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Production Game VIII: Mechanism Design

Players
The principal and the agent.

The Order of Play
1 The principal offers the agent a wage contract of the
form w(q, m), where q is output and m is a message to
be sent by the agent.
2 The agent accepts or rejects the principal’s offer.
3 Nature chooses the state of the world s, according to
probability distribution F (s), where the state s is good
with probability 0.5 and bad with probability 0.5. The
agent observes s, but the principal does not.
4 If the agent accepted, he exerts effort e unobserved by
the principal, and sends message m ∈ {good, bad} to
him.
5 Output is q(e, s), where q(e, good) = 3e and q(e, bad) =
e, and the wage is paid.

Payoffs Agent rejects: πagent = Ū = 0 and πprincipal =
0.
Agent accepts: πagent = U(e, w, s) = w−e2 and πprincipal =
V (q − w) = q − w.

Production Game VII, adverse selection version: two
participation constraints and two incentive compatibility
constraints. PG VIII, moral hazard with hidden info:
one participation constraint.
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The first-best is unchanged from Production Game
VII: eg = 1.5 and qg = 4.5, eb = 0.5 and qb = 0.5.

Also unchanged is that the principal must solve the
problem:

Maximize
qg, qb, wg, wb [0.5(qg − wg) + 0.5(qb − wb)], (1)

where the agent is paid under one of two forcing con-
tracts, (qg, wg) if he reports m = good and (qb, wb) if he
reports m = bad, where producing the wrong output for
a given contract results in boiling in oil.

The self-selection constraints are the same as in Pro-
duction Game VII.

πagent(qg, wg|good) = wg −
(qg

3

)2
≥ πagent(qb, wb|good) = wb −

(qb
3

)2
(2)

πagent(qb, wb|bad) = wb−q2
b ≥ πagent(qg, wg|bad) = wg−q2

g.
(3)

The single participation constraint is

0.5πagent(qg, wg|good) + 0.5πagent(qb, wb|bad)

= 0.5
(
wg −

(qg

3

)2)
+ 0.5

(
wb − q2

b

)
≥ 0

(4)
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This single participation constraint is binding, since
the principal wants to pay the agent as little as possible.

The good state’s self-selection constraint will be bind-
ing. In the good state the agent will be tempted to take
the easier contract appropriate for the bad state (due to
the “single-crossing property” to be discussed in a later
section ) and so the principal has to increase the agent’s
payoff from the good-state contract to yield him at least
as much as in the bad state. He does not want to in-
crease the surplus any more than necessary, though, so
the good state’s self-selection constraint will be exactly
satisfied.

This gives us two equations,

0.5
(
wg −

(qg

3

)2)
+ 0.5

(
wb − q2

b

)
= 0

wg −
(qg

3

)2
= wb −

(qb
3

)2 (5)

Solving them out yields wb = 5
9q

2
b and wg = 1

9q
2
g + 4

9q
2
b .
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Returning to the principal’s maximization problem in
(1) and substituting for wb and wg, we can rewrite it as

Maximize
qg, qb πprincipal =

[
0.5

(
qg −

q2
g

9
− 4q2

b

9

)
+ 0.5

(
qb −

5q2
b

9

)]
(6)

with no constraints. The first-order conditions are

∂πprincipal

∂qg
= 0.5

(
1−

[
2

9

]
qg

)
= 0, (7)

so qg = 4.5, and

∂πprincipal

∂qb
= 0.5

(
−8qb

9

)
+ 0.5

(
1− 10qb

9

)
= 0, (8)

so qb = 9
18 = .5. We can then find the wages that satisfy

the constraints, which are wg ≈ 2.36 and wb ≈ 0.14.

As in Production Game VII, in the good state the
effort is at the first-best level while in the bad state it is
less.

The agent does not earn informational rents, because
at the time of contracting he has no private information.
In Production Game VII the wages were w′

g ≈ 2.32 and
w′

b ≈ 0.07. Both wages are higher in Production Game
VIII, but so is effort in the bad state. The principal in
Production Game VIII can (a) come closer to the first-
best when the state is bad, and (b) reduce the rents to
the agent.
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Observable but Nonverifiable Information

If the state or type is public information, then it is
straightforward to obtain the first-best using forcing con-
tracts. What if the state is observable by both principal
and agent, but is not public information?

We say that the variable s is nonverifiable if con-
tracts based on it cannot be enforced.

