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6 Dynamic Games with Incomplete Information

Entry Deterrence II: Fighting Is Never Profitable: X=1

Subgame perfectness does not rule out any Nash
equilibria. The only subgame is the entire game.
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Trembling-Hand Perfectness

Trembling-hand perfectness — Selten (1975) says a
strategy that is to be part of an equilibrium must be
optimal for the player even if there is a small chance
that the other player’s hand will “tremble” :

.

The strategy profile s∗ is a trembling-hand perfect equilib-
rium if for any ε there is a vector of positive numbers δ1, . . . , δn ∈
[0, 1] and a vector of completely mixed strategies σ1, . . . σn such
that the perturbed game where every strategy is replaced by
(1− δi)si+ δiσi has a Nash equilibrium in which every strategy
is within distance ε of s∗.

This is hard to use, and undefined when games have
continuous strategy spaces because it is hard to work
with mixtures of a continuum).
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Perfect Bayesian Equilibrium and Sequential Equilib-
rium (Kreps & Wilson (1982))

The profile of beliefs and strategies is called an as-
sessment.

On the equilibrium path, all that the players need to
update their beliefs are their priors and Bayes’ s Rule.
Off the equilibrium path, this is not enough. Sup-
pose that in equilibrium, the entrant always enters. If
the entrant stays out, what is the incumbent to think
about the probability the entrant is weak? Bayes’ s
Rule does not help, because when Prob(data) = 0,
which is the case for data such as Stay Out which
is never observed in equilibrium, the posterior belief
cannot be calculated using Bayes’ s Rule.

Prob(Weak|Stay Out) = Prob(Stay Out|Weak)Prob(Weak)

Prob(Stay Out)
.

(1)

The posterior Prob(Weak|Stay Out) is undefined,
because this requires dividing by zero.
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A perfect bayesian equilibrium is a strategy profile s
and a set of beliefs µ such that at each node of the
game:

(1) The strategies for the remainder of the game
are Nash given the beliefs and strategies of the other
players.
(2) The beliefs at each information set are rational
given the evidence appearing thus far in the game
(meaning that they are based, if possible, on priors
updated by Bayes’ s Rule, given the observed actions
of the other players under the hypothesis that they
are in equilibrium).

Kreps & Wilson (1982b) use this idea to form their
equilibrium concept of sequential equilibrium, but they
impose a third condition to restrict beliefs further:

(3) The beliefs are the limit of a sequence of rational be-
liefs, i.e., if (µ∗, s∗) is the equilibrium assessment, then some
sequence of rational beliefs and completely mixed strategies
converges to it:

(µ∗, s∗) = Limn→∞(µ
n, sn) for some sequence (µn, sn) in {µ, s}.
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Back to Entry Deterrence II

A PBE for Entry Deterrence II :

Entrant: Enter|Weak, Enter|Strong
Incumbent: Collude
Beliefs: Prob( Strong| Stay Out) = 0.4

There is no perfect bayesian equilibrium in which
the entrant chooses Stay Out.

Fight is a bad response even under the most opti-
mistic possible belief, that the entrant is Weak with
probability 1.
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In Entry Deterrence III, assume X = 60, not X = 1.
Fighting is now more profitable for the incumbent than
collusion if the entrant is Weak.

The first equilibrium we’ll examine uses

passive conjectures— “posterior equals prior”

for out-of-equilibrium beliefs, but could use ANY
beliefs— it is completely robust.
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A plausible pooling equilibrium for Entry Deter-
rence III
Entrant: Enter|Weak, Enter|Strong
Incumbent: Collude, Out-of-equilibrium beliefs:
Prob(Strong| Stay Out) = 0.5

In choosing whether to enter, the entrant must pre-
dict the incumbent’s behavior.

If the probability that the entrant is Weak is 0.5,
the expected payoff to the incumbent from choosing
Fight is 30 (= 0.5[0] + 0.5[60]), which is less than the
payoff of 50 from Collude.

The incumbent will collude, so the entrant enters.
The entrant may know that the incumbent’s payoff is
actually 60, but that is irrelevant to the incumbent’s
behavior.
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An implausible equilibrium for Entry Deterrence
III
Entrant: Stay Out|Weak, Stay Out|Strong
Incumbent: Fight,
Out-of-equilibrium beliefs: Prob(Strong|Enter) =
0.1

If the entrant were to deviate and enter, the incum-
bent would calculate his payoff from fighting to be 54
(= 0.1[0] + 0.9[60]), which is greater than the Collude
payoff of 50. The entrant would therefore stay out.
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A conjectured separating equilibrium for Entry
Deterrence III
Entrant: Stay Out|Weak, Enter|Strong
Incumbent: Collude

This turns out not to be an equilibrium.
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A Mixed-Strategy Equilibrium for Entry Deterrence III

The prior for the probability that the entrant is strong is .5.
In this game, the weak and the strong entrant both get the same
payoff from entering. The strong entrant is strong only in the
sense that the incumbent doesn’t want to fight him.

