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I. Introduction

I came to know Professor Moriki Hosoe when he led the project of trans-
lating the first edition of my book, Games and Information, into Japanese in
1990 and visited him at Kyushu University. He realized, as I did, that a great
many useful new tools had been developed for economists, and that explain-
ing the tools to applied modellers would be extraordinarily useful because of
the difficulty of reading the original expositions in journal articles. Here, my
objective is similar: to try to explain a new technique, but in this case the
statistical one of the “BLP Method” of econometric estimation, named after
Berry, Levinsohn & Pakes (1995). I hope it will be a useful contribution to
the festschrift in honor of Professor Hosoe. I, alas, do not speak Japanese,
so I thank xxx for their translation of this paper. I know from editing the
1997 Public Policy and Economic Analysis with Professor Hosoe how time-
consuming it can be to edit a collection of articles, especially with authors
of mixed linguistic backgrounds, and so I thank Isao Miura and Tohru Naito
for their editing of this volume.

The BLP Method is a way to estimate demand curves, a way that lends
itself to testing theories of industrial organization. It combines a variety
of new econometric techniques of the 1980’s and 90’s. Philosophically, it
is in the style of structural modelling, in which empirical work starts with
a rigorous theoretical model in which players maximize utility and profit
functions, and everything, including the disturbance terms, has an economic
interpretation, the style for which McFadden won the Nobel Prize. That
is in contrast to the older, reduced-form, approach, in which the economist
essentially looks for conditional correlations consistent with his theory. Both
approaches remain useful. What we get with the structural approach is the
assurance that we do have a self-consistent theory and the ability to test
much finer hypotheses about economic behavior. What we lose is simplicity
and robustness to specification error.

Other people have written explanations of the BLP Method. Nevo
(2000) is justly famous for doing this, an interesting case of a commentary
on a paper being a leading article in the literature itself. (Recall, though,
Bertrand’s 1883 comment on Cournot or Hicks’s 1937 “Mr Keynes and the
Classics.”) The present paper will be something of a commentary on a com-
mentary, because I will use Nevo’s article as my foundation. I will use his
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notation and equation numbering, and point out typos in his article as I
go along. I hope that this paper, starting from the most basic problem of
demand estimation, will be useful to those, who like myself, are trying to
understand modern structural estimation.

II. The Problem

Suppose we are trying to estimate a market demand curve. Our data
is the quantity sold of a product, qt, and the price, pt in twenty towns t =
1, ...20. Our theory is that demand is linear, with this equation:

qt(pt) = α− βpt + εt. (1)

Let’s start with an industry subject to price controls. A mad dictator
sets the price in each town, changing it from town to town for entirely whim-
sical reasons. The result will be data that looks like Figure 1a. That data
nicely fits our model in equation (1), as Figure 1b shows.

Figure 1: Supply and Demand with Price Controls
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Next, suppose we do not have price controls. Instead, we have a situation
of normal supply and demand. The problem is that now we might observe
data like that in Figure 2a. Quantity rises with price; the demand curve
seems to slope the wrong way, if we use ordinary least squares (OLS) as in
Figure 2b.

Figure 2: Supply and Demand without Price Controls

The solution to the paradox is shown in Figure 2c: OLS estimates the
supply curve, not the demand curve. This is what Working (1927) pointed
out.

It could be that the unobservable variables εt are what are shifting the
demand curve in Figure 2. Or, it could be that it is some observable variable
that we have left out of our theory. So perhaps we should add income, yt:

qt(pt) = α− βpt + γyt + εt. (2)

This will help make the estimation of β more accurate if pt and yt are
correlated, but it does not help our basic problem of untangling supply shifts
from demand shifts. We need to include some observed variable that shifts
supply.

Another approach would be to try to use a different kind of data. What
if we could get data on individual purchases of product j? Our theory for
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the individual is different from our theory of the market. The demand curve
looks much the same, except now we have a subscript for consumer i.

qit(pt) = αi − βipt + γiyit + εit. (3)

But what about the supply curve? From the point of view of any one small
consumer, the supply curve is flat. He has only a trivial influence on the
quantity supplied and the market price, an influence we ignore in theories of
perfect competition, where the consumer is a price-taker. Thus, we are back
to something like Figure 1.

There is indeed one important difference. Now, all we’ve done is estimate
the demand curve for one consumer. That is enough, if we are willing to
simplify our theory to assume that all consumers have identical demand
functions:

qit(pt) = α− βpt + γyit + εit. (4)

This is not the same as assuming that all consumers have the same quantity
demanded, since they will still differ in income yit and unobserved influences,
εit, but it does say that the effect of an increase in price on quantity is the
same for all consumers. If we are willing to accept that, however, we can
estimate the demand curve for one consumer, and we can use our estimate β̂
for the market demand curve. Or, we can use data on n different consumers,
to get more variance in income, and estimate β̂ that way.

