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The Chainstore Paradox

Suppose that we repeat Entry Deterrence I 20
times in the context of a chainstore that is try-
ing to deter entry into 20 markets where it has
outlets.

First, though, let’s look at the Prisoner’s Dilemma.

Prisoner’s Dilemma

Column
Silence Blame

Silence 5,5 → -5,10
Row: ↓ ↓

Blame 10,-5 → 0,0

What if we repeat it twice? N times? An
infinite number of times?
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Because the one-shot Prisoner’s Dilemma has
a dominant-strategy equilibrium, blaming is the
only Nash outcome for the repeated Prisoner’s
Dilemma, not just the only perfect outcome.

The backwards induction argument does not
prove that blaming is the unique Nash outcome.
Why not? See the next page of slides.
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Here is why blaming is the only Nash outcome:

1. No strategy in the class that calls for Silence
in the last period can be a Nash strategy, because
the same strategy with Blame replacing Silence
would dominate it.

2. If both players have strategies calling for
blaming in the last period, then no strategy that
does not call for blaming in the next-to-last pe-
riod is Nash, because a player should deviate by
replacing Silence with Blame in the next- to-last
period. And then keep going to 2nd-to-last pe-
riod, etc.

Uniqueness is only on the equilibrium path.
Nonperfect Nash strategies could call for coop-
eration at nodes away from the equilibrium path.
The strategy of always blaming is not a dominant
strategy, not even weakly.

If the one-shot game has multiple Nash equilib-
ria, the perfect equilibrium of the finitely repeated
game has not only the one-shot outcomes, but
others. Benoit & Krishna (1985).
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What if we repeat the Prisoner’s Dilemma an
infinite number of times?

Defining payoffs in games that last an infinite
number of periods presents the problem that the
total payoff is infinite for any positive payment
per period.

1 Use an overtaking criterion. Payoff stream π is
preferred to π̃ if there is some time T ∗ such that
for every T ≥ T ∗,

T∑
t=1

δtπt >

T∑
t=1

δtπ̃t.

2 Specify that the discount rate is strictly posi-
tive, and use the present value. Since payments
in distant periods count for less, the discounted
value is finite unless the payments are growing
faster than the discount rate.

3 Use the average payment per period, a tricky
method since some sort of limit needs to be taken
as the number of periods averaged goes to infin-
ity.
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Here is a strategy that yields an equilibrium
with SILENCE.

The Grim Strategy
1 Start by choosing Silence.
2 Continue to choose Silence unless some player has cho-
sen Blame, in which case choose Blame forever.

The GRIM STRATEGY is an example of a trig-
ger strategy.

Robert Porter (1983) Bell J. Economics, “A
study of cartel stability: The Joint Executive Com-
mittee, 1880-1886,” examines price wars between
railroads in the 19th century. The classic refer-
ence.

Slade (1987) concluded that price wars among
gas stations in Vancouver used small punishments
for small deviations rather than big punishments
for big deviations.

Now think back to the 20-repeated Entry De-
terrence game.
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Not every strategy that punishes blaming is
perfect. A notable example is the strategy of
Tit-for-Tat.

Tit-for-Tat
1 Start by choosing Silence.
2 Thereafter, in period n choose the action that the other
player chose in period (n− 1).

Tit-for-Tat is almost never perfect in the in-
finitely repeated Prisoner’s Dilemma because it
is not rational for Column to punish Row’s initial
Blame.

The deviation that kills the potential equilib-
rium is not from Silence, but from the off-equilibrium
action rule of Blame in response to a Blame.

Adhering to Tit-for-Tat’s punishments results
in a miserable alternation of Blame and Silence,
so Column would rather ignore Row’s first Blame.

Problem 5.5 asks you to show this formally.
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Theorem 1 (the Folk Theorem)

In an infinitely repeated n-person game with
finite action sets at each repetition, any profile
of actions observed in any finite number of rep-
etitions is the unique outcome of some subgame
perfect equilibrium given

Condition 1: The rate of time preference is
zero, or positive and sufficiently small;

Condition 2: The probability that the game
ends at any repetition is zero, or positive and
sufficiently small; and

Condition 3: The set of payoff profiles that
strictly Pareto dominate the minimax payoff pro-
files in the mixed extension of the one-shot game
is n- dimensional.
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Condition 1: Discounting

The Grim Strategy imposes the heaviest pos-
sible punishment for deviant behavior.

The Prisoner’s Dilemma

Column
Silence Blame

Silence 5,5 → -5,10
Row: ↓ ↓

Blame 10,-5 → 0,0

π(equilibrium) = 5 +
5

r

π(BLAME) = 10 + 0

These are equal at r = 1 , so δ = 1
1+r = .5
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Condition 2: A probability of the game ending

If θ > 0, the game ends in finite time with prob-
ability one. The expected number of repetitions
is finite.