Let the probability that the incumbent colludes be α.

π(enter) = α(40) + (1− α)(−10) = π(stay; out) = 0

Thus, α = .2.

Let θ be the posterior probability that an entrant who enters
is Strong.

π(fight) = θ(0) + (1− θ)(60) = π(collude) = 50

Thus, θ = 1/6.

Let βs and βw be the probabilities with which the strong and
weak entrants enter. We need

θ =
1

6
=
.5 · βs
.5 · βw

There are lots of values which satisfy this condition, e.g. βs =

1/6, βw = 1 or βs = 1/12, βw = 1/2 or βs = 1/10, βw = 6/10.

The weak entrant is more likely to enter! The reason is that
if the strong entrant were to enter with greater probability, the
incumbent would want to Collude.
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The PhD Admissions Game: A Separating Equilibrium

A separating equilibrium for the PhD Admis-
sions Game
Student: Apply |Lover, Do Not Apply | Hater
University: Admit
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A pooling equilibrium for the PhD Admissions
Game
Student: Do Not Apply |Lover, Do Not Apply |Hater
University: Reject, Out-of-equilibrium beliefs:
Prob(Hater |Apply) = 0.9 (passive conjectures)
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Passive Conjectures. Prob(Hater|Apply) = 0.9

This supports the pooling equilibrium.

Complete Robustness. Prob(Hater|Apply) = m, 0 ≤ m ≤ 1

Under this approach, the equilibrium strategy pro-
file must consist of responses that are best, given any
and all out-of-equilibrium beliefs. Our equilibrium for
Entry Deterrence II satisfied this requirement. Com-
plete robustness rules out a pooling equilibrium in the
PhD Admissions Game, because a belief like m = 0
makes accepting applicants a best response, in which
case only the Lover will apply.
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The Intuitive Criterion. Prob(Hater|Apply) = 0

Under the Intuitive Criterion of Cho & Kreps (1987),
if there is a type of informed player who could not
benefit from the out-of-equilibrium action no matter
what beliefs were held by the uninformed player, the
uninformed player’s belief must put zero probability
on that type.

Here, the Hater could not benefit from applying un-
der any possible beliefs of the university, so the uni-
versity puts zero probability on an applicant being a
Hater. This argument will not support the pooling
equilibrium.

An Ad Hoc Specification. Prob(Hater|Apply) = 1

Sometimes the modeller can justify beliefs by the
circumstances of the particular game. Here, one could
argue that anyone so foolish as to apply knowing that
the university would reject them could not possibly
have the good taste to love economics. This supports
the pooling equilibrium also.
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The Beer-Quiche Game of Cho & Kreps (1987). Player
I is weak or strong and doesn’t want to duel. Player
II wants to duel only if player I is weak. Player II does
not know player I’s type, but he observes what player
I has for breakfast. Weak players prefer quiche for
breakast, strong players prefer beer.

E1: Player I has beer. Player II doesn’t duel if beer,
does duel if quiche. Out-of-equilibrium belief: a quiche-
eating player I is weak with probability over 0.5.

E2: Player I has quiche. Player II duel if beer doesn’t
duel if quiche. Out-of-equilibrium belief: a beer-drinking
player I is weak with probability over 0.5.

15



E2: Player I has quiche. Player II duel if beer doesn’t
duel if quiche. Out-of-equilibrium belief: a beer-drinking
player I is weak with probability over 0.5.

Intuitive Criterion: player I could deviate to BEER
by giving the following convincing speech,

I am having beer for breakfast, which ought
to convince you I am strong. The only con-
ceivable benefit to me of breakfasting on beer
comes if I am strong. I would never wish to
have beer for breakfast if I were weak, but if I
am strong and this message is convincing, then
I benefit from having beer for breakfast.
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Entry Deterrence IV: The Incumbent Benefits from
His Own Ignorance

Let X = 300. The entrant knows his type, but the
incumbent does not.

Equilibrium for Entry Deterrence IV
Entrant: Stay Out |Weak, Stay Out |Strong
Incumbent: Fight,
Out-of-equilibrium beliefs: Prob(Strong|Enter) =
0.5 (passive conjectures)
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There is no pure-strategy pooling equilibrium in
which both types of entrant enter, because then the
incumbent’s expected payoff from Fight would be 150
(= 0.5[0] + 0.5[300]), which is greater than the Collude
payoff of 50. Nor is there a pure-strategy separating
equilibrium.

