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Private-Value and Common-Value Auc-
tions

In a private-value auction, a bidder can
learn nothing about his value from knowing the
values of the other bidders.

Knowing all the other values in advance would
not change his estimate. It might change his
bidding strategy.

SPECIAL CASE 1: Independent private-
value auction, in which knowing his own
value tells him nothing about other bidders’
values.

SPECIAL CASE 2: Affiliated private-
value auction he can use knowledge of his
own value to deduce something about other
players’ values. (they are correlated in a cer-
tain sense)

Pure common-value auction, the bid-
ders have identical values, but each bidder forms
his own estimate on the basis of his own private
information.
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Auction Rules

1 Ascending (English, open-cry, open-exit);

2 First-Price (first-price sealed-bid);

3 Second-Price (second-price sealed-bid, Vick-
rey);

4 Descending (Dutch)

5 All-Pay
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Ascending (English, open-cry, open-exit)

Rules
Each bidder is free to revise his bid upwards.
When no bidder wishes to revise his bid further,
the highest bidder wins the object and pays his
bid.

Strategies
A bidder’s strategy is his series of bids as a
function of (1) his value, (2) his prior estimate
of other bidders’ values, and (3) the past bids
of all the bidders. His bid can therefore be
updated as his information set changes.

Payoffs
The winner’s payoff is his value minus his high-
est bid (t = p for him and t = 0 for everyone
else). The losers’ payoffs are zero.
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Some variations:

(1) The bidders offer new prices using pre-specified
increments such as dollars or thousands of
dollars.

(2) The open-exit auction, in which the
price rises continuously and bidders show their
willingness to pay the price by not dropping
out, where a bidder’s dropping out is publicly
announced to the other bidders.

(3) The silent-exit auction (my neologism),
in which the price rises continuously and bid-
ders show their willingness to pay the price by
not dropping out, but a bidder’s dropping out
is not known to the other bidders.

(4) The Ebay auction, in which a bidder
submits his “bid ceiling.” There is a prespeci-
fied ending time.

(5) The Amazon auction, in which a bid-
der submits his bid ceiling. Prespecified ending
time OR ten minutes after the last increase in
the current winning bid, whichever is later.
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A mechanism [G(ṽi, ṽ−i)vi−t(ṽi, ṽ−i)] takes
payments t and gives an object with probability
G to player i if he announces that his value is
ṽi and the other players announce ṽ−i.

An ascending auction can be seen as a mech-
anism in which each bidder announces his value,
the object is awarded to whoever announces the
highest value, and he pays the second-highest
announced value (the second-highest bid).
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The Continuous-Value Auction

Players: One seller and two bidders.

0. Nature chooses Bidder i’s value for the
object, vi, using the strictly positive, atomless
density f (v) on the interval [v, v].
1. The seller chooses a mechanism [G(ṽi, ṽ−i)vi−
t(ṽi, ṽ−i)] that takes payments t and gives the
object with probability G to player i (including
the seller) if he announces that his value is ṽi
and the other players announce ṽ−i. He also
chooses the procedure in which bidders select
ṽi (sequentially, simultaneously, etc.).
2. Each bidder simultaneously chooses to par-
ticipate in the auction or to stay out.
3. The bidders and the seller choose ṽ accord-
ing to the mechanism procedure.
4. The object is allocated and transfers are paid
according to the mechanism, if it was accepted
by all bidders.
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Payoffs:
The seller’s payoff is

πs =

n∑
i=1

t(ṽi, ṽ−i) (1)

Bidder i’s payoff is zero if he does not par-
ticipate, and otherwise is

πi(vi) = G(ṽi, ṽ−i)vi − t(ṽi, ṽ−i) (2)

9



In the Continuous-Value Auction, denote the
highest announced value by ṽ(1), the second-
highest by ṽ(2), and so forth.

The highest bidder gets the object with prob-
ability

G(ṽ(1), ṽ−1) = 1

at price

t(ṽ(1), ṽ−1) = ṽ(2),

and for i 6= 1, G(ṽ(i), ṽ−i) = 0

t(ṽ(1), ṽ−1) = 0.
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The PROFIT-MAXIMIZING (optimal?) mech-
anism has a

reserve price p∗ below which the object
would remain unsold. Thus

G(ṽ(1), ṽ−1) = 1

t(ṽ(1), ṽ−1) = Max{ṽ(2), p
∗} if ṽ(1) ≥ p∗

but G(ṽ(1), ṽ−1) = 0 if ṽ(1) < p∗.

