr(South) = c(4) + (1− c)(0) = 2.4
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Chicken

Jones
Continue (θ) Swerve (1− θ)

Continue (θ) −3,−3 → 2, 0
Smith: ↓ ↑

Swerve (1− θ) 0, 2 ← 1, 1

πJones(Swerve) = (θSmith) · (0) + (1− θSmith) · (1)

= (θSmith) · (−3) + (1− θSmith) · (2) = πJones(Continue).
(6)

From equation (6) we can conclude that 1 −
θSmith = 2− 5θSmith, so θSmith = 0.25.

In the symmetric equilibrium, both players choose
the same probability, so we can replace θSmith with
simply θ.

The two teenagers will survive with probability
1− (θ · θ) = 0.9375.

How can we prove there is no asymmetric mixed-
strategy equilibrium, with unequal mixing proba-
bilities?
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Jones
Continue (θ) Swerve (1− θ)

Continue (θ) x, x → 2, 0
Smith: ↓ ↑

Swerve (1− θ) 0, 2 ← 1, 1

θ =
1

1− x
. (7)

If x = −3, this yields θ = 0.25, as was just
calculated.

If x = −9, it yields θ = 0.10.

If x = 0.5, the equilibrium probability of contin-
uing appears to be θ = 2. What is going on?

In the mixed-strategy equilibrium, the expected
payoff is π(swerve) = θ(0) + (1− θ)(1).

Note that this is decreasing in θ.
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The War of Attrition

The possible actions are Exit and Continue. In
each period that both Continue, each earns −1.
If a firm exits, its losses cease and the remaining
firm obtains the value of the market’s monopoly
profit, which we set equal to 3. We will set the
discount rate equal to r > 0.

(1) Continue in each period, Exit in each pe-
riod

(2) Each exits with probability θ if it hasn’t yet.

Let Smith’s payoffs be Vstay if he stays and Vexit
if he exits.

Vexit = 0.

Vstay = θ · (3) + (1− θ)
(
−1 +

[
Vstay
1 + r

])
, (8)

which, after a little manipulation, becomes

Vstay =

(
1 + r

r + θ

)
(4θ − 1) . (9)

Thus, θ = 0.25.

This does not have to solved with the dynamic
programming/Bellman equation method.
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Timing games

Pre-emption games: the reward goes to the
player who chooses the move which ends the game,
and a cost is paid if both players choose that
move, but no cost is incurred in a period when
neither player chooses it.

Grab the Dollar. A dollar is placed on the table
between Smith and Jones, who each must decide
whether to grab for it or not. If both grab, each
is fined one dollar. This could be set up as a
one-period game, a T period game, or an infinite-
period game, but the game definitely ends when
someone grabs the dollar.

Grab the Dollar

Jones
Grab Don’t Grab

Grab −1,−1 → 1,0
Smith: ↓ ↑

Don’t Grab 0,1 ← 0, 0
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Jones
Grab Don’t Grab

Grab −1,−1 → 1,0
Smith: ↓ ↑

Don’t Grab 0,1 ← 0, 0

Lets be Smith’s probability of grabbing and j
be Jones’s. If Smith grabs, that ends the game:

πs(grab) = j(−1) + (1− j)(1)

If he chooses not to grab, then the game contin-
ues, and if Jones does not grab either, he remains
in the same position as at the start:

πs(not grab) = j(0) + (1− j)( 1

1 + r
πs(not grab))

The only value that solves this second equation is
πs(not grab) = 0. Equating that to πs(grab) gives
us
0 = j(−1) + (1− j)(1), so j = .5
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Jones
Grab Don’t Grab

Grab −1,−1 → 1,0
Smith: ↓ ↑

Don’t Grab 0,1 ← 0, 0

Suppose we had an equilibrium where if the
second period is reached, Smith grabs with prob-
ability one. What will happen to the mixed strat-
egy in the first period?

Smith would have to equate his first period
payoffs thus:

πs(grab) = j(−1)+(1−j)(1) = π(don′t) = j(0)+(1−j)( 1

1 + r
(1))

If r = 0, these are equal only if j = 0 or j =
1. So there can’t be an equilibrium with mixed
strategies in the first period and pure strategies
in the second.

If r 6= 0 then some algebra shows that j = r
1+2r.