There exists a mixed-strategy equilibrium too.
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Entry Deterrence V: Lack of Common Knowledge of
Ignorance: Both the entrant and the incumbent know
the payoff from (Enter, Fight), but the entrant does not
know whether the incumbent knows.

Entrant: Stay Out|Weak, Stay Out|Strong
Incumbent: Fight|Nature said “Weak”,

Collude|Nature said “Strong”,
Fight |Nature said nothing,
Out-of-equilibrium beliefs:
Prob( Strong|Enter, Nature said nothing) = 0.5 (pas-
sive conjectures)
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Equilibrium for Entry Deterrence V
Entrant: Stay Out|Weak, Stay Out|Strong
Incumbent: Fight|Nature said “Weak”, Collude|Nature
said “Strong”, Fight |Nature said nothing, Out-of-
equilibrium beliefs: Prob( Strong|Enter, Nature
said nothing) = 0.5 (passive conjectures)

With probability 0.9, Nature has said nothing and
the incumbent calculates his expected payoff from
Fight to be 150, and with probability 0.05 (= 0.1[0.5])
Nature has told the incumbent that the entrant is
weak and the payoff from Fight is 300. Even if the en-
trant is strong and Nature tells this to the incumbent,
the entrant would choose Stay Out, because he does
not know that the incumbent knows, and his expected
payoff from Enter would be −5 (= [0.9][−10] + 0.1[40]).

20



Kreps, Milgrom, Roberts, Wilson (1982) : The Gang
of Four Model

One way to incorporate incomplete information would
be to assume that with 30% probability Row is a player
who blindly follows the strategy of Tit-for-Tat.

If Column thinks he is playing against a Tit-for-Tat
player, his optimal strategy is Silence until near the last
period (how near depending on the parameters), and
then Blame.

If he were not certain of this, but the probabil-
ity were high that he faced a Tit-for-Tat player, Row
would choose that same strategy.

But it turns out that even a small probability of a
Tit-for-Tat player can make a big difference.
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Theorem 6.1: The Gang of Four Theorem
Consider a T-stage, repeated Prisoner’s Dilemma, with-
out discounting but with a probability γ of a Tit-for-
Tat player. In any perfect bayesian equilibrium, the
number of stages in which either player chooses Blame
is less than some number M that depends on γ but
not on T.

In equilibrium, Blame is played in the periods near
T. Before that there is a period of mixing, and before
that they play Silence.

The significance of the Gang of Four theorem is that
while the players do resort to Blame as the last pe-
riod approaches, the number of periods during which
they Blame is independent of the total number of pe-
riods. Suppose M = 2, 500. If T = 2, 500, there might
be Blame every period. But if T = 10, 000, there are
7,500 periods without a Blame move. For reasonable
probabilities of the unusual type, the number of peri-
ods of cooperation can be much larger.

Wilson has set up an entry deterrence model in
which the incumbent fights entry (the equivalent of
Silence above) up to seven periods from the end, al-
though the probability the entrant is of the unusual
type is only 0.008.
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Gang of Four Intuition

Column
Silence Blame

Silence 5,5 -5,10
Row:

Blame 10,-5 0,0
Payoffs to: (Row,Column)

Consider what would happen in a 10,001-period PD
with a probability of 0.01 that Row is playing the Grim
Strategy.
A best response for Column to a known Grim player
is (Blame only in the last period, unless Row chooses
Blame first, in which case respond with Blame).
Column’s payoff will be 50,010 (= (10,000)(5) + 10).
Blame Always would just yield 10 as a payoff.

Suppose instead that if Row is not Grim, he will
choose Blame every period. The outcome will be
(Blame, Silence) in the first period and (Blame, Blame)
thereafter, for a payoff to Column of
−5(= −5 + (10, 000)(0)). If the probabilities of the two
outcomes are 0.01 and 0.99, Column’s expected pay-
off is 495.15.

If instead Row follows a strategy of (Blame every
period), his expected payoff is just 0.1 (= 0.01(10) +
0.99(0)).
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Column
Silence Blame

Silence 5,5 -5,10
Row:

Blame 10,-5 0,0
Payoffs to: (Row,Column)

The aggressive strategy is not Row’s best response
to Column’s strategy. A better response is for Row
to choose Silence until the second-to-last period, and
then Blame. Row’s payoff would rise from 10 to
(9,999)(5) + 10.