Optimal mechanisms are not always efficient.
The object will go unsold if ṽ(1) < p∗.
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First-Price (first-price sealed-bid)

Rules
Each bidder submits one bid, in ignorance of
the other bids. The highest bidder pays his bid
and wins the object.

Strategies
A bidder’s strategy is his bid as a function of
his value.

Payoffs
The winner’s payoff is his value minus his bid.
The losers’ payoffs are zero.
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The First-Price Auction with a Con-
tinuous Distribution of Values

Suppose Nature independently assigns val-
ues to n risk-neutral bidders using the contin-
uous density f (v) > 0 (with cumulative prob-
ability F (v)) on the support [0, v̄].

A bidder’s payoff as a function of his value
v and his bid function p(v) is, letting G(p(v))
denote the probability of winning with a par-
ticular p(v):

π(v, p(v)) = G(p(v))[v − p(v)]. (3)
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Now go to the board.
Now let us try to find an equilibrium bid function. From equation (3), it is

p(v) = v − π(v, p(v))

G(p(v))
. (4)

That is not very useful in itself, since it has p(v) on both sides. We need to find ways to
rewrite π and G in terms of just v.

First, tackle G(p(v)). Monotonicity of the bid function (from Lemma 1) implies that
the bidder with the greatest v will bid highest and win. Thus, the probability G(p(v)) that
a bidder with price pi will win is the probability that vi is the highest value of all n bidders.
The probability that a bidder’s value v is the highest is F (v)n−1, the probability that each
of the other (n− 1) bidders has a value less than v. Thus,

G(p(v)) = F (v)n−1. (5)

Next think about π(v, p(v)). The Envelope Theorem says that if π(v, p(v)) is the value
of a function maximized by choice of p(v) then its total derivative with respect to v equals
its partial derivative, because ∂π

∂p
= 0:

dπ(v,p(v))
dv

= ∂π(v,p(v))
∂p

∂p
∂v

+ ∂π(v,p(v))
∂v

= ∂π(v,p(v))
∂v

. (6)

We can apply the Envelope Theorem to equation (3) to see how π changes with v assuming
p(v) is chosen optimally, which is appropriate because we are characterizing not just any
bid function, but the optimal bid function. Thus,

dπ(v, p(v))

dv
= G(p(v)). (7)

Substituting from equation (5) gives us π’s derivative, if not π, as a function of v:

dπ(v, p(v))

dv
= F (v)n−1. (8)

To get π(v, p(v)) from its derivative, (8), integrate over all possible values from zero to v
and include the a base value of π(0) as the constant of integration:

π(v, p(v)) = π(0) +

∫ v

0

F (x)n−1dx =
∫ v

0
F (x)n−1dx. (9)

The last step is true because a bidder with v = 0 will never bid a positive amount and so
will have a payoff of π(0, p(0)) = 0.

We can now return to the bid function in equation (4) and substitute for G(p(v)) and
π(v, p(v)) from equations (5) (9):

p(v) = v −
∫ v

0
F (x)n−1dx

F (v)n−1
. (10)
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Suppose F (v) = v/v̄, the uniform distribution. Then (10) becomes

p(v) = v −
∫ v

0

(
x
v̄

)n−1
dx(

v
v̄

)n−1

= v −

∣∣∣∣v
x=0

(
1
v̄

)n−1 (
1
n

)
xn(

v
v̄

)n−1

= v −
(

1
v̄

)n−1 (
1
n

)
vn − 0(

v
v̄

)n−1

= v − v
n

=
(

n−1
n

)
v.

(11)

What a happy ending to a complicated derivation! If there are two bidders and values
are uniform on [0, 1], a bidder should bid p = v/2, which since he has probability v of
winning yields an expected payoff of v2/2. If n = 10 he should bid 9

10
v, which since he

has probability v9 of winning yields him an expected payoff of v10/10, quite close to zero if
v < 1.
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Second-Price Auctions (Second-price
sealed-bid, Vickrey)

Rules
Each bidder submits one bid, in ignorance of
the other bids. The bids are opened, and the
highest bidder pays the amount of the second-
highest bid and wins the object.

Strategies
A bidder’s strategy is his bid as a function of
his value.