But we would not have to use the theory that consumers are identical.
One alternative is to use the demand of one or n consumers anyway, arriving
at the same estimate β̂ that we would under the theory (1). The interpre-
tation would be different, though–it would be that we have estimated the
average value of β, and interpreting the standard errors would be harder,
since they would be affected by the amount of heterogeneity in βi as well
as in εit. (The estimates would be unbiased, though, unlike the estimates I
criticize in Rasmusen (1989a, b), since pt is not under the control of the con-
sumer.) Or, we could estimate the βi for all n consumers and then average
the n estimates to get a market β, as opposed to running one big regression.
Under either alternative, if we had reason to believe that the n consumers in
our sample were not representative of the entire population, we would want
to weight each consumer by the likely frequency of his type of preferences in
the population.
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Individual consumer data, however, is no panacea. For one thing, it is
hard to get– especially since it is important to get a representative sample
of the population. For another, its freedom from the endogeneity problem
is deceptive. Recall that we assumed that each individual’s demand had no
effect on the market price. That is not literally correct, of course— every
one of 900, 000 buyers of toothbrushes has some positive if trivial effect on
market sales. If one of them decides not to buy a toothbrush, sales fall to
899,999. That effect is so small that the one consumer can ignore it, and the
econometrician could not possibly estimate it given even a small amount of
noise in the data. The problem is that changes in individuals’ demand are
unlikely to be statistically independent of each other. When the unobservable
variable ε900000t for consumer i = 900, 000 is unusually negative, so too in all
likelihood is the unobservable variable ε899999t for consumer i = 899, 999.
Thus, they will both reduce their purchases at the same time, which will
move the equilibrium to a new point on the supply curve, reducing the market
price. Price is endogenous for the purposes of estimation, even though it is
exogenous from the point of view of any one consumer.

So we are left with a big problem—identification— for demand estima-
tion. The analyst needs to use instrumental variables, finding some variable
that is correlated with the price but not with anything else in the demand
equation, or else he must find a situation like our initial price control example
where prices are exogenous.

In fact, even price controls might not lead to exogenous prices. A mad
dictator is much more satisfactory, at least if he is truly mad. Suppose we
have a political process setting the price controls, either a democratic one
or a sane dictator who is making decisions with an eye to everything in the
economy and public opinion too. When is politics going to result in a higher
regulated price? Probably when demand is stronger and quantity is greater.
If the supply curve would naturally slope up, both buyers and sellers will
complain more if the demand curve shifts out and the regulated price does
not change. Thus, even the regulated price will have a supply curve.

All of these problems arise in any method used to estimate a demand
curve, whether it be the reduced-form methods just described or the BLP
structural method. One thing about structural methods is that they force us
to think more about the econometric problems. Your structural model will
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say what the demand disturbance is— unobserved variables that influence
demand. If you must build a maximizing model of where regulated prices
come from, you will realize that they might depend on those unobserved
variables.

What does all this have to do with industrial organization? Isn’t it just
price theory, or even just consumer theory? Where are the firms? The reason
this is so important in industrial organization is that price theory underlies it.
Production starts because somebody demands something. An entrepreneur
then discovers supply. That entrepreneur needs to organize the supply, and
so we have the firm. Other entrepreneurs compete, and we have an indus-
try. How consumers react to price changes is fundamental to this. Natural
extensions to this problem bring in most of how firms behave. Demand for
a product depends on the prices of all firms in the industry, and so we bring
in the theory of oligopoly. Demand depends on product characteristics, and
so we have monopolistic competition and location theory. Demand depends
on consumer information, and so we have search theory, advertising, adverse
selection, and moral hazard. As we have seen, estimating demand inevitably
brings in supply. Or, if you like, you could think of starting with the problem
of estimating the supply curve in a perfectly competitive industry, a problem
that can be approached in the same way as we approach demand here.

III. The Structural Approach

Let us now start again, but with a structural approach. We will not
begin with a demand curve this time. Instead, we will start with consumer
utility functions. The standard approach in microeconomic theory is to start
with the primitives of utility functions (or even preference orderings) and
production functions and then see how maximizing choices of consumers and
firms result in observed behavior. Or, in game theory terms, we begin with
players, actions, information, and payoffs, and see what equilibrium strategies
result from players choosing actions to try to maximize their payoffs given
their information.

Suppose we are trying to estimate a demand elasticity— how quantity
demanded responds to price. We have observations from 20 towns of cereal
market data, the same 50 brands of cereal for each town (50 “products”),
which makes a total of 1,000 data points. We also have data on 6 character-
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istics of each cereal brand and we have demographic data on how 4 consumer
characteristics are distributed in the population in each town.

The older structural approach is to use a model of consumer prefer-
ences over the products and estimate 50 interconnected demand curves, as
in the “linear expenditure model” of Stone (1954) (for the descendants of
that approach, see the references in Hosken, Daniel, Daniel OBrien, David
Scheffman & Michael Vita [2002] and Gould [2006]). A problem with that
approach is that if there are 50 demand curves, and demand for each product
depends on the prices of the others there are 2,500 parameters in the model,
and we only have 1,000 data points with which to estimate them. This is
the “curse of dimensionality.” The symmetry of the cross-elasticities and the
adding-up restrictions required by the common budget constraint reduce the
number of free parameters, but estimation is still impractical. Even if we had
more observations, we also would need sufficient variation in the data to sort
out all the different interactions— we would need sufficient differences in the
patterns of all 50 prices, for example. Thus, we will use a different approach,
making consumer utility a function of product characteristics instead of the
products themselves, and making the individual consumer’s problem one of
the probability of buying a particular product rather than how much to buy.

