A Model of Rational Speculative Trade

Dmitry Lubensky¹ Doug Smith²

¹Kelley School of Business Indiana University

²Federal Trade Commission

January 21, 2014

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

· Example: suckers in poker; origination of CDS contracts

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

- · Example: suckers in poker; origination of CDS contracts
- "Working theory" of trade

- · Example: suckers in poker; origination of CDS contracts
- "Working theory" of trade
- No trade theorems: Aumann (1976), Milgrom Stokey (1982), Tirole (1982)

$$E[\bar{\nu}_b, \nu_s \leq \bar{\nu}_s] \leq E[\bar{\nu}_b, \bar{\nu}_s] \leq E[\bar{\nu}_b \geq \bar{\nu}_b, \bar{\nu}_s]$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

- · Example: suckers in poker; origination of CDS contracts
- "Working theory" of trade
- No trade theorems: Aumann (1976), Milgrom Stokey (1982), Tirole (1982)

$$E[\bar{\nu}_b, \nu_s \leq \bar{\nu}_s] \leq E[\bar{\nu}_b, \bar{\nu}_s] \leq E[\bar{\nu}_b \geq \bar{\nu}_b, \bar{\nu}_s]$$

(ロ) (同) (三) (三) (三) (○) (○)

- Informed agents only trade if counterparty trades for other reasons. Noise traders must have
 - · different marginal value of money or
 - inability to draw Bayesian inference

- Example: suckers in poker; origination of CDS contracts
- "Working theory" of trade
- No trade theorems: Aumann (1976), Milgrom Stokey (1982), Tirole (1982)

$$E[\bar{\nu}_b, \nu_s \leq \bar{\nu}_s] \leq E[\bar{\nu}_b, \bar{\nu}_s] \leq E[\bar{\nu}_b \geq \bar{\nu}_b, \bar{\nu}_s]$$

- Informed agents only trade if counterparty trades for other reasons. Noise traders must have
 - · different marginal value of money or
 - inability to draw Bayesian inference
- Kyle (1985), Glosten Milgrom (1985)
 - study behavior of informed traders, take as exogenous behavior of noise traders

(ロ) (同) (三) (三) (三) (○) (○)

- Example: suckers in poker; origination of CDS contracts
- "Working theory" of trade
- No trade theorems: Aumann (1976), Milgrom Stokey (1982), Tirole (1982)

$$E[\bar{\nu}_b, \nu_s \leq \bar{\nu}_s] \leq E[\bar{\nu}_b, \bar{\nu}_s] \leq E[\bar{\nu}_b \geq \bar{\nu}_b, \bar{\nu}_s]$$

- Informed agents only trade if counterparty trades for other reasons. Noise traders must have
 - · different marginal value of money or
 - inability to draw Bayesian inference
- Kyle (1985), Glosten Milgrom (1985)
 - study behavior of informed traders, take as exogenous behavior of noise traders
- Interpretation of our paper
 - Possibility of pure speculation (no gains from trade)
 - A model of noise traders

This Paper

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The motive for trading is rational experimentation
"You have to be in it to win it!" – floor manager

This Paper

- The motive for trading is rational experimentation *"You have to be in it to win it!"* floor manager
- Each agent draws a type that she does not observe
 - trading strategy, source of information, skill, etc.
- · Agent's type generates a signal about the value of an asset

(日) (日) (日) (日) (日) (日) (日)

- Trading based on signal informs about one's type
 - If type is sufficiently bad then exit
 - If type is sufficiently good, continue to trade

This Paper

- The motive for trading is rational experimentation *"You have to be in it to win it!"* floor manager
- Each agent draws a type that she does not observe
 - trading strategy, source of information, skill, etc.
- · Agent's type generates a signal about the value of an asset
- Trading based on signal informs about one's type
 - If type is sufficiently bad then exit
 - If type is sufficiently good, continue to trade
- Main Question: Can the experimentation motive overcome adverse selection in the no-trade theorem?

Setup

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• Example (see handout)

Setup

- Example (see handout)
- More General
 - Match of θ_1 and θ_2 generates outcome $y = (u_1, u_2, \sigma) \in \mathbf{Y}$

(日) (日) (日) (日) (日) (日) (日)

- zero sum payoffs: $u_1 + u_2 = 0$
- payoff-irrelevant signal: σ
- set of outcomes Y countable
- Outcomes stochastic: $G(y \mid \theta_1, \theta_2)$
- History after *t* trades: $h_t = (y_1, ..., y_t)$
- Agent's strategy: $A(h_t) \in \{\text{stay}, \text{exit}\}$

Learning From Trading

- Results
 - Inexperienced traders willingly enter an adversely selected market even when there are no gains from trade

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- · Higher trading volume when learning takes longer
- · Gains from trade multiplier

Learning From Trading

- Results
 - Inexperienced traders willingly enter an adversely selected market even when there are no gains from trade
 - · Higher trading volume when learning takes longer
 - · Gains from trade multiplier
- Questions
 - Interpretation: model of rational trade vs model of noise traders?
 - Is pairwise random matching a good example? For instance, how about double auction?
 - Assumption that trade is necessary for information is key, how to defend it?
 - · Applications: overconfidence, bubbles, others?

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Purification

- Two firms with cost *c* simultaneously set prices
- Two groups of consumers both with unit demand and valuation v
 - Measure 1 loyal (visit one store)
 - Measure λ shoppers (visit both stores, buy where cheaper)
- Only equilibrium is in mixed strategies:

$$f(p) = \frac{1-\lambda}{\lambda} \frac{v}{2} \frac{1}{p^2}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Purification

- Two firms with cost *c* simultaneously set prices
- Two groups of consumers both with unit demand and valuation v
 - Measure 1 loyal (visit one store)
 - Measure λ shoppers (visit both stores, buy where cheaper)
- Only equilibrium is in mixed strategies:

$$f(p) = \frac{1-\lambda}{\lambda} \frac{v}{2} \frac{1}{p^2}$$

- Alternative Bayesian game: cost is uniformly distributed on $[c \alpha, c + \alpha]$ and privately observed
 - For any α > 0 obtain pure strategy equilibrium p*(c), get price distribution h(p)
 - Result: $\lim_{\alpha \to 0} h(p) = f(p)$