Payoffs
The winning bidder’s payoff is his value mi-
nus the second-highest bid. The losing bid-
ders’ payoffs are zero. The seller’s payoff is the
second-highest-bid.
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Consider the following equilibrium.

p1(v = 10) = 10 p1(v = 16) = 16

p2(v = 10) = 1 p2(v = 16) = 10
(12)

Since Bidder 1 never bids less than 10, Bid-
der 2 knows that if v2 = 10 he can never get
a positive payoff, so he is willing to choose
p2(v = 10) = 1. Doing so results in a sale
price of 1, for any p1 > 1, which is better for
Bidder 1 and worse for the seller than a price
of 10, but Bidder 2 doesn’t care about their
payoffs. In the same way, if v2 = 16, Bidder 2
knows that if he bids 10 he will win if v1 = 10,
but if v2 = 16 he would have to pay 16 to win
and would earn a payoff of zero. He might as
well bid 10 and earn his zero by losing.
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Descending Auctions (Dutch)

Rules
The seller announces a bid, which he continu-
ously lowers until some bidder stops him and
takes the object at that price.

Strategies
A bidder’s strategy is when to stop the bidding
as a function of his value.

Payoffs
The winner’s payoff is his value minus his bid.
The losers’ payoffs are zero.

Descending auctions are strategically equiv-
alent to the first-price auction, which means
there is a one-to-one mapping between the strat-
egy sets and the equilibria of the two games.
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All-Pay Auctions

Rules
Each bidder places a bid simultaneously. The
bidder with the highest bid wins, and each bid-
der pays the amount he bid.

Strategies
A bidder’s strategy is his bid as a function of
his value.

Payoffs
The winner’s payoff is his value minus his bid.
The losers’ payoffs are the negative of their
bids.
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The Equal-Value All-Pay Auction

Suppose each of the n bidders has the same
value, v. Why is the equilibrium in mixed
strategies?

Suppose we have a symmetric equilibrium,
so all bidders use the same mixing cumula-
tive distribution M(p). Let us conjecture that
π(p) = 0, which we will later verify.

M(p)n−1v = p, (13)

so

M(p) = n−1

√
p

v
(14)

At the extreme bids that a bidder with value v

might offer, M(0) = n−1
√

0
v = 0 and M(v) =

n−1
√v

v = 1, so we have found a valid distribu-
tion function M(p). Moreover, since the pay-
off from one of the strategies between which it
mixes, p = 0, equals zero, we have verified our
conjecture that π(p) = 0 in the equilibrium.
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M(p) = n−1

√
p

v
, (15)

Figure 2: The Bid Function in an
All-Pay Auction with Identical

Bidders
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The Continuous-Value All-Pay Auction

Suppose each of the n bidders picks his value v from the same density f(v). Conjecture
that the equilibrium is symmetric, in pure strategies, and that the bid function, p(v), is
strictly increasing. The equilibrium payoff function for a bidder with value v who pretends
he has value z is

π(v, z) = F (z)n−1v − p(z), (16)

since if our bidder bids p(z), that is the highest bid only if all (n − 1) other bidders have
v < z, a probability of F (z) for each of them.

The function π(v, z) is not necessarily concave in z, so satisfaction of the first-order
condition will not be a sufficient condition for payoff maximization, but it is a necessary
condition since the optimal z is not 0 (unless v = 0) or infinity and from (16) π(v, z) is
differentiable in z in our conjectured equilibrium. Thus, we need to find z such that

∂π(v, z)

∂z
= (n− 1)F (z)n−2f(z)v − p′(z) = 0 (17)

In the equilibrium, our bidder does follow the strategy p(v), so z = v and we can write

p′(v) = (n− 1)F (v)n−2f(v)v (18)

Integrating up, we get

p(v) = p(0) +

∫ v

0

(n− 1)F (x)n−2f(x)xdx (19)

This is deterministic, symmetric, and strictly increasing in v, so we have verified our con-
jectures.

We can verify that truthelling is a symmetric equilibrium strategy by substituting for
p(z) from (19) into payoff equation (16).