Each type of consumer will decide which product to buy, buying either
one or zero units. We do not observe individual decisions, but we will model
them so we can aggregate them to obtain the product market shares that
we do observe. The fact that the frequency of different consumer types
is different in different towns is the variance in the data that allows us to
estimate how each of the 4 consumer characteristics affects demand. We can
see if more sweet cereal is bought in Smallville, with its many children, than
in Littleton, with its aging population.

At this point, we could decide to estimate the elasticity of demand for
each product and all the cross-elasticities directly, but with 50 products that
would require estimating 2,500 numbers. Instead, we will focus on the prod-
uct characteristics. There are only 6 of these, and there would only be 6
even if there were 500 brands of cereal instead of 50. In effect, we will be
estimating cross-elasticities between cereal characteristics, but if know those
numbers, we can calculate the cross-elasticities between products by combin-
ing the characteristic effect parameter estimates with the characteristic level
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for each product.

The Consumer Decision

The utility of consumer i if he were to buy product j in town t is given
by the following equation, denoted equation (1n) because it is equation (1)
in Nevo (2000):

uijt = αi(yi − pjt) + xjtβi + ξjt + εijt

i = 1, ..., 400, j = 1, ..., 50, t = 1, ..., 20,
(1n)

where yi is the income of consumer i (which is unobserved and which we will
assume does not vary across time), pjt is the observed price of product j in
town t, xjt is a 6- dimensional vector of observed characteristics of product
j in town t, ξjt (the letter “xi”) is a disturbance scalar summarizing unob-
served characteristics of product j in town t, and εijt is the usual unobserved
disturbance with mean zero. The parameters to be estimated are consumer
i’s marginal utility of income, αi, and his marginal utility of product char-
acteristics, the 6-vector βi. I have boldfaced the symbols for vectors and
matrices above, and will do so throughout the article.

Consumer i also has the choice to not buy any product at all. We will
model this outside option as buying “product 0” and normalize by setting
the j = 0 parameters equal to zero (or, if you like, by assuming that it has a
zero price and zero values of the characteristics):

ui0t ≡ αiyi + εi0t (5)

Equation (1n) is an indirect utility function, depending on income yi and
price pjt as well as on the real variables xjt, ξjt, and εijt. It is easily derived
from a quasilinear utility function, however, in which the consumer’s utility
is the utility from his consumption of one (or zero) of the 50 products, plus
utility which is linear in his consumption of the outside good. Our consumers
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are solving the problem,

Maximize
q0, q1, ...q50 {q0 + u1(q1) + u2(q2) + · · ·u50(q50)}

such that

(a)
∑50

j=0 {qjpj} ≤ y

(b)
∑50

j=0 {qj} = 1

(6)

Constraint (a) is the usual budget constraint. Constraint (b) requires that
only one unit of one of the 50 goods, or no units of any of them ( so q0 = 1
instead), be bought.

Quasilinear utility is linear, not concave, in income, so it lacks income
effects.As a result, we do not need to observe consumer incomes and we can
denote income as yi, constant across towns, rather than yit, varying across
towns. If income effects are important, they can be modelled by indirect
utility that is a function not of (yi − pjt) but of some concave function such
as log(yit − pjt), as in BLP (1995). Consumer i’s income does appear, but
it does not change across towns, which may seem strange. That is because
we are implicitly assuming that utility is linear in money, so different income
levels would make no difference to choices.

A consumer’s utility depends on a product’s characteristics ( xjt), di-
rectly on the product in a way that is the same for all consumers (ξjt), and on
unobserved effects special to that consumer, product, and town (εijt). Why
is there no fixed consumer effect vit analogous to the fixed product effect
ξjt— an effect special to consumer i in town t, but independent of product
j? We could add a vit variable without harming the model, but it would
have no effect, because when a consumer comes to compare the utilities from
different products that variable would be the same for all of them and make
no difference. The Smallsville consumer may be an unusually happy person,
but that does not affect his choice between cereals.

Consumer characteristics do not appear directly in the utility function.
They play a role later in the model, in determining βi, the marginal utility
of product characteristics. Note that consumer income could appear there
if we observe it varying across towns, as affecting the utility of different
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characteristics even if we assume that utility is linear in money and the price
elasticity does not depend on income.

We will assume that εijt follows the Type I extreme-value distribution,
which if it has mean zero and scale parameter one has the density and cu-
mulative distribution

f(x) = e−xe−e
−x

F (x) = e−e
−x

. (7)

This is the limiting distribution of the maximum value of a series of draws
of independent identically distributed random variables with support over
the entire real line. The more draws, the bigger the expected maximum,
which is why the mean and scale parameter can take various values. Figure
3 illustrates the density, which is not dissimilar to the normal distribution,
except that it is slightly asymmetric and has thicker tails. Note that it has
infinite support, so the unobserved effect εijt always has some probability of
outweighing product characteristics, price, and everything else. This distri-
bution is standardly used in logit models because its cumulative distribution
is related to the probability of x being larger than any other of a number
of draws, which is like the random utility from one choice being higher than
that from a number of other choices. This leads to a convenient formula for
the probability that a consumer makes a particular choice, and thus for a
product’s market share, as we will see below.