As for Jones:

πj(grab) = s(−1) + (1− s)(1) = π(don′t) = 0,

so s = 1/2.

Smith probably wins in the first period because
of the forecast that he would otherwise win in the
second period.
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Asymmetric Grab the Dollar

Jones
Grab Don’t Grab

Grab −2,−3 → 1,0
Smith: ↓ ↑

Don’t Grab 0,1 ← 0, 0
Lets be Smith’s probability of grabbing, and j

be Jones’s. Then Smith equates his payoffs thus
(remember: the continuation payoff is zero):

π(grab) = j(−2)+(1−j)(1) = π(don′t) = j(0)+(1−j)(0)

so −2j + 1− j = 0 and j = 1/3.

Jones equates his payoffs thus:

π(grab) = s(−3)+(1−s)(1) = π(don′t) = s(0)+(1−s)(0)

Then −3s + 1− s = 0, and s =1/4.

Smith has a smaller probability of grabbing even
tho his penalty from Grab, Grab is less. That is
because for Smith, with his smaller penalty, not
to always want to grab requires that Jones have
a bigger probability of grabbing.
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Patent Race for a New Market

Players
Three identical firms, Apex, Brydox, and Central.

The Order of Play
Each firm simultaneously chooses research spend-
ing xi ≥ 0, (i = a, b, c).

Payoffs
Firms are risk neutral and the discount rate is
zero. Innovation occurs at time T (xi) where T ′ <
0. The value of the patent is V , and if sev-
eral players innovate simultaneously they share
its value.

πi =



V − xi if T (xi) < Min{T (xj, T (xk)} (wins)

V
2 − xi if T (xi) =Min{T (xj), T (xk)} ( shares with 1)

< Max{T (xj), T (xk)}

V
3 − xi if T (xi) = T (xj = T (xk) (shares with 2)

2 other firms)

−xi if T (xi) > Min{T (xj, T (xk)} (loses)
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No pure strategy Nash equilibria, because the
payoff functions are discontinuous.

A slight difference in research by one player can
make a big difference in the payoffs, as shown in
the figure for fixed values of xb and xc. (The
research levels shown are not equilibrium values.)
If Apex chose any research level xa less than V ,
Brydox would respond with xa + ε and win the
patent. If Apex chose xa = V , then Brydox and
Central would respond with xb = 0 and xc = 0,
which would make Apex want to switch to xa = ε.

Figure 1: The Payoffs in Patent Race for a New
Market
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Denote the probability that firm i chooses a
research level less than or equal to x as Mi(x).
This function describes the firm’s mixed strategy.

Since we know that the pure strategies xa = 0
and xa = V yield zero payoffs, if Apex mixes over
[0, V ] then the expected payoff for every strategy
mixed between must also equal zero.

πa(xa) = V ·Pr(xa ≥ Xb, xa ≥ Xc)−xa = 0 = πa(xa = 0),
(10)

which can be rewritten as

V · Pr(Xb ≤ xa)Pr(Xc ≤ xa)− xa = 0, (11)

or
V ·Mb(xa)Mc(xa)− xa = 0. (12)

We can rearrange equation (12) to obtain

Mb(xa)Mc(xa) =
xa
V
. (13)

If all three firms choose the same mixing distri-
bution M , then

M(x) =
( x
V

)1/2
for 0 ≤ x ≤ V. (14)

This is an “all-pay auction.”
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Correlated Strategies

Aumann (1974, 1987) has pointed out that it is
often important whether players can use the same
randomizing device for their mixed strategies. If
they can, these are correlated strategies.

In Chicken, the only mixed-strategy equilibrium
is the symmetric one in which each player chooses
Continue with probability 0.25 and the expected
payoff is 0.75. A correlated equilibrium would be
for the two players to flip a coin and for Smith
to choose Continue if it comes up heads and for
Jones to choose Continue otherwise. The prob-
ability of each choosing Continue is 0.5, and the
expected payoff for each is 1.0.

Cheap talk (Crawford & Sobel [1982]). Cheap
talk refers to costless communication when play-
ers can lie without penalty.

In Ranked Coordination, cheap talk instantly
allows the players to make the desirable outcome
a focal point, though it does not get rid of the
other equilibria.
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The Civic Duty Game

Jones
Ignore (γ) Telephone (1− γ)

Ignore (γ) 0, 0 → 10,7
Smith: ↓ ↑

Telephone (1− γ) 7,10 ← 7, 7

Payoffs to: (Row, Column). Arrows show how a player
can increase his payoff.

