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Overheads for Chapter 14, Pricing, of Games and Information.

These do not cover the entire chapter, just enough for two lectures.
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Figure 4: Location Models

The Hotelling Pricing Game

(Hotelling [1929])

Players

Sellers Apex and Brydox, located at xa and xb, where xa < xb, and

a continuum of buyers indexed by location x ∈ [0, 1].

The Order of Play

1 The sellers simultaneously choose prices pa and pb.

2 Each buyer chooses a seller.
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Figure 4: Location Models

Payoffs

Demand is uniformly distributed on the interval [0,1] with a density

equal to one (think of each consumer as buying one unit). Produc-

tion costs are zero. Each consumer always buys, so his problem is to

minimize the sum of the price plus the linear transport cost, which

is θ per unit distance travelled.

πbuyer at x = V −Min{θ|xa − x| + pa, θ|xb − x| + pb}. (1)

πa =



pa(0) = 0 if pa − pb > θ(xb − xa) (a)

(Brydox captures entire market)

pa(1) = pa if pb − pa > θ(xb − xa) (b)

(Apex captures entire market)

pa(
1
2θ [(pb − pa) + θ(xa + xb)]) otherwise (the market is divided) (c)

(2)
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πa =



pa(0) = 0 if pa − pb > θ(xb − xa) (a)

(Brydox captures entire market)

pa(1) = pa if pb − pa > θ(xb − xa) (b)

(Apex captures entire market)

pa(
1
2θ [(pb − pa) + θ(xa + xb)]) otherwise (the market is divided) (c)

A buyer’s utility depends on the price he pays and the distance

he travels. Price aside, Apex is most attractive of the two sellers

to the consumer at x = 0 (“consumer 0”) and least attractive to

the consumer at x = 1 (“consumer 1”). Consumer 0 will buy from

Apex so long as

V − (θxa + pa) > V − (θxb + pb), (3)

which implies that

pa − pb < θ(xb − xa), (4)

which yields payoff (2a) for Apex. Consumer 1 will buy from Brydox

if

V − [θ(1− xa) + pa] < V − [θ(1− xb) + pb], (5)

which implies that

pb − pa < θ(xb − xa), (6)

which yields payoff (2b) for Apex.
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Very likely, inequalities (4) and (6) are both satisfied, in which

case Consumer 0 goes to Apex and Consumer 1 goes to Brydox.

Let consumer x∗ be the consumer at the boundary between the two

markets, indifferent between Apex and Brydox.

Notice that if Apex attracts Consumer xb, he also attracts all

x > xb, because beyond xb the consumers’ distances from both

sellers increase at the same rate. So we know that if there is an

indifferent consumer he is between xa and xb.

Knowing this, the consumer’s payoff equation, (1), tells us that

V − [θ(x∗ − xa) + pa] = V − [θ(xb − x∗) + pb], (7)

so that

pb − pa = θ(2x∗ − xa − xb), (8)

and

x∗ =
1

2θ
[(pb − pa) + θ(xa + xb)], (9)

which generates demand curve (2c)– a differentiated Bertrand de-

mand curve.
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The Nash equilibrium can be calculated by setting up the profit

functions for each firm, differentiating with respect to the price of

each, and solving the two first-order conditions for the two prices.

If there exists an equilibrium in which the firms are willing to pick

prices to satisfy inequalities (4) and (6), then it is

pa =
(2 + xa + xb)θ

3
, pb =

(4− xa − xb)θ

3
. (10)

Apex charges a higher price if a large xa gives it more safe con-

sumers or a large xb makes the number of contestable consumers

greater.

Profits are positive and increasing in the transportation cost.
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We cannot rest satisfied with the neat equilibrium of equation

(10), because the assumption that there exists an equilibrium in

which the firms choose prices so as to split the market on each side

of some boundary consumer x∗ is often violated.

Vickrey (1964) and D’Aspremont, Gabszewicz & Thisse (1979)

have shown that if xa and xb are close together, no pure-strategy

equilibrium exists, for reasons similar to why none exists in the

Bertrand model with capacity constraints.