Figure 3: The Type I Extreme-Value Distribution
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Consumer i buys product j in town t if it yields him the highest utility
of any product or of not buying at all. What we observe, though, is not
consumer i’s decision, but the market share of product j. Also, though we
do not observe βi, consumer i’s marginal utility of product characteristics,
we do observe a sample of observable characteristics. Even if we did ob-
serve his decision, we would still have to choose between regular logit and
BLP’s random- coefficients logit, depending on whether we assumed that ev-
ery consumer had the same marginal utility of characteristics β or whether
βi depended on consumer characteristics.

Standard Multinomial Logit: Identical Consumers

One way to proceed would be to assume that all consumers are identical
in their taste parameters; i.e., that αi = α and βi = β, and that the εijt
disturbances are uncorrelated across i’s. Then we have the standard multi-
nomial logit model (multinomial because there are multiple choices, not just
two). The utility function reduces to the following form, which is (1n) except
that the parameters are no longer i-specific.

uijt = α(yi − pjt) + xjtβ + ξjt + εijt

i = 1, ..., 400, j = 1, ..., 50, t = 1, ..., 20.
(5n)

Now the coefficients are the same for all consumers, but incomes differ. We
can aggregate by adding up the incomes, however, since the coefficient on
each consumer has the same value, α. Thus we obtain an aggregate utility
function,

ujt = α(y − pjt) + xjtβ + ξjt + εjt, j = 1, ..., 50, t = 1, ..., 20. (8)

If we assume that εjt follows the Type I extreme-value distribution, then this
is the multinomial logit model.

Since εjt follows the Type I extreme value distribution by assumption,
the market share of product j under our utility function is

sjt =
exjtβ−αpjt+ξjt

1 +
∑50

k=1 e
xktβ−αpkt+ξkt

(6n)

Equation (6n) is by no means obvious. The market share of product j is the
probability that j has the highest utility, which occurs if εjt is high enough
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relative to the other disturbances. The probability that product 1 has a
higher utility than the other 49 products and the outside good (which has a
utility normalized to zero) is thus

Prob(α(y − p1t) + x1tβ + ξ1t + ε1t > α(y − p2t) + x2tβ + ξ2t + ε2t)∗
Prob(α(y − p1t) + x1tβ + ξ1t + ε1t > α(y − p3t) + x3tβ + ξ3t + ε3t) ∗ · · ·
∗Prob(α(y − p1t) + x1tβ + ξ1t + ε1t > α(y − p50t) + x50tβ + ξ50t + ε50t)∗
Prob(α(y − p1t) + x1tβ + ξ1t + ε1t > αy + ε0t)

(9)
Substituting for the Type I extreme value distribution into equation (9) and
solving this out yields, after much algebra, equation ( 6n). (For a step-
by-step derivation, see chapter 3.1 and its appendix in Train (2003) on the
Web.) Since αy appears on both sides of each inequality, it drops out. The
1 in equation (6n) appears because e0 = 1 and the outside good adds 0 to
utility.

Elasticities of Demand

To find the elasticity of demand, we need to calculate
∂sjt
∂pkt

for products

k = 1, ..., 50. It is helpful to rewrite equation (6n) by defining Mj as

Mj ≡ exjtβ−αpjt+ξjt . (10)

so

sjt =
Mj

1 +
∑50

k=1 Mk

. (11)

Then
∂sjt
∂pkt

=

∂Mj

∂pkt

1 +
∑50

k=1Mk

+

(
−Mj

(1 +
∑50

k=1Mk)2

)(
∂Mk

∂pkt

)
(12)

First, suppose k 6= j. Then

∂sjt
∂pkt

=
0

1 +
∑50

k=1 Mk

+

(
−Mj

(1 +
∑50

k=1Mk)2

)
(−αMk)

= α

(
Mj

1 +
∑50

k=1Mk

)(
Mk

1 +
∑50

k=1 Mk

)

= αsjtskt

(13)
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Second, suppose k = j. Then

∂sjt
∂pjt

=
−αMj

1 +
∑50

k=1Mk

+

(
−Mj

(1 +
∑50

k=1Mk)2

)
(−αMj)

= −αsjt + αs2
jt

= −αsjt(1− sjt)

(14)

We can now calculate the elasticity of the market share: the percentage
change in the market share of product j when the price of product k goes
up:

ηjkt ≡
%∆sjt
%∆pkt

=
∂sjt
∂pkt

· pkt
sjt

=

{
−αpjt(1− sjt) if j = k
αpktskt otherwise.

(15)

Why Multinomial Logit Is Unsatisfactory for Demand Estimation

The theoretical structure of the elasticities in equation (15) is unrealistic
in two ways.