The probability that the game lasts till infinity
is zero.

Compare with the Cauchy distribution (Stu-
dent’s t with one degree of freedom) which has
no mean.

It still behaves like a discounted infinite game,
because the expected number of future repeti-
tions is always large, no matter how many have
already occurred. It is “stationary”.

The game still has no Last Period, and it is still
true that imposing one, no matter how far beyond
the expected number of repetitions, would radi-
cally change the results.

“1 The game will end at some uncertain date
before T .”

“2 There is a constant probability of the game
ending.”
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Amazing Grace on Stationarity

When we’ve been there ten thousand years,
Bright shining as the sun,
We’ve no less days to sing God’s praise
Than when we’d first begun.
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Condition 3: Dimensionality

The “minimax payoff” is the payoff that results
if all the other players pick strategies solely to
punish player i, and he protects himself as best
he can.

The set of strategies si∗−i is a set of (n− 1) min-
imax strategies chosen by all the players except
i to keep i’s payoff as low as possible, no matter
how he responds. si∗−i solves

Minimize
s−i

Maximum
si πi(si, s−i). (1)

Player i’s minimax payoff, minimax value, or
security value: his payoff from this.

We’ll come back and talk about this more after
finishing up the dimensionality condition.
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The dimensionality condition is needed only for
games with three or more players.

It is satisfied if there is some payoff profile for
each player in which his payoff is greater than his
minimax payoff but still different from the payoff
of every other player.

Thus, a 3-person Ranked Coordination game
would fail it.

The condition is necessary because establish-
ing the desired behavior requires some way for
the other players to punish a deviator without
punishing themselves.

The Dimensionality Condition
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Minimax and Maximin

The strategy s∗i is a maximin strategy for player i
if, given that the other players pick strategies to make i’s
payoff as low as possible, s∗i gives i the highest possible
payoff. In our notation, s∗i solves

Maximize
si

Minimum
s−i πi(si, s−i). (2)

The minimax and maximin strategies for a two-
player game with Player 1 as i:

Maximin: Maximum Minimum π1
s1 s2

Minimax: Minimum Maximum π1
s2 s1

In the Prisoner’s Dilemma, the minimax and
maximin strategies are both Blame.
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Another Minimaxing Game

Tom
Left Right

Up 0,0 1,-1
Joe:

Down 1,2 3,3

If Tom picks Left, the most Joe can get is 1,
from DOWN. Tom minimaxes Joe using LEFT.

If Joe picks Up, the most Tom can get is 0
from LEFT. Joe minimaxes Tom using UP.

If Joe picks Down, the worst he can do is 1,
from Tom picking LEFT. That is Joe’s maximin
strategy.

If Tom picks Left, the worst he can get is 0, if
Joe picks UP. That is Tom’s maximin strategy.
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Joe’s Maximin value: The highest payoff Joe
can assure himself if the other players are out to
get him.

Joe’s Maximin strategy: A strategy that as-
sures Joe of his maximin payoff.

Joe’s Minimax value: The lowest payoff Joe’s
opponent can limit him to.

Tom’s Minimax strategy against Joe: Tom’s
strategy that limits Joe to Joe’s minimax payoff.

The minimax and maximin strategies for a two-
player game :

1’s maximin strategy Maximum Minimum π1
s1 s2

2’s strategy Minimum Maximum π1
to minimax 1: s2 s1
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Under minimax, Player 2 is purely malicious
but must choose his mixing probability first, in
his attempt to cause player 1 the maximum pain.

Under maximin, Player 1 chooses his mixing
probability first, in the belief that Player 2 is out
to get him.

In variable-sum games, minimax is for sadists
and maximin for paranoids.

The maximin strategy need not be unique.

Since maximin behavior can also be viewed as
minimizing the maximum loss that might be suf-
fered, decision theorists refer to such a policy as
a minimax criterion.
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The Minimax Illustration Game

Column
Left Right

Up −2, 2 1 ,−2
Row: Middle 1 ,−2 −2, 2

Down 0, 1 0, 1

In the Minimax Illustration Game Row can guar-
antee himself a payoff of 0 by choosing Down, so
that is his maximin strategy.

Column cannot hold Row’s payoff down to 0
by using a pure strategy, so his minimax strategy
must be mixed.

Column’s minimax strategy is (Probability 0.5 of
Left, Probability 0.5 of Right).