Maskin (1977) suggested a matching scheme to achieve
the first-best which would take the following two-part
form for Production Game VIII:

(1) Principal and agent simultaneously send messages
mp and ma to the court saying whether the state is good
or bad. If mp 6= ma, then no contract is chosen and both
players earn zero payoffs. If mp = ma, the court enforced
part (2) of the scheme.

(2) The agent is paid the wage (w|q) with either the
good-state forcing contract (2.25|4.5) or the bad-state
forcing contract (0.25|0.5), depending on his report ma,
or is boiled in oil if he the output is inappropriate to his
report.
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Usually this kind of scheme has multiple equilibria,
however, perverse ones in which both players send false
message which match and inefficient actions result. Here,
in a perverse equilibrium the principal and agent would
always send the message mp = ma = bad. Even when
the state was actually good, the payoffs would be

(πprincipal(good) = 0.5−0.25 > 0 and πagent(good) =
0.25− (0.5)2 = 0,

Neither player would have incentive to deviate unilat-
erally and drive payoffs to zero.

Perhaps a bigger problem than the multiplicity of
equilibria is renegotiation due to players’ inability to
commit to the mechanism.

Suppose the equilibrium says that both players will
send truthful messages, but the agent deviates and re-
ports ma = bad even though the state is good. The
court will say that the contract is nullified.

But agent could negotiate a new contract with the
principal.

The Maskin scheme is like the Holmstrom Teams con-
tract, where if output was even a little too small, it was
destroyed rather than divided among the team members.

Solution: a third party who would receive the output
if it was t oo small.

7



Unravelling: Information Disclosure when Ly-
ing Is Prohibited

There is another special case in which hidden informa-
tion can be forced into the open: when the agent is pro-
hibited from lying and only has a choice between telling
the truth or remaining silent.

In Production Game VIII, this set-up would give the
agent two possible message sets. If the state were good,
the agent’s message would be taken from m ∈ {good, silent}.
If the state were bad, the agent’s message would be taken
from m ∈ {bad, silent}.

The agent would have no reason to be silent if the
true state were bad (which means low output would be
excusable), so his message then would be bad. But then
if the principal hears the message silent he knows the
state must be good– good and silent both would occur
only when the state was good. So the option to remain
silent is worthless to the agent.
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Suppose Nature uses the uniform distribution to as-
sign the variable s some value in the interval [0, 10] and
the agent’s payoff is increasing in the principal’s estimate
of s.

Assume the agent cannot lie but he can conceal infor-
mation. Thus, if s = 2, he can send the uninformative
message m ≥ 0 (equivalent to no message), or the mes-
sage m ≥ 1, or m = 2, but not m ≥ 4.36.

When s = 2 the agent might as well send a message
that is the exact truth: “m = 2.”

If he were to choose the message “m ≥ 1” instead,
the principal’s first thought might be to estimate s as
the average value in the interval [1, 10], which is 5.5.

But the principal would realize that no agent with
a value of s greater than 5.5 would want to send the
message “m ≥ 1” if 5.5 was the resulting deduction.
This realization restricts the possible interval to [1, 5.5],
which in turn has an average of 3.25.

But then no agent with s > 3.25 would send the
message “m ≥ 1.”

The principal would continue this process of logical
unravelling to conclude that s = 1.
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MODEL REPETITION: Nature uses the uniform dis-
tribution to assign the variable s some value in the in-
terval [0, 10] and the agent’s payoff is increasing in the
principal’s estimate of s. The agent cannot lie but he
can conceal information.

In this model, no news is bad news.

The agent would therefore not send the message “m ≥
1” and he would be indifferent between “m = 2” and
“m ≥ 2” because the principal would make the same
deduction from either message.

ANOTHER APPROACH

The equilibrium is either fully separating or has some
pooling.

If it is fully separating, the agent’s type is revealed,
so it might as well be m = s.

If it had some pooling, then two types with s2 > s1

would be pooled together and the principal’s estimate
of s would be the average in the pool. Type s2 would
therefore deviate to m = s2 to reveal his type. So the
equilibrium must be perfectly separating.

Where would this logic break down? —

either unpunishable lying or genuine ignorance.
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The Revelation Principle: We Can Restrict
Attention to Direct Mechanisms

Let w be the agent’s wage, q be output, m be his
message, and s be his type. ALLOW COMMITMENT
TO CONTRACTS.