Given that Column is cooperating in the early peri-
ods, Row will cooperate also. Still not Nash, but we
see why Column chooses Silence in the first period.
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Theorem 6.2: The Incomplete Information Folk The-
orem(Fudenberg & Maskin [1986] p. 547)

For any two-person repeated game without discount-
ing, the modeller can choose a form of irrationality so
that for any probability ε > 0 there is some finite num-
ber of repetitions such that with probability (1 − ε) a
player is rational and the average payoffs in some se-
quential equilibrium are closer than ε to any desired
payoffs greater than the minimax payoffs.
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THE AXELROD TOURNAMENT: Contestants sub-
mitted strategies for a 200-repetition Prisoner’s Dilemma
.

Since the strategies could not be updated during
play, players could precommit, but the strategies could
be as complicated as they wished.

Strategies were submitted in the form of computer
programs. In Axelrod’s first tournament, 14 programs
were submitted as entries. Every program played ev-
ery other program, and the winner was the one with
the greatest sum of payoffs over all the plays. The
winner was Anatol Rapoport, whose strategy was Tit-
for-Tat.

What strategy could have beat Rapoport and all
the others?

After the results of the first tournament were an-
nounced, Axelrod ran a second tournament, adding a
probability θ = 0.00346 that the game would end each
round so as to avoid the Chainstore Paradox. The win-
ner among the 62 entrants was again Anatol Rapoport
with Tit-for-Tat.
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Before choosing his tournament strategy, Rapoport
had written an entire book on The Prisoner’s Dilemma
in analysis, experiment, and simulation.

Why did he choose such a simple strategy as Tit-
for-Tat?

Tit-for-Tat has three strong points.

1. It never initiates blaming (niceness);

2. It retaliates instantly against blaming (provocabil-
ity);

3. It forgives someone who plays Blame but then goes
back to cooperating (it is forgiving).

Tit-for-Tat never beats any other strategy in a one-
on-one contest. In an elimination tournament, Tit-
for- Tat would be eliminated early, because it scores
high payoffs but never the highest payoff.

In a game in which players occasionally blamed be-
cause of trembles, two Tit-for-Tat players facing each
other would do very badly.
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“Reputation Acquisition in Debt Markets” JPE, 1989

Douglas Diamond (1989) explains why old firms are
less likely than young firms to default on debt. The
three types of risk-neutral firms, R, S, and RS, are
“born” at time zero and borrow to finance projects at
the start of each of T periods.

Type RS firms can choose independently risky projects
with negative expected values or safe projects with low
but positive expected values.

Although the risky projects are worse in expecta-
tion, if they are successful the return is much higher
than from safe projects. Type R firms can only choose
risky projects, and type S firms only safe projects.

At the end of each period the projects bring in their
profits and loans are repaid, after which new loans
and projects are chosen for the next period. Lenders
cannot see which project is chosen or a firm’s current
profits, but they can seize the firm’s assets if a loan is
not repaid, which always happens if the risky project
was chosen and turned out unsuccessfully.
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The equilibrium path has three parts. The RS firms
start by choosing risky projects. Their downside risk
is limited by bankruptcy, but if the project is suc-
cessful the firm keeps large profits after repaying the
loan. Over time, the number of firms with access
to the risky project (the RS’s and R’s) diminishes
through bankruptcy, while the number of S’s remains
unchanged.

Lenders can therefore maintain zero profits while
lowering their interest rates. When the interest rate
falls, the value of a stream of safe investment profits
minus interest payments rises relative to the expected
value of the few periods of risky returns minus interest
payments before bankruptcy.
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After the interest rate has fallen enough, the second
phase of the game begins when the RS firms switch
to safe projects, at t1. Only the tiny and diminish-
ing group of type R firms continue to choose risky
projects. Since the lenders know that the RS firms
switch, the interest rate falls sharply at t1. A firm that
is older is less likely to be a type R, so it is charged a
lower interest rate.
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Towards T , the value of future profits from safe
projects declines and the RS’s are again tempted to
choose risky projects.

Between t2 and t3, the RS’s follow a mixed strategy,
an increasing number choosing risky projects. The
interest rate rises as a result.

At t3, the interest rate is high enough and the end
of the game is close enough that the RS’s revert to
the pure strategy of choosing risky projects. The in-
terest rate then falls as the number of RS’s diminishes
because of failed risky projects.
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Why three types of firms, not two?

Types S and RS are clearly needed, but why type
R?

The little extra detail in the game description al-
lows simplification of the equilibrium, because with
three types bankruptcy is never out-of-equilibrium be-
haviour, since the failing firm might be a type R.

Bayes’s Rule can therefore always be applied, elmi-
nating the problem of ruling out peculiar beliefs and
absurd perfect bayesian equilibria.

This is a Gang of Four model but differs from pre-
vious examples in an important respect: the Diamond
model is not stationary, and as time progresses, some
firms of types R and RS go bankrupt, which changes
the lenders’ payoff functions. Thus, it is not a re-
peated game.
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