π(v, z) = F (z)n−1v − p(z)

= F (z)n−1v − p(0)−
∫ z

0

(n− 1)F (x)n−2f(x)xdx

= F (z)n−1v − p(0)− F (z)n−1z +

∫ z

0

F (x)n−1dx,

(20)

where the last step uses integration by parts (
∫

gh′ = gh −
∫

hg′, where g = x and h′ =
(n− 1)F (x)n−2f(x)). Maximizing (20) with respect to z yields

∂π(v, z)

∂z
= (n− 1)F (z)n−2f(z)(v − z), (21)

which is maximized by setting z = v. Thus, if (n − 1) of the bidders are using this p(v)
function, so will the remaining bidder, and we have a Nash equilibrium.
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Let’s see what happens with a particular value distribution. Suppose values are uni-
formly distributed over [0,1], so F (v) = v. Then equation (19) becomes

p(v) = p(0) +

∫ v

0

(n− 1)xn−2(1)xdx

= p(0) +

∣∣∣∣v
x=0

(n− 1)
xn

n

= 0 +

(
n− 1

n

)
vn,

(22)

where we can tell that p(0) = 0 because if p(0) > 0 a bidder with v = 0 would have a
negative expected payoff. If there were n = 2 bidders, a bidder with value v would bid
v2/2, win with probability v, and have expected payoff π = v(v) − v2/2 = v2/2. If there
were n = 10 bidders, a bidder with value v would bid (9/10)v10, win with probability v9,
and have expected payoff π = v(v9)− (9/10)v10 = v10/(10). As we will see when we discuss
the Revenue Equivalence Theorem, it is no accident that this is the same payoff as for the
first-price auction when values were uniformly distributed on [0,1], in equation (??).
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THE REVENUE EQUIVALENCE THEOREM.
Let all players be risk-neutral with private val-
ues drawn independently from the same atom-
less, strictly increasing distribution F (v) on [v, v̄].
If under either Auction Rule A1 or Auction
Rule A2 it is true that:

(a) The winner of the object is the player
with the highest value; and

(b) The lowest bidder type, v = v, has an
expected payment of zero;

then the symmetric equilibria of the two auc-
tion rules have the same expected payoffs for
each type of bidder and for the seller.
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Proof of RET. Let us represent the auction as the truthful equilibrium of a direct mechanism
in which each bidder sends a message z of his type v and then pays an expected amount p(z).
(The Revelation Principle says that we can do this.) By assumption (a), the probability that
a player wins the object given that he chooses message z equals F (z)n−1, the probability
that all (n− 1) other players have values v < z. Let us denote this winning probability by
G(z), with density g(z). Note that g(z) is well defined because we assumed that F (v) is
atomless and everywhere increasing.

The expected payoff of any player of type v is the same, since we are restricting
ourselves to symmetric equilibria. It equals

π(z, v) = G(z)v − p(z). (23)

The first-order condition with respect to the player’s choice of type message z (which we
can use because neither z = 0 nor z = v̄ is the optimum if condition (a) is to be true) is

dπ(z; v)

dz
= g(z)v − dp(z)

dz
= 0, (24)

so
dp(z)

dz
= g(z)v. (25)

We are looking at a truthful equilibrium, so we can replace z with v:

dp(v)

dv
= g(v)v. (26)

Next, we integrate (26) over all values from zero to v, adding p(v) as the constant of
integration:

p(v) = p(v) +

∫ v

v

g(x)xdx. (27)

We can use (27 to substitute for p(v) in the payoff equation (23), which becomes, after
replacing z with v and setting p(v) = 0 because of assumption (b),

π(v, v) = G(v)v −
∫ v

v

g(x)xdx. (28)

Equation (28) says the expected payoff of a bidder of type v depends only on the G(v)
distribution, which in turn depends only on the F (v) distribution, and not on the p(z)
function or other details of the particular auction rule. But if the bidders’ payoffs do not
depend on the auction rule, neither does the seller’s. Q.E.D.
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The symmetric equilibria of the ascending,
first-price, second-price, descending, and all-
pay auctions with continuous values all satisfy
the two conditions of the Theorem: (a) the win-
ner is the bidder with the highest value, and (b)
the lowest type makes an expected payment of
zero. Thus, the following corollary is true.

A REVENUE EQUIVALENCE COROLLARY.
Let all players be risk-neutral with private val-
ues drawn from the same strictly increasing,
atomless distribution F (v). The symmetric equi-
libria of the ascending, first-price, second-price,
descending, and all-pay auctions all have the
same expected payoffs for each type of bidder
and for the seller.
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TWO CAVEATS

(1) Although the different auctions have the
same expected payoff for the seller, they do not
have the same realized payoff.

(2) We need INDEPENDENT private values
for the Revenue Equivalence Theorem.