Row would respond with Down, for a minimax
payoff of 0, since either Up, Middle, or a mixture
of the two would give him a payoff of −0.5 (=
0.5(−2) + 0.5(1)).

It happens that Down, (Probability 0.5 of Left, Prob-
ability 0.5 of Right) is a Nash equilibrium too.

18



The Minimax Illustration Game

Column
Left Right

Up −2, 2 1 ,−2
Row: Middle 1 ,−2 −2, 2

Down 0, 1 0, 1

Row’s strategy for minimaxing Column is (Prob-
ability 0.5 of Up, Probability 0.5 of Middle). Row then
gets 0 with left, right, or a mixture.

Column’s maximin strategy is (Probability 0.5 of
Left, Probability 0.5 of Right), and his minimax payoff
is 0.

The Minimax Theorem (von Neumann [1928]),
says that a minimax equilibrium exists in pure or
mixed strategies for every two-person zero-sum
game and is identical to the maximin equilibrium.
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Precommitment

What if we allow players to commit at the start
to a strategy for the rest of the game?

If precommitted strategies are chosen simul-
taneously, the equilibrium outcome of the finitely
repeated Prisoner’s Dilemma calls for always blam-
ing.

What about in sequence?

The outcome depends on the particular values
of the parameters, but one possible equilibrium is
the following:

Row moves first and chooses the strategy (Si-
lence until Column Blames; thereafter always Blame),
and Column chooses (Silence until the last period;
then Blame).

The observed outcome? Why is it Nash? The
game has a second-mover advantage.
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The One-Sided Prisoner’s Dilemma (Reputation)

Consumer (Column)
Buy Boycott

High Quality 5,5 ← 0,0
Seller (Row): ↓ l

Low Quality 10, -5 → 0,0

The Nash and iterated dominance equilibria are
(Low Quality, Boycott), but it is not a dominant-
strategy equilibrium.

Buyer does not have a dominant strategy, be-
cause if Seller were to choose High Quality, Buyer
would choose Buy, to obtain the payoff of 5; but if
Row chooses LowQuality, Column would choose
Boycott, for a payoff of zero.

Low Quality is however, weakly dominant for
Seller, which makes (Low Quality, High Quality) the
iterated dominant strategy equilibrium.
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Product Quality, Klein & Leffler (1981)

The Order of Play
1 An endogenous number n of firms decide to
enter the market at cost F .

2 A firm that has entered chooses its quality to
be High or Low, incurring the constant marginal
cost c if it picks High and zero if it picks Low.
The choice is unobserved by consumers. The firm
also picks a price p.

3 Consumers decide which firms to buy from.
The amount bought from firm i is denoted qi.

4 All consumers observe the quality of all goods
purchased in that period.

5 The game returns to (2) and repeats.
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Payoffs
Consumers buy q(p) =

∑n
i=1 qi of high quality, 0 of

low quality. where dq
dp < 0.

If a firm stays out, its payoff is zero.
If firm i enters, it receives −F immediately. Its
current end-of-period payoff is qip if it produces
Low quality and qi(p− c) if it produces High qual-
ity. The discount rate is r ≥ 0.

An equilibrium:

Firms. ñ firms enter. Each produces high qual-
ity and sells at price p̃. If a firm ever deviates from
this, it thereafter produces low quality (and sells
at the same price p̃).

Buyers. Buyers start by choosing randomly among
the firms charging p̃. Thereafter, they remain
with their initial firm unless it changes its price
or quality, in which case they switch randomly to
a firm that has not changed its price or quality.
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The equilibrium must satisfy three constraints:
incentive compatibility, competition, and market
clearing.

The incentive compatibility constraint says that
the individual firm must be willing to produce high
quality.

qip

1 + r
≤ qi(p− c)

r
(incentive compatibility).

(3)

That means the price must satisfy:

p̃ ≥ (1 + r)c. (4)

The second constraint is that competition drives
profits to zero, so firms are indifferent between
entering and staying out of the market.

qi(p− c)
r

= F (competition) (5)

Replacing p gives

qi =
F

c
. (6)
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Third, the output must equal the quantity de-
manded by the market.

nqi = q(p). (market clearing) (7)

Combining equations (3), (6), and (7) yields

ñ =
cq([1 + r]c)

F
. (8)

What if there were no entry cost?

Would profits be dissipated?
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Reputation: Umbrella Branding

What if there are two goods? Could a firm do
better by using umbrella branding, selling both
under the threat of losing its entire reputation if
one of them turns out to be defective?

What is your intuition?

Would it matter if the seller was a monopoly
or not?
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Customer Switching Costs, Farrell & Shapiro
(1988)

Players
Firms Apex and Brydox, and a series of customers,
each of whom is first called a youngster and then
an oldster.