If both firms charge nonrandom prices, neither would deviate

to a slightly different price, but one might deviate to a much lower

price that would capture every single consumer.

But if both firms charged that low price, each would deviate by

raising his price slightly.

It turns out that if, for example, Apex and Brydox are located

symmetrically around the center of the interval, xa ≥ 0.25, and

xb ≤ 0.75, no pure-strategy equilibrium exists (although a mixed-

strategy equilibrium does, as Dasgupta & Maskin [1986b] show).

Hotelling should have done some numerical examples.

And he should have thought about the comparative statics.

Equation (10) implies that Apex should choose a higher price if

both xa and xb increase, but it is odd that if the firms are locat-

ing closer together, say at 0.90 and 0.91, that Apex should be able

to charge a higher price, rather than suffering from more intense

competition.
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Figure 5: Numerical Examples for Hotelling Pricing

Example 1. Everything works out simply

Try xa = 0, xb = 0.7 and θ = 0.5. Then equation (10) says

pa = (2 + 0 + 0.7)0.5/3 = 0.45 and pb = (4− 0− 0.7)0.5/3 = 0.55.

Equation (9) says that x∗ = 1
2∗0.5 [(0.55− 0.45) + 0.5(0.0 + 0.7)] =

0.45.

In Example 1, there is a pure strategy equilibrium and the equa-

tions generated sensible numbers given the parameters we chose.
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Figure 5: Numerical Examples for Hotelling Pricing

Example 2. Same location – but different prices?

Try xa = 0.9, xb = 0.9 and θ = 0.5. Then equation (10) says

pa = (2.0+0.9+0.9)0.5/3 ≈ 0.63 and pb = (4.0−0.9−0.9)0.5/3 ≈
0.37.

The equations generate numbers that seem innocuous until one

realizes that if both firms are located at 0.9, but pa = 0.63 and

pb = 0.37, then Brydox will capture the entire market!

The result is nonsense, because equation (10)’s derivation relied

on the assumption that xa < xb, which is false in this example.

9



(draw in Figure 5c by hand)

Example 3. Locations too near each other.

x∗ < xa < xb. Try xa = 0.7, xb = 0.9 and θ = 0.5. Then

equation (10) says that pa = (2.0 + 0.7 + 0.9)0.5/3 = 0.6 and pb =

(4− 0.7− 0.9)0.5/3 = 0.4. As for the split of the market, equation

(9) says that x∗ = 1
2∗0.5 [(0.4− 0.6) + 0.5(0.7 + 0.9)] = 0.6.

If the market splits at x∗ = 0.6 but xa = 0.7 and xb = 0.9,

the result violates our implicit assumption that the players split the

market.

Equation (9) is based on the premise that there does exist some

indifferent consumer, and when that is a false premise, as under the

parameters of Example 3, equation (9) will still spit out a value of

x∗, but the value will not mean anything.

In fact the consumer at x = 0.6 is not really indifferent between

Apex and Brydox. He could buy from Apex at a total cost of 0.6 +

0.1(0.5) = 0.65 or from Brydox, at a total cost of 0.4 + 0.3 (0.5) =

0.55. There exists no consumer who strictly prefers Apex.
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The Hotelling Location Game

(Hotelling [1929])

Players

n Sellers.

The Order of Play

The sellers simultaneously choose locations xi ∈ [0, 1].

Payoffs

Consumers are distributed along the interval [0,1] with a uniform

density equal to one. The price equals one, and production costs

are zero. The sellers are ordered by their location so x1 ≤ x2 ≤
. . . ≤ xn, x0 ≡ 0 and xn+1 ≡ 1. Seller i attracts half the consumers

from the gaps on each side of him, as shown in Figure 14.6, so that

his payoff is

π1 = x1 +
x2 − x1

2
, (11)

πn =
xn − xn−1

2
+ 1− xn, (12)

or, for i = 2, . . . n− 1,

πi =
xi − xi−1

2
+

xi+1 − xi

2
. (13)

Figure 6: Payoffs in the Hotelling Location Game
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With one seller, the location does not matter in this model,

since the consumers are captive. If price were a choice variable and

demand were elastic, we would expect the monopolist to locate at

x = 0.5.