Consider what happens if there are two bid-
ders, both with values drawn uniformly from
[0,10], but interdependently, with v2 = 10−v1.

If we put aside equilibria with weakly domi-
nated strategies (e.g., for a player to bid 0 if his
value is less than 5), the second-price auction
yields revenue equal to p = v(2), the second-
highest value.

The seller can extract more revenue by using
the auction rule that the winner is the high-
est bidder, and he pays 10 minus the second-
highest bid: both players bid their values then,
and the winning payment equals the highest
value.
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Common-Value Auctions and the Win-
ner’s Curse

The Winner’s Curse: If bidders in a pure
common-value auction all bid up to their valu-
ations, the winner will be the one who overes-
timated the value the most, and he will have a
negative payoff.
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One way to think about a bidder’s condi-
tional estimate is to think about it as a condi-
tional bid.

The bidder would like to submit a bid of

[X if I lose, but (X − Y ) if I win],

where X is his value estimate conditional on
losing and (X − Y ) is his estimate conditional
on winning.

If he still won with a bid of (X−Y ) he would
be happy. If he lost, he would be relieved.

But Smith can achieve the same effect by
simply submitting the bid (X − Y ) in the first
place, since when he loses, the size of his bid is
irrelevant.
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Another way to look at the Winner’s Curse is
based on the Milgrom (1981) definition of “bad
news”.

Suppose the government is auctioning off the
mineral rights to a plot of land with common
value v and that bidder i has value estimate v̂i.
Consider a symmetric equilibrium.

If Bidder 1 wins with a bid p(v̂1) that is
based on his prior value estimate v̂1, his poste-
rior value estimate ṽ1 is

ṽ1 = E(V |v̂1, p(v̂2) < p(v̂1), . . . , p(v̂n) < p(v̂1)).
(29)

The news that p(v̂2) < ∞ would be neither
good nor bad, since it conveys no information.

The information that p(v̂2) < p(v̂1) is bad
news, since it rules out values of p more likely
to be produced by large values of v̂2. Hence,

ṽ1 < E(V |v̂1) = v̂1, (30)
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Table 1 Bids by Serious Competitors
in Oil Auctions

Offshore Santa Barbara Offshore Alaska
Louisiana Channel Texas North Slope
1967 1968 1968 1969
Tract SS 207 Tract 375 Tract 506 Tract 253

32.5 43.5 43.5 10.5
17.7 32.1 15.5 5.2
11.1 18.1 11.6 2.1
7.1 10.2 8.5 1.4
5.6 6.3 8.1 0.5
4.1 5.6 0.4
3.3 4.7

2.8
2.6
0.7
0.7
0.4
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Strategies in Common-Value Auctions

Milgrom & Weber (1982) found that when
there is a common-value element in an auction
and signals are “affiliated” then revenue equiv-
alence fails.

The first-price and descending auctions are
still identical, but they raise less revenue than
the ascending or second-price auctions. If there
are more than two bidders, the ascending auc-
tion raises more revenue than the second-price
auction. (In fact, if signals are affiliated then
even in a private value auction, in which each
bidder knows his own value with certainty, the
first-price and descending auctions will do worse.)
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Suppose n signals are independently drawn
from the uniform distribution on [s, s]. Denote
the jth highest signal by s(j). The expectation
of the kth highest value happens to be

Es(k) = s +

(
n + 1− k

n + 1

)
(s− s) (31)

This means the expectation of the very highest
value is

Es(1) = s +
( n
n+1

)
(s− s) (32)

The expectation of the second-highest value is

Es(2) = s +
(

n−1
n+1

)
(s− s) (33)

The expectation of the lowest value, the n’th
highest, is

Es(n) = s +
(

1
n+1

)
(s− s) . (34)
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Let n risk-neutral bidders, i = 1, 2, ...n each
receive a signal si independently drawn from
the uniform distribution on [v − m, v + m],
where v is the true value of the object to each of
them. Assume that they have “diffuse priors”
on v, which means they think any value from
v = −∞ to v = ∞ is equally likely and we do
not need to make use of bayes’s rule. The best
estimate of the value given the set of n signals
is

Ev|(s1, s2, ..., sn) =
s(n) + s(1)

2
. (35)

The estimate depends only on two out of
the n signals— a remarkable property of the
uniform distribution. If there were five signals
{6, 7, 7, 16, 24}, the expected value of the ob-
ject would be 15 (=[6+24]/2), well above the
mean of 12 and the median of 7, because only
the extremes of 6 and 24 are useful information.
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Someone who saw just signals s(n) and s(1)
could deduce that v could not be less than
(s(1) −m) or greater than (s(n) + m). Learn-
ing the signals in between would be unhelpful,
because the only information that, for exam-
ple, s(2) conveys is that v ≤ (s(2) + m) and

v ≥ (s(2) − m), facts which our observer had
already figured out from s(n) and s(1).