The Order of Play
1a Brydox, the initial incumbent, picks the in-
cumbent price pi1.
1b Apex, the initial entrant, picks the entrant
price pe1.
1c The oldster picks a firm.
1d The youngster picks a firm.
1e Whichever firm attracted the youngster be-
comes the incumbent.
1f The oldster dies and the youngster becomes
an oldster.
2a Return to (1a), possibly with new identities
for entrant and incumbent.
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Payoffs
The discount factor is δ. The customer reserva-
tion price is R and the switching cost is c. The
per period payoffs in period t are, for j = (i, e),

Payoff for firm j:
0 if no customers are attracted.

pjt if just oldsters or just youngsters

2pjt if both oldsters and youngsters

The payoff for an oldster:{
R− pit if he buys from the incumbent.
R− pet − c if he switches to the entrant.

The payoff for a youngster:{
R− pit if he buys from the incumbent.
R− pet if he buys from the entrant.

28



A Markov strategy is a strategy that, at each node,
chooses the action independently of the history of the
game except for the immediately preceding action (or ac-
tions, if they were simultaneous).

Here, a firm’s Markov strategy is its price as a
function of whether the particular is the incum-
bent or the entrant, and not a function of the
entire past history of the game.

There are two ways to use Markov strategies:

(1) The right way. Look for equilibria that use
Markov strategies (perfect Markov equilibrium )

(2)The wrong way. Disallow non-Markov strate-
gies and then look for equilibria.
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Brydox, the initial incumbent, moves first. It
does not want Bertrand competition and zero
profits. So it chooses pi low enough that Apex
is not tempted to choose pe < pi − c and steal
away the oldsters.

Entrant Apex’s profit is pi if it chooses pe = pi

and serves just youngsters (we need for it to
get ALL the youngsters in equilibrium—open-set
problem) and 2(pi − c) if it chooses pe = pi − c
and serves both oldsters and youngsters. Bry-
dox chooses pi to make Apex indifferent between
these alternatives, so

pi = 2(pi − c), (9)

and
pi = 2c. (10)

Apex will get all the entrants, and therefore in
equilibrium, Apex and Brydox take turns being
the incumbent. Also, Apex charges the same
price as Brydox, which is the most it can get away
with charging the youngsters:

pe = pi = 2c.
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Let’s compute the payoffs. First, note that
the Oldsters are getting a better price than the
Youngsters, even though the are the captive cus-
tomers.

The equilibrium payoff of the current entrant is
the immediate payment of pe plus the discounted
value of being the incumbent in the next period:

π∗e = pe + δπ∗i . (11)

The incumbent’s payoff is the immediate pay-
ment of pi plus the discounted value of being the
entrant next period:

π∗i = pi + δπ∗e . (12)

In equilibrium the incumbent and the entrant
sell the same amount at the same price, so π∗i =
π∗e and

π∗i = 2c + δπ∗i . (13)

It follows that

π∗i = π∗e =
2c

1− δ
. (14)
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5.6 Evolutionary Equilibrium: Hawk-Dove

A strategy s∗ is an evolutionarily stable strategy, or
ESS, if, using the notation π(si, s−i) for player i’s pay-
off when his opponent uses strategy s−i, for every other
strategy s′ either

π(s∗, s∗) > π(s′, s∗) (15)

or
(a) π(s∗, s∗) = π(s′, s∗)
and
(b) π(s∗, s′) > π(s′, s′).

(16)

If condition (17) holds, then a population of play-
ers using s∗ cannot be invaded by a deviant us-
ing s′. If condition (18) holds, then s′ does well
against s∗, but badly against itself, so that if more
than one player tried to use s′ to invade a popu-
lation using s∗, the invaders would fail.
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A strategy s∗ is an evolutionarily stable strategy, or
ESS, if, using the notation π(si, s−i) for player i’s pay-
off when his opponent uses strategy s−i, for every other
strategy s′ either

π(s∗, s∗) > π(s′, s∗) (17)

or
(a) π(s∗, s∗) = π(s′, s∗)
and
(b) π(s∗, s′) > π(s′, s′).

(18)

Condition (17) is satisifed when s∗ is a strong
Nash equilibrium (although not every strong Nash
strategy is an ESS).

Condition (18) is satisfied if s∗ is only a weak
Nash strategy, but the weak alternative s′ is not
a best response to itself.

ESS is a refinement of Nash: Nash plus:

(a) it has the highest payoff of any strategy
used in equilibrium (which rules out equilibria with
asymmetric payoffs),

(b) any other best response s′ is not as good
a response as s∗ to itself.
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ESS is a refinement of Nash: Nash plus:

(a) it has the highest payoff of any strategy
used in equilibrium (which rules out equilibria with
asymmetric payoffs),

(b)Any other best response s′ does better against
s∗ than it does against s′.