The Revelation Principle. For every contract
w(q, m) that leads to lying (that is, to m 6= s), there
is a contract w∗(q, m) with the same outcome for ev-
ery s but no incentive for the agent to lie.

A direct mechanism— agents tell the truth in
equilibrium— can be found equivalent to any indirect
mechanism in which they lie.

Suppose we are trying to design a mechanism to make
people with higher incomes pay higher taxes, but anyone
who makes $70,000 a year can claim he makes $50,000
and we do not have the resources to catch him.

We could design a mechanism in which higher re-
ported incomes pay higher taxes, but reports of $50,000
would come from both people who truly have that in-
come and people whose income is $70,000.

The revelation principle says that we can rewrite the
tax code to set the tax to be the same for taxpayers
earning $70,000 and for those earning $50,000, and the
same amount of taxes will be collected without anyone
having incentive to lie.
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The Crawford-Sobel Sender-Receiver Game

Players
The sender and the receiver.

The Order of Play
0 Nature chooses the sender’s type to be t ∼ U [0, 10].
1 The sender chooses message m ∈ [0, 10].
2 The receiver chooses action a ∈ [0, 10].

Payoffs
The payoffs are quadratic loss functions in which each
player has an ideal point and wants a to be close to that
ideal point.

πsender = α− (a− [t + 1])2

πreceiver = α− (a− t)2
(9)

Suppose the receiver believed that the sender always
sent m = t and so chooses a = m. Would the sender
indeed be willing to tell the truth?

No. The sender would not always report m = 10,
because his ideal point is a = t + 1, rather than a being
as big as possible. If, however, the sender thinks the
receiver will believe him, he will deviate to reporting
m = t + 1, always exaggerating his type slightly.
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Pooling Equilibrium 1
Sender: Send m = 10 regardless of t.
Receiver: Choose a = 5 regardless of m.
Out-of-equilibrium belief: If the sender sends m <
10, the receiver uses passive conjectures and still believes
that t ∼ U [0, 10].

Pooling Equilibrium 2
Sender: Send m using a mixed-strategy distribution
independent of t that has the support [0, 10] with positive
density everywhere.
Receiver: Choose a = 5 regardless of m.
Out-of-equilibrium belief: Unnecessary, since any
message might be observed in equilibrium.

In each of these two equilibria, the sender’s action
conveys no information and is ignored by the receiver.
The sender is happy about this if it happens that t = 4,
and the receiver is if t = 5, but averaging over all possible
t, both their payoffs are lower than if the sender could
commit to truthtelling.
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Partial Pooling Equilibrium 3
Sender: Send m = 0 if t ∈ [0, 3] or m = 10 if t ∈
[3, 10].
Receiver: Choose a = 1.5 if m < 3 and a = 6.5 if
m ≥ 3
Out-of-equilibrium belief: If m is something other
than 0 or 10, then t ∼ U [0, 3] if m ∈ [0, 3) and t ∼
U [3, 10] if a ∈ [3, 10].

In effect, the Sender has reduced his message space to
two messages, LOW (=0) and HIGH (=10), in Equilib-
rium 3.

The receiver’s optimal strategy in a a partially pooling
equilibrium is to choose his action to equal the expected
value of the type in the interval the sender has chosen.
Thus, if m = 0, the receiver will choose a = x/2 and if
m = 10 he will choose a = (x + 10)/2.

14



Partial Pooling Equilibrium 3
Sender: Send m = 0 if t ∈ [0, 3] or m = 10 if t ∈
[3, 10].
Receiver: Choose a = 1.5 if m < 3 and a = 6.5 if
m ≥ 3
Out-of-equilibrium belief: If m is something other
than 0 or 10, then t ∼ U [0, 3] if m ∈ [0, 3) and t ∼
U [3, 10] if a ∈ [3, 10].

The receiver’s equilibrium response determines the
sender’s payoffs from his two messages. The payoffs be-
tween which he chooses are:

πsender,m=0 = α−
(
[t + 1]− x

2

)2

πsender,m=10 = α−
(

10 + x

2
− [t + 1]

)2
(10)

There exists a value x such that if t = x, the sender is
indifferent between m = 0 and m = 10, but if t is lower
he prefers m = 0 and if t is higher he prefers m = 10.
To find x, equate the two payoffs in expression (10) and
simplify to obtain

[t + 1]− x

2
=

10 + x

2
− [t + 1] . (11)

We set t = x at the point of indifference, and solving for
x yields x = 3.
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In the Crawford-Sobel Sender-Receiver Game, the re-
ceiver cannot commit to the way he reacts to the mes-
sage, so this is not a mechanism design problem.