With two sellers, both firms locate at x = 0.5, regardless of

whether or not demand is elastic. This is a stable Nash equilibrium,

as can be seen by inspecting Figure 4 and imagining best responses

to each other’s location. The best response is always to locate ε

closer to the center of the interval than one’s rival. When both

firms do this, they end up splitting the market since both of them

end up exactly at the center.
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Figure 7: Nonexistence of pure strategies with three

players

With three sellers the model does not have a Nash equilib-

rium in pure strategies. Consider any strategy profile in which each

player locates at a separate point. Such a strategy profile is not an

equilibrium, because the two players nearest the ends would edge in

to squeeze the middle player’s market share. But if a strategy profile

has any two players at the same point a, as in Figure 7, the third

player would be able to acquire a share of at least (0.5− ε) by mov-

ing next to them at b; and if the third player’s share is that large,

one of the doubled-up players would deviate by jumping to his other

side and capturing his entire market share. The only equilibrium is

in mixed strategies.
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Figure 8: The Equilibrium Mixed-Strategy Density in

the Three-Player Location Game

Suppose all three players use the same mixing density, with m(x)

the probability density for location x, and positive density on the

support [g, h], as depicted in Figure 8.

We will need the density for the distribution of the minimum of

the locations of Players 2 and 3.

Player 2 has location x with density m(x), and Player 3’s lo-

cation is greater than that with probability 1 − M(x), letting M

denote the cumulative distribution, so:

density ( x2 = x, x2 < x3 = m(x)[1−M(x)].

The density for either Player 2 or Player 3 choosing x and it being

smaller than the other firm’s location is then 2m(x)[1−M(x)]:

density( Minimum of x2 and x3 equalling x) = 2m(x)[1−M(x)].
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We just found (a) and (b)

(a) density ( x2 = x, x2 < x3 = m(x)[1−M(x)].

(b) density( Minimum of x2 and x3 equalling x) = 2m(x)[1 −
M(x)].

If Player 1 chooses x = g then his expected payoff is

π1(x1 = g) = g +

∫ h

g

2m(x)[1−M(x)]

(
x− g

2

)
dx, (14)

where g is the safe set of consumers to his left, 2m(x)[1−M(x)] is

the density for x being the next biggest location of a firm, and x−g
2

is Player 1’s share of the consumers between his own location of g

and the next biggest location.

If Player 1 chooses x = h his expected payoff is, similarly,

π1(x1 = h) = (1− h) +

∫ h

g

2m(x)M(x)

(
h− x

2

)
dx, (15)

where (1− h) is the set of safe consumers to his right.

In a mixed strategy equilibrium, Player 1’s payoffs from these

two pure strategies must be equal, and they are also equal to his

payoff from a location of 0.5, which we can plausibly guess is in

the support of his mixing distribution. Going on from this point,

the algebra and calculus start to become fierce. Shaked (1982) has

computed the symmetric mixing probability density m(x) to be:

m(x) =


2 if 1

4 ≤ x ≤ 3
4

0 otherwise

(16)

Asymmetric equilibria also exist.
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Since prices are inflexible, the competitive market does not achieve

efficiency.

A benevolent social planner or a monopolist who could charge

higher prices if he located his outlets closer to more consumers would

choose different locations than competing firms.

In particular, when two competing firms both locate in the center

of the line, consumers are no better off than if there were just one

firm.

As shown in Figure 10, the average distance of a consumer from

a seller would be minimized by setting x1 = 0.25 and x2 = 0.75,

the locations that would be chosen either by the social planner or

the monopolist.

Figure 10: Equilibrium versus Efficiency

The Hotelling Location Model is well suited to politics.

16



Vertical Differentiation I: Monopoly Quality Choice

Players

A seller and a continuum of buyers.

The Order of Play

0 Nature assigns quality values to a continuum of buyers of

length 1. Half of them are “weak” buyers (θ = 0) who value high

quality at 20 and low quality at 10. Half of them are “strong” buyers

(θ = 1) who value high quality at 50 and low quality at 15.