1. If market shares are small, as is frequently the case, then α(1 − sjt) is
close to α, so that own-price elasticities are close to −αpjt. This says that
if the price is lower, demand is less elastic, less responsive to price, which in
turn implies that the seller will charge a higher markup on products with low
marginal cost. There is no particular reason why we want to assume this,
and in reality we often see that markups are higher on products with higher
marginal cost, e.g. luxury cars compared to cheap cars.

2. The cross-price elasticity of product j with respect to the price of product
k is αpktskt, which only depends on features of product k— its price and
market share. If product k raises its price, it loses customers equally to
each other product. 1 This is a standard defect of multinomial logit, which
McFadden’s famous red-bus/blue-bus example illustrates. If you can choose
among going to work by riding the red bus, the blue bus, or a bicycle, and

1An apparent third feature, that a high price of product k means it has higher cross-
elasticities with every other product, is actually the same problem as problem (1).
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the price of riding the red bus rises, are you equally likely to shift to the blue
bus and to riding a bicycle? Of course not, but the multinomial logit model
says that you will.

Another way to proceed is to use nested logit. In the red-bus/blue- bus
example, you would first decide whether the blue bus or the red bus had the
highest utility, and then decide whether the best bus’s utility was greater
than the bicycle’s. In such a model, if the price of the red bus rose, you
might switch to the blue bus, but you would not switch to the bicycle. A
problem with nested logit, however, is that you need to use prior information
to decide how to construct the nesting. In the case of automobiles, we might
want to make the first choice to be between a large car and small car, but
it is not clear that this makes more sense than making the first choice to be
between a high-quality car and a low-quality car, especially if we are forcing
all consumers to use the same nesting.

Random Coefficients Logit: Heterogeneous Consumers

An alternative to simple logit or nested logit is to assume that the
parameters— the marginal utilities of the product characteristics— are dif-
ferent across consumers, and are determined by the consumer characteris-
tics. Random coefficients is the name used for this approach, though it is a
somewhat misleading name. The approach does not say that the consumer
behaves randomly. Rather, each consumer has fixed coefficients in his utility
function, but these coefficients are a function both of fixed parameters that
multiply his observed characteristics and on unobservable characteristics that
might as well be random. Thus, “random coefficients” really means “indi-
vidual coefficients”. We will denote the average values of the parameters αi
and βi across consumers as α and β, and assume the following specification
(where the second step depends on Σ being diagonal):

(
αi
βi

)
=

(
α
β

)
+ ΠDi + Σν i

=

(
α
β

)
+

(
Πα

Πβ

)
Di +

(
Σα

Σβ

)(
νiα, νiβ

) (2n)

where Di is a 4× 1 vector of consumer i’s observable characteristics, νi is a
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7× 1 vector of the effect of consumer i’s unobservable characteristics on his
αi and βi parameters; Π is a 7 × 4 matrix of how parameters (the αi and
the 6 elements of βi ) depend on consumer observables, Σ is a 7× 7 matrix
of how those 7 parameters depend on the unobservables, and (νiα, ν iβ), (
Πα,Πβ) and ( Σα,Σβ) just split each vector or matrix into two parts.

We will denote the distributions of D and ν by P∗D(D) and P∗ν(ν).
Since we’ll be estimating the distribution of the consumer characteristics D,
you will see the notation P̂∗D(D) show up too. We will assume that P∗ν(ν)
is multivariate normal.2

Utility in the Random Coefficients Logit Model

Equation (1n) becomes3

uijt = αi(yi − pjt) + xjtβi + ξjt + εijt

= αiyi − (α + ΠαDi + Σανiα)pjt + xjt(β + ΠβDi + Σβν iβ) + ξjt + εijt

= αiyi + (−αpjt + xjtβ + ξjt)− (ΠαDi + Σανiα)pjt +xjt(ΠβDi + Σβν iβ

)
+ εijt

= αiyi + (−αpjt + xjtβ + ξjt) + (−pjt,xjt) (ΠDi + Σν i) + εijt

= αiyi + δjt + µijt + εijt

j = 1, ..., 50, t = 1, ..., 20.
(16)

What I have done above is to reorganize the terms to separate them into
four parts. First, there is the utility from income, αiyi. This plays no part
in the consumer’s choice, so it will drop out.

Second, there is the “mean utility”, δjt, which is the component of utility
from a consumer’s choice of product j that is the same across all consumers.

2 Nevo variously uses P∗D(D), P̂∗D(D), P∗ν (ν), and P̂∗ν (ν) in his exposition. I have
tried to follow him, but I may simply have misunderstood what he is doing.

3There is a typographical error in the Nevo paper on p. 520 in equation (3n): u instead
of µ in each line.
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δjt ≡ −αpjt + xjtβ + ξjt (17)

Third and fourth, there is a heteroskedastic disturbance, µijt, and a ho-
moskedastic i.i.d. disturbance, εijt.