In the N-player version of the game, the payoff
to Smith is 0 if nobody calls, 7 if he himself calls,
and 10 if one or more of the other N − 1 players
calls.

If all players use the same probability γ of Ignore,
the probability that the other N−1 players besides
Smith all choose Ignore is γN−1, so the probabil-
ity that one or more of them chooses Telephone
is 1− γN−1.

πSmith(Telephone) = 7 = πSmith(Ignore) = γN−1(0)+(1−γN−1)(10).
(15)

Equation (15) tells us that

γN−1 = 0.3 (16)

so
γ∗ = 0.3

1
N−1 . (17)

18



γ∗ = 0.3
1

N−1 . (18)

If N = 2, Smith chooses Ignore with a proba-
bility of 0.30.

As N increases, Smith’s expected payoff re-
mains equal to 7 whether N = 2 or N = 38, since
his expected payoff equals his payoff from the
pure strategy of Telephone. The value γ∗, the
probability of Ignore for each player, rises with
N .

If N = 38, the value of γ∗ is about 0.97. (Kitty
Genovese case) (think of juries)

The probability that nobody calls is γ∗N . Equa-
tion (16) shows that γ∗N−1 = 0.3, so γ∗N = 0.3γ∗,
which is increasing in N because γ∗ is increasing
in N . If N = 2, the probability that neither player
phones the police is γ∗2 = 0.09.

When there are 38 players, the probability rises
to γ∗38, about 0.29. The more people that watch
a crime, the less likely it is to be reported.
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Randomizing Is Not Always Mixing:

Assume that the benefit of preventing or catch-
ing cheating is 4, the cost of auditing is C, where
C < 4, the cost to the suspects of obeying the
law is 1, and the cost of being caught is the fine
F > 1.

Auditing Game I, II

Suspects
Cheat (θ) Obey (1− θ)

Audit (γ) 4− C,−F → 4− C,−1
IRS: ↑ ↓

Trust (1− γ) 0,0 ← 4,−1

π(Audit) = θ(4− C) + (1− θ)(4− C) =
π(Trust) = θ(0) + (1− θ)(4), 4− C = 4− 4θ, θ∗ = C/4

π(Cheat) = γ(−F ) + (1− γ)(0) =
π(Obey) = γ(−1) + (1− γ)(−1),−γF = −1, γ∗ = 1/F.

The payoffs are πgov = 4− C and πsuspect = −1.

Auditing Game II makes this sequential: The
government moves first. The payoffs are identi-
cal, but there is always auditing and never cheat-
ing.
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In Auditing Game I, the equilibrium strategy
was to audit all suspects with probability 1/F and
none of them otherwise.

That is different from announcing in advance
that the IRS will audit a random sample of 1/F
of the suspects.

For Auditing Game III, suppose the IRS moves
first, but let its move consist of the choice of the
proportion α of tax returns to be audited.

We know that the IRS is willing to deter the
suspects from cheating, since it would be willing
to choose α = 1 and replicate the result in Au-
diting Game II if it had to. It chooses α so that

πsuspect(Obey) ≥ πsuspect(Cheat), (19)

i.e.,
−1 ≥ α(−F ) + (1− α)(0). (20)

In equilibrium, therefore, the IRS chooses α =
1/F and the suspects respond with Obey. The
IRS payoff is (4 − αC), which is better than the
(4−C) in the other two games, and the suspect’s
payoff is −1, exactly the same as before.

21



The Cournot Game

Players
Firms Apex and Brydox

The Order of Play
Apex and Brydox simultaneously choose quanti-
ties qa and qb from the set [0,∞).