1 The seller picks quality s to be either s0 or 1.

2 The seller picks price p from the interval [0,∞).

3 Each buyer chooses one unit of a good, or refrains from buying.

The seller produces at constant marginal cost c = 1, which does not

vary with quality.

Payoffs

πseller = (p− 1)q. (17)

The buyer’s payoff is zero if he does not buy. If he does buy, it is

πbuyer = (10 + 5θ) + (10 + 25θ)s− p. (18)
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OPTIMAL SELLER PRICE AND QUANTITY

Payoffs

πseller = (p− 1)q. (19)

The buyer’s payoff is zero if he does not buy. If he does buy, it is

πbuyer = (10 + 5θ) + (10 + 25θ)s− p. (20)

The seller should clearly set the quality to be high,since then he

can charge more to the buyer (though note that this runs contrary

to a common misimpression that a monopoly will result in lower

quality than a competitive market.) The price should be either 50,

which is the most the strong buyers would pay, or 20, the most the

weak buyers would pay. Since π(50) = 0.5(50 − 1) = 24.5 and

π(20) = 0.5(20 − 1) + 0.5(20 − 1) = 19, the seller should choose

p = 50. Separation (by inducing only the strong buyer to buy) is

better for the seller than pooling.
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Vertical Differentiation II: Crimping the Product

Players

A seller and a continuum of buyers.

The Order of Play

0 Nature assigns quality values to a continuum of buyers of length 1.

Half of them are “weak” buyers (θ = 0) who value high quality at

20 and low quality at 10. Half of them are “strong” buyers (θ = 1)

who value high quality at 50 and low quality at 15.

1 The seller decides to sell both qualities s = 0 and s = 1 or just

one of them.

2 The seller picks prices pL and pH from the interval [0,∞).

3 Each buyer chooses one unit of a good, or refrains from buying.

The seller produces at constant marginal cost c = 1, which does not

vary with quality.

Payoffs

πseller = (pL − 1)qL + (pH − 1)qH . (21)

and

πbuyer = (10 + 5θ) + (10 + 25θ)s− p. (22)
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This is a problem of mechanism design. The seller needs to

pick p1, and p2 to satisfy incentive compatibility and participation

constraints if he wants to offer two qualities with positive sales of

both, and he also needs to decide if that is more profitable than

offering just one quality.

We already solved the one-quality problem in Vertical Differenti-

ation I, yielding profit of 24.5. The monopolist cannot simply add a

second, low- quality, low-price good for the weak buyers, because the

strong buyers, who derive zero payoff from the high-quality good,

would switch to the low-quality good, which would give them a

positive payoff. In equilibrium, the monopolist will have to give

the strong buyers a positive payoff. Their participation constraint

will be non-binding, as we have found so many times before for the

“good” type.

Following the usual pattern, the participation constraint for the

weak buyers will be binding, so pL = 10. The self-selection con-

straint for the strong buyers will also be binding, so

πstrong(L) = 15− pL = 50− pH . (23)

Since pL = 10, this results in pH = 45. The price for high quality

must be at least 35 higher than the price for low quality to induce

separation of the buyer types.

Profits will now be:

πseller = (10− 1)(0.5) + (44− 1)(0.5) = 26. (24)

This exceeds the one-quality profit of 24.5, so it is optimal for the

seller to sell two qualities.
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This result, is, of course, dependent on the parameters chosen,

but it is nonetheless a fascinating special case, and one which is

perhaps no more special than the other special case, in which the

seller finds that profits are maximized with just one quality. The

outcome of allowing price discrimination is a pareto improvement.

The seller is better off, because profit has risen from 24.5 to 26. The

strong buyers are better off, because the price they pay has fallen

from 50 to 45. And the weak buyers are no worse off. In Vertical

Differentiation I their payoff was zero because they chose not to buy;

in Vertical Differentiation I their payoffs are zero because they buy

at a price exactly equal to their value for the good.

Indeed, we can go further. Suppose the cost for the low-quality

good was actually higher than for the high-quality good, e.g., pL = 3

and pH = 1, because the good is normally produced as high quality

and needs to be purposely damaged before it becomes low quality.