µijt ≡ (−pjt,xjt) (ΠDi + Σν i) (18)

Market Shares and Elasticities in the BLP Model

If we use the Type I extreme value distribution for εijt, then the market
share of product j for a consumer of type i turns out to be

sijt =
eδjt+µijt

1 +
∑50

k=1 e
δkt+µikt

. (19)

Recall that we denote the distributions of D and ν by P∗D(D) and P ∗ν(ν).
Since we will be estimating the distribution of the consumer characteristics
D, you will see the notation P̂∗D(D) show up too.

The overall market share of product j in town t is found by integrating
the market shares picked by each consumer in equation ( 19) across the
individual types, weighting each type by its probability in the population:

sjt =

∫
ν

∫
D

sijtdP̂∗D(D)dP∗ν(ν)

=

∫
ν

∫
D

[
eδjt+µijt

1 +
∑50

k=1 e
δkt+µikt

]
dP̂∗D(D)dP∗ν(ν)

(20)

Equation (20) adds up the market shares of different types i of consumers
based on how common that type i is in town t.

The price elasticity of the market share of product j with respect to the
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price of product k is

ηjkt ≡
∂sjt
∂pkt

· pkt
sjt

=


−pjt
sjt

∫
ν

∫
D

αisijt(1− sijt)dP̂∗D(D)dP∗ν(ν) if j = k

pkt
sjt

∫
ν

∫
D

αisijtsiktdP̂∗D(D)dP∗ν(ν) otherwise.

(21)

This is harder to estimate than the ordinary logit model, whose analog
of equation (20) is equation (6n), repeated below.

sjt =
exjtβ−αpjt+ξjt

1 +
∑50

k=1 e
xktβ−αpkt+ξkt

(6n)

The difficulty comes from the integrals in (20). Usually these need to be cal-
culated by simulation, starting with our real-world knowledge of the distribu-
tion of consumer types i in a given town t and the characteristics of product
j, and combining that with estimates of how different consumer types value
different product characteristics. This suggests that we might begin with an
initial set of parameter estimates, calculate what market shares that gener-
ates for each town, see how those match the observed market shares, and
then pick a new set of parameter estimates to try to get a closer match.

What is special about random-coefficients logit is not that it allows for
interactions between product and consumer characteristics, but that it does
so in a structural model. One non-structural approach would have been
to use ordinary least squares to estimate the following equation, including
product dummies to account for the ξjt product fixed effects.

sjt = xjtβ − αpjt + ξjt (22)

Like simple logit, the method of equation (22) implies that the market share
depends on the product characteristics and prices but not on any interac-
tion between those things and consumer characteristics. We can incorporate
consumer characteristics by creating new variables in a vector dt that rep-
resents the mean value of the 4 consumer characteristics in town t, and then
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interacting the 4 consumer variables in dt with the 6 product variables in xt

to create a 1× 24 variable wt. Then we could use least squares with product
dummies to estimate

sjt = xjtβ − αpjt + dtθ1 + wtθw + ξjt (23)

where θ1 is the coefficient vector for the 4 direct effects of the consumer
variables and θw is the coefficient vector for the 24 interactions between
consumer and product variables.

Equation (23) adds market shares directly from the 4 consumer char-
acteristics and less directly via the 24 consumer-product characteristic in-
teractions. Thus, it has some of the flexibility of the BLP model. It is not
the result of a consistent theoretical model. Even aside from whether ra-
tional consumer behavior could result in a reduced form like (??) or (23),
those equations do not take account of the relationships between the market
shares of the different products— the sum of all the predicted market shares
should not add up to more than one, for example. The random-coefficient
logit model avoids this kind of internal contradition.

Before going on to estimate the random coefficients model, however, re-
call that regardless of how we specify the utility function— logit, nested logit,
random-coefficients logit, or something else— we face the basic simultaneity
problem of estimating demand and supply functions. Market shares depend
on prices and disturbance terms, but prices will also depend on the distur-
bance terms. If demand is unusually strong for a product because of some
unobservable variable, the price of that product will be higher too. This calls
for some kind of instrumental variables estimation. What we will use here is
the generalized method of moments.

The Generalized Method of Moments

The generalized method of moments (GMM) of Hansen (1982) will
combine aspects of overidentified instrumental variables, generalized least
squares, and a nonlinear specification in our demand setting. It helps to
separate these things out. We will go one step at a time, before circling back
to the BLP method’s use of GMM.
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Suppose we want to estimate

y = x1β1 + x2β2 + ε, (24)

where we observe y, x1, and x2, but not ε, though we know that ε has a
mean of zero. We assume that the x’s and the unobservable disturbances
ε are uncorrelated, which is the definition of the x’s being exogenous (if we
included a constant term, it would be uncorrelated with ε too— another way
to include the assumption that ε has a mean of zero). This lack of correlation
makes up the two “moment conditions” that we can write as

M1 : E(x′1ε) = 0, M2 : E(x′2ε) = 0. (25)

or
E(M1) = 0, E(M2) = 0. (26)

Note that if there are T observations, x1 is a T × 1 vector, but M1 = x′1ε is
1× 1.