Payoffs
Marginal cost is constant at c = 12. Demand is
a function of the total quantity sold, Q = qa + qb,
and we will assume it to be linear (for general-
ization see Chapter 14), and, in fact, will use the
following specific function:

p(Q) = 120− qa − qb. (21)

Payoffs are profits, which are given by a firm’s
price times its quantity minus its costs, i.e.,

πApex = (120− qa − qb)qa − cqa = (120− c)qa − q2a − qaqb;

πBrydox = (120− qa − qb)qb − cqb = (120− c)qb − qaqb − q2b .
(22)
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Figure 2: Reaction Curves in the Cournot Game

The monopoly output maximizes pQ − cQ =
(120−Q− c)Q with respect to the total output of
Q, resulting in the first-order condition

120− c− 2Q = 0, (23)

which implies a total output of Q = 54 and a price
of 66.
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To find the “Cournot-Nash” equilibrium, we
need to refer to the best-response functions or
reaction functions. If Brydox produced 0, Apex
would produce the monopoly output of 54. If
Brydox produced qb = 108 or greater, the market
price would fall to 12 and Apex would choose
to produce zero. The best response function is
found by maximizing Apex’s payoff, πApex = (120−
c)qa−q2a−qaqb, with respect to his strategy, qa. This
generates the first-order condition 120− c− 2qa−
qb = 0, or

qa = 60−
(qb + c

2

)
= 54−

(
1

2

)
qb. (24)
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qa = 54−
(
1

2

)
qb. (25)

The reaction functions of the two firms are la-
belled Ra and Rb in Figure 2. Where they cross,
point E, is the Cournot-Nash equilibrium, the Nash
equilibrium when the strategies consist of quan-
tities.

Algebraically, it is found by solving the two re-
action functions for qa and qb, which generates the
unique equilibrium, qa = qb = 40 − c/3 = 36. The
equilibrium price is then 48 (= 120-36-36).
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The Stackelberg Game

Players
Firms Apex and Brydox

The Order of Play
1 Apex chooses quantity qa from the set [0,∞).
2 . Brydox chooses quantity qb from the set [0,∞).

Payoffs
Marginal cost is constant at c = 12. Demand is a
function of the total quantity sold, Q = qa + qb:

p(Q) = 120− qa − qb. (26)

Payoffs are profits, which are given by a firm’s
price times its quantity minus its costs, i.e.,

πApex = (120− qa − qb)qa − cqa = (120− c)qa − q2a − qaqb;

πBrydox = (120− qa − qb)qb − cqb = (120− c)qb − qaqb − q2b .
(27)

The actions and payoffs are identical to the
Cournot Game. All that has changed is that it is
sequential now. And— that we act as if the se-
quence mattered. We will look for an asymmetric
equilibrium in quantities now.
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If Apex forecasts Brydox’s output to be qb =
60− qa+c

2 , Apex can substitute this into his payoff
function in (22) to obtain

πa = (120− c)qa − q2a − qa(60−
qa + c

2
). (28)

Maximizing his payoff with respect to qa yields
the first-order condition

(120− c)− 2qa − 60 + qa +
c

2
= 0, (29)

so qa = 60 − c/2 = 54. Once Apex chooses this
output, Brydox chooses his output to be qb = 27.
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The Bertrand Game

Players
Firms Apex and Brydox

The Order of Play
Apex and Brydox simultaneously choose prices pa
and pb from the set [0,∞).

Payoffs
Marginal cost is constant at c = 12. Demand is a
function of the total quantity sold, Q(p) = 120−p.
The payoff function for Apex (Brydox’s would be
analogous) is

πa =


(120− pa)(pa − c) if pa ≤ pb

(120−pa)(pa−c)
2 if pa = pb

0 if pa > pb

The Bertrand Game has a unique Nash equi-
librium: pa = pb = c = 12, with qa = qb = 54.
That this is a weak Nash equilibrium is clear: if
either firm deviates to a higher price, it loses all
its customers and so fails to increase its profits to
above zero. In fact, this is an example of a Nash
equilibrium in weakly dominated strategies.

That the equilibrium is unique is less clear. To
see why it is, divide the possible strategy profiles
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into four groups:

pa < c or pb < c. In either of these cases, the
firm with the lowest price will earn negative
profits, and could profitably deviate to a price
high enough to reduce its demand to zero.

pa > pb > c or pb > pa > c. In either of these cases
the firm with the higher price could deviate to
a price below its rival and increase its profits
from zero to some positive value.

pa = pb > c. In this case, Apex could deviate
to a price ε less than Brydox and its profit
would rise, because it would go from selling
half the market quantity to selling all of it with
an infinitesimal decline in profit per unit sale.

pa > pb = c or pb > pa = c. In this case, the firm
with the price of c could move from zero prof-
its to positive profits by increasing its price
slightly while keeping it below the other firm’s
price.
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The Differentiated Bertrand Game

Let us now move to a different duopoly market,
where the demand curves facing Apex and Brydox
are

qa = 24− 2pa + pb (30)

and
qb = 24− 2pb + pa, (31)

and they have constant marginal costs of c = 3.