The price-discrimination profit in (24) would then be πseller = (10−
3)(0.5)+ (44− 1)(0.5) = 25. Since that is still higher than 24.5, the

seller would still price- discriminate. The buyers’ payoffs would be

unaffected. Thus, allowing the seller to damage some of the good

at a cost in real resources of 2 per unit, converting it from high to

low quality, can result in a pareto improvement!
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Vertical Differentiation III: Duopoly Quality Choice

Players

Two sellers and a continuum of buyers.

The Order of Play

0 Nature assigns quality values to a continuum of buyers of length 1.

Half of them are “weak” buyers (θ = 0) who value high quality at

20 and low quality at 10. Half of them are “strong” buyers (θ = 1)

who value high quality at 50 and low quality at 15.

1 Sellers 1 and 2 simultaneously choose values for s1 and s2 from

the set {sL = 0, sH = 1}. They may both choose the same value.

2 Sellers 1 and 2 simultaneously choose prices p1 and p2 from the

interval [0,∞).

3 Each buyer chooses one unit of a good, or refrains from buying.

The sellers produce at constant marginal cost c = 1, which does not

vary with quality.

Payoffs

πseller = (p− 1)q (25)

and

πbuyer = (10 + 5θ) + (10 + 25θ)s− p. (26)
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If both sellers both choose the same quality level, their profits

will be zero, but if they choose different quality levels, profits will be

positive. Thus, there are three possible equilibria in the quality stage

of the game: (Low, High), (High, Low), and a symmetric mixed-

strategy equilibrium. Let us consider the pure-strategy equilibria

first, and without loss of generality suppose that Seller 1 is the low-

quality seller and Seller 2 is the high- quality seller.

(1) The equilibrium prices of Vertical Differentiation II, (pL =

10, pH = 45), will no longer be equilibrium prices. The problem

is that the low-quality seller would deviate to pL = 9, doubling his

sales for a small reduction in price.

(2) Indeed, there is no pure-strategy equilibrium in prices. We have

seen that (pL = 10, pH = 45) is not an equilibrium, even though

pH = 45 is the high- quality seller’s best response to pL = 10. PL >

10 will attract no buyers, so that cannot be part of an equilibrium.

Suppose PL ∈ (1, 10). The response of the high-quality seller will

be to set pH = pL + 35, in which case the low-quality seller can

increase his profits by slightly reducing pL and doubling his sales.

The only price left for the low-quality seller that does not generate

negative profits is pL = 1, but that yields zero profits, and so is

worse than pL = 10. So no choice of pL is part of a pure-strategy

equilibrium.

(3) As always, an equilibrium does exist, so it must be in mixed

strategies, as shown below.
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The Asymmetric Equilibrium: Pure Strategies for Qual-

ity, Mixed for Price

The low-quality seller picks pL on the support [5.5, 10] using the

cumulative distribution

F (pL) = 1−
(

39.5

pL + 34

)
(27)

with an atom of probability 39.5
44 at pL = 10.

The high-quality seller picks pH on the support [40.5, 45] using the

cumulative distribution

G(pH) = 2−
(

9

pH − 36

)
(28)

Weak buyers from the low-quality seller if 10−pL ≥ 20−pH , which is

always true in equilibrium. Strong buyers buy from the low-quality

seller if 15 − pL > 50 − pH , which has positive probability, and

otherwise from the high-quality seller.

This equilibrium is noteworthy because it includes a probability

atom in the mixed-strategy distribution, something not uncommon

in pricing games.
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To start deriving this equilibrium, let us conjecture that the

low-quality seller will not include any prices above 10 in his mixing

support but will include pL = 10 itself. That is plausible because he

would lose all the low-quality buyers at prices above 10, but pL = 10

yields maximal profits whenever pH is low enough that only weak

consumers buy low quality.

The low-quality seller’s profit from pL = 10 is πL(p = 10) =

0.5(10 − 1) = 4.5. Thus, the lower bound of the support of his

mixing distribution (denote it by aL) must also yield a profit of 4.5.