In the generalized method of moments, we choose β̂ to make a weighted
sum of squares of the sample moment expressions (which are the M ’s that
equal zero in the moment condition) as small as possible. Let’s put aside the
question of what weights to use for now. The sum of squares of the moment
expressions is

(M1 M2)′(M1 M2) (27)

Think of M1 as a random variable, since it incorporates those T random
variables ε in the T observations. The expected value of M1 is zero, by
assumption, but in our sample its realization might be positive or negative,
because its variance is not zero. The matrix (M1 M2) is 2 × 1, so the sum
of squared moment expressons is 1× 1.

Another way to write the problem is to choose β̂ to minimize M′M. If
M = X′ε, we will find

β̂ =
argmin

β ε̂′XX′ε̂ (28)
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Thus, we minimize the function f(β̂):

f(β̂) = ε̂′XX′ε̂

= (y −Xβ̂)′XX′(y −Xβ̂)

= y′XX′y − β̂
′
X′XX′y − y′XX′Xβ̂ + β̂

′
X′XX′Xβ̂

(29)

We can differentiate equation (29) with respect to β̂ to get the first order
condition,

f ′(β̂) = −X′XX′y − y′XX′X + 2β̂
′
X′XX′X

= −2X′XX′y + 2β̂
′
X′XX′X

= 2X′X(−X′y + β̂
′
X′X) = 0

(30)

in which case
β̂ = (X′X)−1X′y (31)

and we have the OLS estimator.

We might also know that the x’s and disturbances are independent:

E(ε|x1, x2) = 0. (32)

This is different from being uncorrelated. For example, suppose ε’s value is
either −1 or +1 with equal probability, and x1 equals 0 if ε = −1 and 3 or −3
with equal probability if ε = 1. Then E(ε′x1) = 0, but E(ε|x1 = 0) = −1.
Moreover, various functions of x1 are correlated with ε even though x1 is
not. E(ε′(x2

1)) = .5(−1)(0) + .5(.5 ∗ 32 ∗ 1) + .5 ∗ (−3)2 ∗ 1 = 4.5,. Thus, ε
and x1 are uncorrelated but not independent.

We want to use all available information, for efficient estimation, so we
would like to use that independence information. It will turn out to be useful
information if the variance depends on X, though not otherwise. (That “not
otherwise” will show up as that if the variance does not depend on X, then
the moment variance covariance matrix entry is zero, and if we know ex ante
the information that it equals zero then we should use that information.)

21



Independence gives us lots of other potential moment conditions. Here
are a couple:

E((x2
1)′ε) = E(M3) = 0, E((x2 ∗ x1)′ε) = E(M4) = 0. (33)

Some of these conditions are more reliable than others. So we’d like to
weight them when we use them. Since M3 and M4 are random variables, they
have variances. So let’s weight them by the the inverse of their variances—
more precisely, by the inverse of their variance-covariance matrix, since they
have cross-correlations. Call the variance-covariance matrix of all the mo-
ment conditions Φ(M). We can estimate that matrix consistently by running
a preliminary consistent regression such as OLS and making use of the resid-
uals.

The GMM estimator uses the inverse of the variance-covariance matrix
of the moment conditions, Φ(M)−1, to weight them in the estimation, a
weighting scheme that has been shown to be optimal (see Hansen [1982]).
We minimize the weighted square of the moment conditions by choice of the
parameters β̂.

(M1 M2 M3 M4)′(Φ(M)−1)(M1 M2 M3 M4) (34)

The weighting matrix is crucial. OLS uses the most obviously useful
information. We can throw in lots and lots of other moment conditions
using the independence assumption, but they will contain less and less new
information. Adding extra information is always good in itself, but in finite
samples, the new information, the result of random chance, could well cause
more harm than good. In such a case, we wouldn’t want to weight the less
important moment conditions, which might have higher variance, as much
as the basic exogeneity ones. Consider the moment condition M5:

E((x3
2 ∗ x5

1)′ε) = E(M5) = 0. (35)

That moment condition doesn’t add a lot of information, and it could have a
big variance not reflected in the consistent estimate of Φ(M) that we happen
to obtain from our finite sample.

We have now gotten something like generalized least squares, GLS, from
the generalized method of moments. I did not demonstrate it, but Φ(M) will
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turn out to be an estimate of the variance covariance matrix of ε. It is not the
same as other estimates used in GLS, because it depends on exactly which
moment conditions are used, but it is consistent. We have a correction for
heteroskedasticity, which is something we need for estimation of the BLP
problem. Notice that this means that GMM can be useful even though:

(a) This is a linear estimation problem, not nonlinear.

(b) No explanatory variables are endogenous, so this is not an instru-
mental variables problem.

There are other ways to correct for heteroskedasticity, but the GMM
estimator shows its true strength when used as a form of instrumental vari-
ables estimation.4 Suppose that one of our basic moment conditions fails.
E(x2ε) 6= 0, because x2 is endogenous, and we have lost our moment condi-
tions M2 and M4. What we need is a new basic moment condition that will
enable us to estimate β2— that is, we need an instrument correlated with
x2 but not with ε. Suppose we do have a number of such conditions, a set
of variables z1 and z2. We can use our old conditions M1 and M3, and we’ll
add a couple others too, ending up with this set:

E(x1ε) = 0 E((x2
1)′ε) = 0, E(z1ε) = 0 E(z2ε) = 0 E((z1 ∗ x1)′ε) = 0 E((z1 ∗ z2)′ε) = 0.