Nor is the sender punished for lying, so the unravelling
argument for truthtelling does not apply.

Nor do the players’ payoffs depend directly on the
message, which might permit the signalling we will study
in Chapter 11 to operate.

Instead, this is a cheap-talk game, so called be-
cause of these very absences: m does not affect the pay-
off directly, the players cannot commit to future actions,
and lying brings no directly penalty.
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10.5: Price Discrimination

Pigou was a contemporary of Keynes at Cambridge
who usefully divided price discrimination into three types
in 1920.

1 Interbuyer Price Discrimination.

2 Interquantity Price Discrimination or Non-
linear Pricing.

3 Perfect Price Discrimination.

Figure 3: Linear and Nonlinear Pricing
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Varian’s Nonlinear Pricing Game

Players
One seller and one buyer.

The Order of Play
0 Nature assigns the buyer a type, s. The buyer is “un-
enthusiastic” with utility function u or “valuing” with
utility function v, with equal probability. The seller does
not observe Nature’s move, but the buyer does.
1 The seller offers mechanism {wm, qm} under which the
buyer can announce his type as m and buy amount qm

for lump sum wm.
2 The buyer chooses a message m or rejects the mecha-
nism entirely and does not buy at all.

Payoffs
The seller has a constant marginal cost of c, so his payoff
is

wu + wv − c · (qu + qv). (12)

The buyers’ payoffs are πu = u(qu) − wu and πv =
v(qv) − wv if q is positive, and 0 if q = 0, with u′, v′ >
0 and u′′, v′′ < 0. The marginal willingness to pay is
greater for the valuing buyer: for any q,

u′(q) < v′(q) (13)
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The marginal willingness to pay is greater for the valu-
ing buyer: for any q,

u′(q) < v′(q) (14)

Condition (14) is an example of the single-crossing
property, which we will discuss at the end of this sec-
tion. Combined with the assumption that v(0) = u(0) =
0, it also implies that

u(q) < v(q) (15)

for any value of q.
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Perfect Price Discrimination

The game would allow perfect price discrimination if
the seller did know which buyer had which utility func-
tion. He can then just maximize profit subject to the
participation constraints for the two buyers:

Maximize
wu, wv, qu, qv wu + wv − c · (qu + qv). (16)

subject to
(a) u(qu)− wu ≥ 0 and

(b) v(qv)− wv ≥ 0.
(17)

The constraints will be satisfied as equalities, since the
seller will charge all that the buyers will pay. Substi-
tuting for wu and wv into the maximand, the first order
conditions become

(a) u′(q∗u)− c = 0 and

(b) v′(q∗v)− c = 0.
(18)

Thus, the seller will choose quantities so that each
buyer’s marginal utility equals the marginal cost of pro-
duction, and will choose prices so that the entire con-
sumer surpluses are eaten up: w∗(q∗u) = u(q∗u) and w∗(q∗v) =
v(q∗v). Figure 4 shows this for the unenthusiastic buyer.
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Figure 4: Perfect Price Discrimination
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Interbuyer Price Discrimination

Maximize
qu, qv, pu, pv puqu + pvqv − c · (qu + qv), (19)

subject to the participation constraints

u(qu)− puqu ≥ 0 and

v(qv)− pvqv ≥ 0
(20)

and the incentive compatibility constraints

qu = argmax[u(qu)− puqu] and

qv = argmax[v(qv)− pvqv].
(21)

This should remind you of moral hazard. It is very
like the problem of a principal designing two incentive
contracts for two agents to induce appropriate effort lev-
els given their different disutilities of effort.
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The agents will solve their quantity choice problems in
(21), yielding

u′(qu)− pu = 0 and

v′(qv)− pv = 0.
(22)

Thus, we can simplify the original problem in (19) to

Maximize
qu, qv u′(qu)qu + v′(qv)qv − c · (qu + qv), (23)

subject to the participation constraints

u(qu)− u′(qu)qu ≥ 0 and

v(qv)− v′(qv)qv ≥ 0.
(24)
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The participation constraints will not be binding. If
they were, then u(q)/q = u′(q), but since u′′ < 0 there
is diminishing utility of consumption and the average
utility, U(q)/q, will be greater than the marginal utility,
u′(q). Thus we can solve problem (23) as if there were
no constraints. The first-order conditions are

u′′(qu)qu + u′ = c and

v′′(qv)qv + v′ = c.
(25)