There is no point in charging a price less than the price which would

capture even the strong consumers with probability one, in which

case

πL(aL) = 0.5(aL − 1) + 0.5(aL − 1) = 4.5, (29)

and aL = 5.5. Thus, the low-quality seller mixes on [5.5, 10].

On that mixing support, the low-quality seller’s profit must equal

4.5 for any price. Thus,

πL(pL) = 4.5 = 0.5(pL − 1) + 0.5(pL − 1)Prob(15− pL > 50− pH)

= 0.5(pL − 1) + 0.5(pL − 1)Prob(pH > 35 + pL)

= 0.5(pL − 1) + 0.5(pL − 1)[1−G(35 + pL)]
(30)
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From the previous page: On that mixing support, the low-

quality seller’s profit must equal 4.5 for any price. Thus,

πL(pL) = 0.5(pL − 1) + 0.5(pL − 1)[1−G(35 + pL)]

Thus, the G(pH) function is such that

1−G(35 + pL) =
4.5

0.5(pL − 1)
− 1 (31)

and

G(35 + pL) = 2−
(

4.5

0.5(pL − 1)

)
. (32)

We want a G function with the argument pH , not (35+pL), so let’s

shift the argument by 35:

G(pH) = 2−
(

4.5

0.5([pH − 35]− 1)

)
= 2−

(
9

pH − 36

)
. (33)

As explained in Chapter 3, what we have just done is to find the

strategy for the high-quality seller that makes the low-quality seller

indifferent among all the values of pL in his mixing support.

We can find the support of the high-quality seller’s mixing dis-

tribution by finding values aH and bH such that G(aH) = 0 and

G(bH) = 1, so

G(aH) = 2−
(

9

aH − 36

)
= 0, (34)

which yields aH = 40.5, and

G(bH) = 2−
(

9

(0) · bH − 36

)
= 1, (35)

which yields bH = 45. Thus the support of the high-quality seller’s

mixing distribution is [40.5, 45].
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Now let us find the low-quality seller’s mixing distribution, F (pL).

At pH = 40.5, the high-quality seller has zero probability of losing

the strong buyers to the low-quality seller, so his profit is 0.5(40.5−
1) = 19.75. Now comes the tricky step. At ph = 45, if the high-

quality seller had probability one of losing the strong buyers to the

low-quality seller, his his profit would be zero, and he would strictly

prefer pH = 40.5. Thus, it must be that at ph = 45 there is strictly

positive probability that pL = 10— not just a positive density. So

let us continue, using our finding that the profit of the high-quality

seller must be 19.75 from any price in the mixing support. Then,

πH(pH) = 19.75 = 0.5(pH − 1)Prob(15− pL < 50− pH)

= 0.5(pH − 1)Prob(pH − 35 < pL)

= 0.5(pH − 1)[1− F (pH − 35)]

(36)

so

F (pH − 35) = 1−
(

19.75

0.5(pH − 1)

)
. (37)

Using the same substitution trick as in equation (33), putting pL

instead of (pH − 35) as the argument for F , we get

F (pL) = 1−
(

19.75
0.5(pL+35−1)

)
= 1−

(
39.5

pL+34

)
(38)

In particular, note that

F (5.5) = 1−
(

39.5

5.5 + 34

)
= 0, (39)

confirming our earlier finding that the minimum pL used is 5.5, and

F (10) = 1−
(

39.5

10 + 34

)
= 1− 39.5

44
< 1. (40)
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F (10) = 1−
(

39.5

10 + 34

)
= 1− 39.5

44
< 1.

Equation (40) shows that at the upper bound of the low-quality

seller’s mixing support the cumulative mixing distribution does not

equal 1, an oddity we usually do not see in mixing distributions.

What it implies is that there is an atom of probability at pL = 10,

soaking up all the remaining probability beyond what equation (40)

yields for the prices below 10. The atom must equal 39.5
44 ≈ 0.9.