Example: The Battle of the Sexes. The mixed
strategy equilibrium is an ESS, because a player
using it has as high a payoff as any other player.
The two pure strategy equilibria are not made up
of ESS’s, though, because in each of them one
player’s payoff is higher than the other’s.

Ranked Coordination has two pure strategy equi-
libria. They both use ESS’s. The “bad” equilib-
rium strategy is an ESS, because given that the
other players are using it, no player could do as
well by deviating.

The mixed-strategy equilibrium is a best re-
sponse to itself.
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Example: The Utopian Exchange Economy. In
Utopia, each citizen can produce either one or
two units of individualized output. He will then
go into the marketplace and meet another citizen.

If either of them produced only one unit, trade
cannot increase their payoffs.

If both of them produced two, they can trade
one unit for one unit, and both end up happier
with more variety.
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The Utopian Exchange Economy Game

Jones
Low Output HighOutput

LowOutput 1, 1 ↔ 1, 1
Smith: l ↓

High Output 1,1 → 2,2

This game has three Nash equilibria, one of
which is in mixed strategies. High Output is an ESS
by condition (a): it is a strict Nash equilibrium.

Low Output fails to meet condition (b). High out-
put is weakly best response to it, and High output
does even better against itself.

If the economy began with all citizens choosing
Low Output, then if Smith deviated to High Output
he would not do any better, but if two people
deviated to High Output, they would do better in
expectation because they might meet each other
and receive (2,2).

36



An Example of ESS: Hawk-Dove

A resource worth V = 2 “fitness units” is at
stake when the two birds meet. If they both fight,
the loser incurs a cost of C = 4, which means that
the expected payoff when two Hawks meet is −1
(= 0.5[2] + 0.5[−4]) for each of them.

Table 5 Hawk-Dove: Economics Notation

Bird Two
Hawk Dove

Hawk -1,-1 → 2,0
Bird One: ↓ ↑

Dove 0, 2 ← 1,1
Payoffs to: (Bird One, Bird Two). Arrows show how a
player can increase his payoff.

Table 6 Hawk-Dove: Biology Notation

Bird Two
Hawk Dove

Hawk -1 2
Bird One:

Dove 0 1
Payoffs to: (Bird One)
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Hawk-Dove has no symmetric pure-strategy Nash
equilibrium, and hence no pure-strategy ESS, since
in the two asymmetric Nash equilibria, Hawk gives
a bigger payoff than Dove, and the doves would
disappear from the population.

In the mixed-strategy ESS, the equilibrium strat-
egy is to be a hawk with probability 0.5 and a dove
with probability 0.5, which can be interpreted as
a population 50 percent hawks and 50 percent
doves.

The equilibrium is stable in a sense similar to
the Cournot equilibrium. If 60 percent of the pop-
ulation were hawks, a bird would have a higher
fitness level as a dove. If “higher fitness” means
being able to reproduce faster, the number of
doves increases and the proportion returns to 50
percent over time.
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The bourgeois strategy (a correlated strategy)
is an ESS. Under this strategy, the bird behaves
as a hawk if it arrives first, and a dove if it arrives
second.

The bourgeois strategy has an expected payoff
of 1 from meeting itself, and behaves exactly like
a 50:50 randomizer when it meets a strategy that
ignores the order of arrival, so it can successfully
invade a population of 50:50 randomizers.
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The ESS is suited to games in which all the
players are identical and interacting in pairs.

The approach follows three steps:
(1) the initial population proportions and the prob-
abilities of interactions,
(2) the pairwise interactions,
(3) the dynamics by which players with higher
payoffs increase in number in the population.
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Slow dynamics also makes the starting point
of the game important, unlike the case when ad-
justment is instantaneous. Figure 2, taken from
David Friedman (1991), shows a way to graphi-
cally depict evolution in a game in which all three
strategies of Hawk, Dove, and Bourgeois are used.
A point in the triangle represents a proportion of
the three strategies in the population. At point
E3, for example, half the birds play Hawk, half
play Dove, and none play Bourgeois, while at E4

all the birds play Bourgeois.

Evolutionary Dynamics in the Hawk-Dove-
Bourgeois Game
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The figure also shows the importance of mu-
tation in biological games. If the population of
birds is 100 percent dove, as at E2, it stays that
way in the absence of mutation, since if there are
no hawks to begin with, the fact that they would
reproduce at a faster rate than doves becomes
irrelevant.
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