This is just the ‘marginal revenue equals marginal cost
condition that any monopolist uses, but one for each
buyer instead of one for the entire market.
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Nonlinear Pricing

Maximize
qu, qv, wu, wv wu + wv − c · (qu + qv), (26)

subject to the participation constraints,

(a) u(qu)− wu ≥ 0 and
(b) v(qv)− wv ≥ 0,

(27)

and the self-selection constraints,

(a) u(qu)− wu ≥ u(qv)− wv

(b) v(qv)− wv ≥ v(qu)− wu.
(28)

Not all of these constraints will be binding. If neither
type had a binding participation constraint, however, the
principal would be losing a chance to increase his profits.
In a mechanism design problem like this, what always
happens is that the contracts are designed so that one
type of agent is pushed down to his reservation utility.
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Suppose the optimal contract is in fact separating,
and also that both types accept a contract. At least one
type will have a binding participation constraint. Since
the valuing consumer gets more consumer surplus from a
given w and q than an unenthusiastic consumer, it must
be the unenthusiastic consumer who is driven down to
zero surplus for (wu, qu). The valuing consumer would
get positive surplus from accepting that same contract,
so his participation constraint is not binding. To per-
suade the valuing consumer to accept (wv, qv) instead,
the seller must give him that same positive surplus from
it. The seller will not be any more generous than he
has to, though, so the valuing consumer’s self-selection
constraint will be binding.
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Rearranging our two binding constraints and setting them
out as equalities yields:

wu = u(qu) (29)

and
wv = wu − v(qu) + v(qv) (30)

This allows us to reformulate the seller’s problem from
(26) as

Maximize
qu, qv u(qu)+u(qu)−v(qu)+v(qv)−c·(qu+qv), (31)

which has the first-order conditions

(a) u′(qu)− c + [u′(qu)− v′(qu)] = 0

(b) v′(qv)− c = 0
(32)
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The first-order conditions in (32) could be solved for
exact values of qu and qv if we chose particular functional
forms, but they are illuminating even if we do not.

Equation (32b) tells us that the valuing type of buyer
buys a quantity such that his last unit’s marginal util-
ity exactly equals the marginal cost of production; his
consumption is at the efficient level.

The unenthusiastic type, however, buys less than his
first-best amount.

Using the single-crossing property, assumption (14b),
u′(q) < v′(q), which implies from (32a) that u′(qu)−c >
0 and the unenthusiastic type has not bought enough to
drive his marginal utility down to marginal cost.

The intuition is that the seller must sell less than
first-best optimal to the unenthusiastic type so as not to
make that contract too attractive to the valuing type.
On the other hand, making the valuing type’s contract
more valuable to him actually helps separation, so qv is
chosen to maximize social surplus.
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The single-crossing property has another important
implication. Substituting from first-order condition (32b)
into first-order condition (32a) yields

[u′(qu)− v′(qv)] + [u′(qu)− v′(qu)] = 0 (33)

The second term in square brackets is negative by the
single- crossing property. Thus, the first term must be
positive. But since the single-crossing property tells us
that [u′(qu)− v′(qu)] < 0, it must be true, since v′′ < 0,
that if qu ≥ qv then [u′(qu) − v′(qv)] < 0 – that is, that
the first term is negative. We cannot have that without
contradiction, so it must be that qu < qv.

The unenthusiastic buyer buys strictly less than the
valuing buyer. This accords with our intuition, and also
lets us know that the equilibrium is separating, not pool-
ing (though we still have not proven that the equilib-
rium involves both players buying a positive amount,
something hard to prove elegantly since one player buy-
ing zero would be a corner solution to our maximization
problem).
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A Graphical Approach to the Same Problem