Happily, this solves our paradox of zero high-quality seller profit

at pH = 45. If pL = 10 has probability 39.5
44 , the profit from pH = 45

is 0.5(39.5
44 )(45 − 1) = 19.75. Thus, the profit from pH = 45 is the

same as from pH = 40.5, and the seller is willing to mix between

them.
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The duopoly sellers’ profits are 4.5 (for low-quality) and 19.75

(for high quality) in the asymmetric equilibrium of Vertical Differen-

tiation III, a total of 24.25 for the industry. This is less than either

the 24.5 earned by the nondiscriminating monopolist of Vertical

Differentiation I or the 26 earned by the discriminating monopolist

of Vertical Differentiation II. But what about the mixed-strategy

equilibrium for Vertical Differentiation III?
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The Symmetric Equilibrium: Mixed Strategies for Both

Quality and Price

Each player chooses low quality with probability α = 4.5/24.25

and high quality otherwise. If they choose the same quality, they

next both choose a price equal to 1, marginal cost. If they choose

different qualities, they choose prices according to the mixing dis-

tributions in the asymmetric equilibrium.

This equilibrium is easier to explain. Working back from the

end, if they choose the same qualities, the two firms are in undiffer-

entiated price competition and will choose prices equal to marginal

cost, with payoffs of zero. If they choose different qualities, they

are in the same situation as they would be in the asymmetric equi-

librium, with expected payoffs of 4.5 for the low-quality firm and

19.75 for the high-quality firm. As for choice of product quality, the

expected payoffs from each quality must be equal in equilibrium, so

there must be a higher probability of both choosing high-quality:

π(Low) = α(0) + (1− α)4.5 = π(High) = α(19.75) + (1− α)(0).

(41)

Solving equation (41) yields α = 4.5/24.25 ≈ 0.17, in which case

each player’s payoff is about 3.75. Thus, even if a player is stuck in

the role of low-quality seller in the pure- strategy equilibrium, with

an expected payoff of 4.5, that is better than the expected payoff he

would get in the “fairer” symmetric equilibrium.
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We can conclude that if the players could somehow arrange what

equilibrium would be played out, they would arrange for a pure-

strategy equilibrium, perhaps by use of cheap talk and some random

focal point variable.

Or, perhaps they could change the rules of the game so that

they would choose qualities sequentially. Suppose one seller gets to

choose quality first. He would of course choose high quality, for a

payoff of 19.75. The second-mover, hwoever, choosing low-quality,

would have a payoff of 4.5, better than the expected payoff in the

symmetric mixed-strategy equilibrium of the simultaneous quality-

choice game. This is the same phenomenon as the pareto superiority

of a sequential version of the Battle of the Sexes over the symmetric

mixed-strategy equilibrium of the simultaneous-move game.

What if Seller 1 chooses both quality and price first, and Seller

2 responds with quality and price? If Seller 1 chooses low quality,

then his optimal price is pL = 10, since the second player will choose

high quality and a price low enough to attract the strong buyers—

pH = 45, in equilibrium— so Seller 1’s payoff would be 0.5(10-

1) = 4.5. If Seller 1 chooses high quality, then his optimal price

is pH = 40.5, since the second player will choose low quality and

would choose a price high enough to lure away the strong buyers

if pH < 40.5. If, however, pH = 40.5, Seller 2 would give up on

attracting the strong buyers and pick pL = 10. Thus, if Seller 1

chooses both quality and price first, he will choose high quality and

pH = 40.5 while Seller 2 will choose low quality and pL = 10,

resulting in the same payoffs as in the asymmetric equilibrium of

the simultaneous-move game, though no longer in mixed strategies.

31



What Product Differentiation III shows us is that product differ-

entiation can take place in oligopoly vertically as well as horizontally.

Head-to-head competition reduces profits, so firms will try to

differentiate in any way that they can.

This increases their profits, but it can also benefit consumers—

though more obviously in the case of horizontal differentiation than

in vertical.

Keep in mind, though, that in our games here we have assumed

that high quality costs no more than low quality.

Usually high quality is more expensive, which means that having

more than one quality level can be efficient.

Often poor people prefer lower quality, given the cost of higher

quality, and even a social planner would provide a variety of quality

levels.

Here, we see that even when only high quality would be provided

in the first-best, it is better that a monopolist provide two qualities

than one, and a duopoly is still better for consumers.
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