Figure 4: Extracting Information
From Uniformly Distributed Signals
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The Ascending Auction (open-exit)

Equilibrium: If no bidder has quit yet, Bid-
der i should drop out when the price rises to si.
Otherwise, he should drop out when the price

rises to pi =
p(n)+si

2 , where p(n) is the price at
which the first dropout occurred.

Explanation: If no other bidder has quit yet,
Bidder i is safe in agreeing to pay his signal,
si. Either (a) he has the lowest signal, or (b)
everybody else has the same signal value si too,
and they will all drop out at the same time. In
case (a), having the lowest signal, he will lose
anyway. In case (b), the best estimate of the
value is si, and that is where he should drop
out.
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Once one bidder has dropped out at p(n), the
other bidders can deduce that he had the lowest
signal, so they know that signal s(n) must equal
p(n). Suppose Bidder i has signal si > s(n).

Either (a) someone else has a higher signal and
Bidder i will lose the auction anyway and drop-
ping out too early does not matter, or (b) ev-
erybody else who has not yet dropped out has
signal si too, and they will all drop out at the
same time, or (c) he would be the last to drop
out, so he will win. In cases (b) and (c), his

estimate of the value is p(i) =
p(n)+si

2 , since
p(n) and si are the extreme signal values and
the signals are uniformly distributed, and that
is where he should drop out.
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The price paid by the winner will be the price
at which the second-highest bidder drops out,

which is
s(n)+s(2)

2 . The expected values are,
from equations (33) and (34),

Es(n) = (v −m) +
(

n+1−n
n+1

)
((v + m)− (v −m))

= v +
(

1−n
n+1

)
m

(36)
and

Es(2) = (v −m) +
(

n+1−2
n+1

)
((v + m)− (v −m))

= v +
(

n−3
n+1

)
m.

(37)

Averaging them yields the expected winning
price,

Ep(2) =

[
v+

(
1−n
n+1

)
m

]
+

[
v+

(
n−3
n+1

)
m

]
2

= v −
(

1
2

) (
1

n+1

)
2m.

(38)

38



If m = 50 and n = 4, then

Ep(2) = v −
(

1

10

)
(100) = v − 10. (39)

Expected seller revenue increases in n, the
number of bidders (and thus of independent
signals) and falls in the uncertainty m (the in-
accuracy of the signals). This will be true for
all three auction rules we examine here.

It is not always true that the bidders can de-
duce the lowest signal in an ascending auction
and use that to form their bid. Their ability to
discover s(n) depended crucially on the open-
exit feature of the auction— that the player
with the lowest signal had to openly drop out,
rather than lurk quietly in the background. A
secret-exit ascending auction would behave like
a second-price auction instead.
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The Second-Price Auction

Equilibrium: Bid pi = si −
(

n−2
n

)
m.

Explanation: In forming his strategy, Bid-
der i should think of himself as being tied for
winner with one other bidder, and so having to
pay exactly his bid. Thus, he imagines himself
as the highest of (n − 1) bidders drawn from
[v − m, v + m] and tied with one other. On
average, if this happens,

si = (v −m) +
(

([n−1]+1−1)
[n−1]+1

)
([v + m]− [v −m])

= v +
(

n−2
n

)
(m).

(40)
He will bid the value v which solves equation
(40), yielding the optimal strategy, pi = si −(

n−2
n

)
(m).
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On average, the second-highest bidder actu-

ally has the signal Es(2) = v +
(

n−3
n+1

)
m, from

equation (37). So the expected price, and hence
the expected revenue from the auction, is

Ep(2) = [v +
(

n−3
n+1

)
m]−

(
n−2
n

)
(m)

= v −
(

n−1
n

) (
1

n+1

)
2m.

(41)

If m = 50 and n = 4, then

Ep(2) = v −
(

3

4

) (
1

5

)
(100) = v − 15. (42)

If there are at least three bidders, expected
revenue is lower in the second- price auction.
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