Under perfect price discrimination, the seller would
charge wu = A + B and wv = A + B + J + K + L
to the two buyers for quantities q∗u and q∗v , as shown in
Figure 5a. An attempt to charge w∗

u = A + B and
w∗

v = A + B + J + K + L, however, would simply
lead to both buyers choosing to buy q∗u, which would
yield the valuing buyer a payoff of J + K rather than
the zero he would get as a payoff from buying q∗v . The
seller’s payoff from this pooling equilibrium (which is the
best pooling contract possible for him, since it drives the
unenthusiastic type to a payoff of zero) is 2(A + B).
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The seller could separate the two buyers by charging
w∗

u = A+B for q∗u and w∗
v = A+B +L for q∗v , since the

unenthusiastic buyer would have no reason to switch to
the greater quantity, and that would increase his profits
over pooling by amount L.
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The seller would do even better to slightly reduce the
quantity sold to the unenthusiastic buyer, to below q∗u,
and reduce the price to him by the amount of the dark
shading. He could then sell q∗v to the valuing buyer and
raise the price to him by the light shaded area. The
valuing buyer will not be tempted to buy the smaller
quantity at the lower price, and the seller will have gained
profit by, loosely speaking, increasing the size of the L
triangle.
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Our profit-maximizing mechanism is shown in Figure
5a as w′

u = A for q′u and w∗
v = A + B + K + L for q∗v .

Unenthusiastic buyer: binding participation constraint,
inefficiently low consumption, because w′

u = A = u(q′u).

Valuing buyer: nonbinding participation constraint,
because w∗

v = A + B + K + L < v(q∗v) = A + B +
J + K + L; he is left with a surplus of J . Efficient
consumption: q∗v . B binding self-selection constraint,
because he is indifferent between buying q′u and q∗v .

His choice is between a payoff of πv(U) = (A+J)−A
and πv(V ) = (A+B +J +K +L)− (A+B +K +L).

Thus, the diagram replicates the algebraic conclu-
sions.
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The Single-Crossing Property

When we say that Buyer V’s demand is stronger than
Buyer U’s, however, there are two things we might mean:

1. Buyer V’s average demand is stronger: v(q)
q > u(q)

q .
Buyer V would pay more for quantity q than Buyer U
would.

2. Buyer V’s marginal demand is stronger: v′(q) >
u′(q). Buyer V would pay more for an additional unit
than Buyer U would.

Figure 6: Marginal versus Average Demand
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Figure 7a depicts functions which satisfy the assump-
tions of Varian’s Nonlinear Pricing Game: u =

√
q and

v = 2
√

q. The two curves satisfy the single-crossing
property, condition (14), because v′(q) > u′(q) for all q
and u(0) = 0 and v(0) = 0.

Figure 7: Two Depictions of the Single
Crossing Property
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Another way to write the payoff functions would have
been as πu(q, money) = money+u(q), where money =
wealth− w(q).

One comparison is between the curves for which π =
10, which both pass through the point (0, 10) in (q, money)
space.

The πu = 10 indfference curve then descends more
slowly than the πv = 10 curve because the commodity
is not so valued by Buyer U.

Another comparison is between the two curves which
contain the point (4,8), which are πu = 10 and πv = 12.

These two curves also cross only once, at that point.

If you pick any one indifference curve for Buyer U and
any one for Buyer V, those curves will cross either not
at all, or once.
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*10.6 Rate-of-Return Regulation and Govern-
ment Procurement

The central idea in both government procurement and
regulation of natural monopolies is that the government
is trying to induce a private firm to efficiently provide a
good to the public while covering the cost of production.
.

Suppose the government wants a firm to provide cable
television service to a city.

The firm knows more about its costs before agree-
ing to accept the franchise (adverse selection), discovers
more after accepting it and beginning operations (moral
hazard with hidden knowledge), and exerts greater or
smaller effort to keep costs low (moral hazard with hid-
den actions).

The government wants to be generous enough to in-
duce the firm to accept the franchise in the first place
but no more generous than necessary.

The government might auction off the right to provide
the service,

might allow the firm a maximum price (a price cap),

or might agree to compensate the firm to varying de-
grees for different levels of cost (rate-of- return reg-
ulation).
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The first version of the model will be one in which
the government can observe the firm’s type and so the
first-best can be attained.

Procurement I: Full Information

Players
The government and the firm.

The Order of Play
0 Nature assigns the firm expensive problems with the
project, which add costs of x, with probability θ. A firm
is thus “normal”, with type N and s = 0, or “expensive”,
with type X and s = x. The government and the firm
both observe the type.
1 The government offers a contract {w(m) = c(m) +
p(m), c(m)} which pays the firm its observed cost c and
a profit p if it announces its type to be m and incurs
cost c(m), and pays the firm zero otherwise.
2 The firm accepts or rejects the contract.
3 If the firm accepts, it chooses effort level e, unobserved
by the government.
4 The firm finishes the missile at a cost of c = c̄ + s− e,
which is observed by the government, plus an additional
unobserved cost1 of f (e−c̄). The government reimburses
c(m) and pays p(m).