The payoffs are

πa = (24− 2pa + pb)(pa − c) (32)

and
πb = (24− 2pb + pa)(pb − c). (33)

Apex and Brydox simultaneously choose prices
pa and pb from the set [0,∞).

Maximizing Apex’s payoff by choice of pa, we
obtain the first- order condition,

dπa
dpa

= 24− 4pa + pb + 2c = 0, (34)

and the reaction function,

pa = 6 +

(
1

2

)
c +

(
1

4

)
pb = 7.5 +

(
1

4

)
pb. (35)
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Brydox’s reaction curve slopes upwards too.
Equilibrium occurs where pa = pb = 10. The quan-
tity each firm produces is 14, which is below the
21 each would produce at prices of pa = pb = c = 3.
Figure 4 shows that the reaction functions inter-
sect.
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Esther Gal-Or (1985) notes that if reaction
curves slope down (as with strategic substitutes
and Cournot) there is a first-mover advantage,
whereas if they slope upwards (as with strategic
complements and differentiated Bertrand) there
is a second-mover advantage.

Supermodularity is a related concept. With
only one choice variable, as here, it boils down
to, for players i and j with strategies si, sj:

∂2πi
∂sisj

≥ 0.
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Four common reasons why an equilibrium might
not exist

(1) An unbounded strategy space

Smith can borrow money and buy as much tin
as he wants for $6/pound. He knows that the
price will be $7/pound tomorrow. What quantity
x will he buy, if his borrowing is unlimited?

Choosing x in the strategy set [0,∞) when his
payoff function is π = (1)x, there is no best strat-
egy.
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(2) An open strategy space

Now say that government regulations constrain
him to buy less than 1,000 pounds. His strategy
is x ∈ [0, 1, 000), which is bounded by 1000.

(3) A discrete strategy space (or, more generally,
a nonconvex strategy space)

If the strategies are strategic substitutes, then
if player 1 increases his strategy in response to s2,
player 2 will in turn want to reduce his strategy. If
the strategy spaces are discrete, player 2 cannot
reduce his strategy just a little bit– he has to jump
down a discrete level. That could then induce
Player 1 to increase his strategy by a discrete
amount. This jumping of responses can be never-
ending–there is no equilibrium.

This is a problem of “gaps” in the strategy
space. Suppose we had a game in which the gov-
ernment was not limited to amount 0 or 100 of
aid, but could choose any amount in the space
{[0, 10], [90, 100]}. That is a continuous, closed, and
bounded strategy space, but it is non-convex.
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(4) A discontinuous reaction function arising from
nonconcave or discontinuous payoff functions

For a Nash equilibrium to exist, we need for
the reaction functions of the players to intersect.
If the reaction functions are discontinuous, they
might not.

In Panel (a) a Nash equilibrium exists, at the
point, E, where the two reaction functions in-
tersect. In Panel (b) no Nash equilibrium ex-
ists. Firm 2’s reaction function s2(s1) is discon-
tinuous at the point s1 = 0.5. It jumps down from
s2(0.5) = 0.6 to s2(0.50001) = 0.4. The reaction
curves never intersect, and no equilibrium exists.

If the two players can use mixed strategies,
then an equilibrium will exist even for the game
in Panel (b).
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A first reason why Player 1’s reaction func-
tion might be discontinuous in the other play-
ers’ strategies is that his payoff function is dis-
continuous in either his own or the other play-
ers’ strategies. This is what happens in Chapter
14’s Hotelling Pricing Game, where if Player 1’s
price drops enough (or Player 2’s price rises high
enough), all of Player 2’s customers suddenly rush
to Player 1.

A second reason why Player 1’s reaction func-
tion might be discontinuous in the other players’
strategies is that his payoff function is not con-
cave.
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If firms are Cournot competitors with different
marginal costs, they will have different market
shares. The Herfindahl Index equals the weighted
average of their price-cost margins multiplied by
the industry elasticity of demand (and multiplied
by -10,000).
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