1The reader may ask why this disutility is specified as f(e− c̄) rather than just f(e). The reason is that
we will later find an equilibrium cost level of (c̄− e∗), which would be negative if c0 = 0.
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Payoffs
Both firm and government are risk-neutral and both re-
ceive payoffs of zero if the firm rejects the contract. If
the firm accepts, its payoff is

πfirm = p− f (e− c̄) (34)

(35)

where f (e−c̄), the cost of effort, is increasing and convex,
so f ′ > 0 and f ′′ > 0. Assume for technical convenience
that f is increasingly convex, so f ′′′ > 0.

The government’s payoff is

πgovernment = B − (1 + t)c− tp− f, (36)

where B is the benefit of the missile and t is the dead-
weight loss from the taxation needed for government
spending. This is substantial. Hausman & Poterba
(1987) estimate the loss to be around $0.30 for each $1 of
tax revenue raised at the margin for the United States.
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In Procurement I, whether the firm has expensive
problems is observed by the government, which can there-
fore specify a contract conditioned on the type of the
firm.

The government pays pN to a normal firm with the
cost cN , pX to an expensive firm with the cost cX , and
p = 0 to a firm that does not achieve its appropriate cost
level

The expensive firm exerts effort e = c̄ + x − cX ,
achieves c = cX , generating unobserved effort disutility
f (e − c̄) = f (x − cX), so its participation constraint,
that type X ’s payoff from reporting that it is type X ,
is:

πX(X) ≥ 0

pX − f (x− cX) ≥ 0.
(37)

Similarly, in equilibrium the normal firm exerts effort
e = c̄− cN , so its participation constraint is

πN(N) ≥ 0

pN − f (−cN) ≥ 0
(38)

The incentive compatibility constraints are trivial here:
the government can use a forcing contract that pays a
firm zero if it generates the wrong cost for its type, since
types are observable.

40



To make a firm’s payoff zero and reduce the dead-
weight loss from taxation, the government will provide
prices that do no more than equal the firm’s disutility of
effort. Since there is no uncertainty, we can invert the
cost equation and write it as e = c̄ + x− c or e = c̄− c.
The prices will be pX = f (e − c̄) = f (x − cX) and
pN = f (e− c̄) = f (−cN).

Suppose the government knows the firm has expen-
sive problems. Substituting the price pX into the gov-
ernment’s payoff function, equation (36), yields

πgovernment = B − (1 + t)cX − tf(x− cX)− f (x− cX).
(39)

Since f ′′ > 0, the government’s payoff function is con-
cave, and standard optimization techniques can be used.
The first-order condition for cX is

∂πgovernment

∂cX
= −(1 + t) + (1 + t)f ′(x− cX) = 0, (40)

so
f ′(x− cX) = 1. (41)

Equation(41) is the crucial efficiency condition for effort.
Since the argument of f is (e− c̄), whenever f ′ = 1 the
effort level is efficient. At the optimal effort level, the
marginal disutility of effort equals the marginal reduction
in cost because of effort. This is the first-best efficient
effort level, which we will denote by e∗ ≡ e : {f ′(e−c̄) =
1}.
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If we derived the first-order condition for the normal
firm we would find f ′(−cN) = 1 in the same way, so
cN = cX − x. Also, if the equilibrium disutility of effort
is the same for both firms, then both must choose the
same effort, e∗, though the normal firm can reach a lower
cost target with that effort. The cost targets assigned to
each firm are cX = c̄ + x − e∗ and cN = c̄ − e∗. Since
both types must exert the same effort, e∗, to achieve
their different targets, pX = f (e∗ − c̄) = pN . The two
firms exert the same efficient effort level and are paid the
same price to compensate for the disutility of effort. Let
us call this price level p∗.

The assumption that B is sufficiently large can now
be made more specific: it is that B− (1+ t)cX− tf(e∗−
c̄)− f (e∗− c̄) ≥ 0, which requires that B − (1 + t)(c̄ +
x− e∗)− (1 + t)p∗ ≥ 0. If that were not true, then the
government would not want to build the missile at all if
the firm had an expensive cost function, as we will not
treat of here.
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