(36)
We will abbreviate these six moment conditions as

E(Z′ε) = E(M) = 0, (37)

where the matrix Z includes separate columns for the original variable x1,
the simple instruments z1 and z2, and the interaction instruments, z1 ∗ x1

and z1 ∗ z2.

Let’s suppose also, for the moment, that we have the ex ante information
that the disturbances are independent of each other and Z, so there is no
heteroskedasticity. Then we can derive the weighting matrix thus (noting
that a variance is calculated using the deviation from the mean, which here
is zero):

Φ(M) = Var(M) = Var(Z′ε) =E(Z′εε′Z)−E(Z′ε)E(ε′Z) = E(Z′(Iσ2)Z)− 02 = σ2Z′Z.
(38)

4The following exposition is based on Hall(1996).
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The GMM estimator uses that variance-covariance matrix in the weight-
ing matrix that puts different weight on the six moment conditions. It solves
the problem of choosing the parameters β̂2SLS to minimize

f(β̂2SLS) = ε̂′2SLSZ(σ2Z′Z)−1Z
′
ε̂2SLS

= (y −Xβ̂2SLS)′Z(σ2Z′Z)−1Z
′
(y −Xβ̂2SLS)

(39)

We can differentiate this with respect to β̂2SLS to get the first order condition

f ′(β̂2SLS) = −X′Z(σ2Z′Z)−1Z
′
(y −Xβ̂2SLS) = 0, (40)

which solves to

β̂2SLS = [X′Z(Z′Z)−1Z′X]−1X′Z(Z′Z)−1Z′y (41)

This estimator is both the GMM estimator and the 2SLS (two-stage
least squares) estimator. They are equivalent when the disturbances are
independently distributed, though if there were heteroskedasticity they would
become different because GMM would use the weighting matrix (Φ(M))−1,
which would not be the same as (Z′Z)−1. 2SLS could be improved upon
with heteroskedasticity corrections, however, in the same way that OLS can
be improved.

Notice that this is the 2SLS estimator, rather than the simpler instru-
mental variables (IV) estimator that is computed by calculating IV directly:

β̂IV = (X′Z)−1Z′y (42)

Two-stage least squares and IV are the same if the number of instruments
is the same as the number of parameters to be estimated, but otherwise the
formula in equation (42) cannot be used, because when X is T × J and Z is
T ×K, X′Z is J ×K, which is not square and cannot be inverted . What
2SLS is doing differently from IV is projecting X onto Z with the projection
matrix, Z(Z′Z)−1Z′, to generate a square matrix that can be inverted. GMM
does something similar, but with Φ(M) instead of Z(Z′Z)−1Z′.

We have so far solved for β̂ analytically, but that is not an essential part
of GMM. The parameters β might enter the problem nonlinearly, in which
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case minimizing the moment expression could be done using some kind of
search algorithm. For example, suppose our theory is that

y = xβ11 + β1β2x2 + ε, (43)

and our moment conditions are

E(x′1ε) = M1 = 0, E(x′2ε) = M2 = 0 E(x1 ∗ x′2ε) = M3 = 0. (44)

We could then search over values of β1 and β2 to minimize the moment
expression,

(y − xβ11 + β1 ∗ β2 ∗ x2)′M(Φ(M))−1M′(y − xβ11 + β1 ∗ β2 ∗ x2), (45)

where we would have to also estimate Φ(M) during some part of the search.

Combining Logit and GMM

Now let us return to random coefficients logit. If our assumption on the
population is that5

E(Zmω(θ∗)) = 0, m = 1, . . . ,M, (8n)

then the GMM estimator is

θ̂ =
argmin

θ ω(θ)′ZΦ−1Z′ω(θ), (9n)

where Φ is a consistent estimator of E(Z′ωω′Z). The instrument matrix Z
consists both of single- variable instruments and multi-variable instruments
consisting of squares and interactions of the single variables.

As in ordinary least squares,but unlike in maximum likelihood, does
not require us to know the distribution of the disturbances. In our demand
estimation, though, we will still have to use the assumption that the εijt
follow the extreme value distribution, because we need it to calculate the
market shares aggregated across consumer types, whether by plain logit or
random-coefficients logit.

5I think there is a typo in Nevo here, on page 531, and z′m should replace Zm in equation
(8n).
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In more detail, here is how the estimation proceeds. First, the modeller
must set up his theoretical model, which at a minimum means choosing lists
of observation units (towns, or months, or town/months, etc.), products,
product characteristics, and consumer characteristics. He may also choose
to include additional variables besides the prices which are common to all
consumers: advertising, hot weather, a time trend, and so forth (in which
case the parameter α would become a vector of parameters). Following the
Appendix to Nevo (2000), denote by X1 the matrix of explanatory variables
common to all consumers, including not only the prices, advertising, and
so forth but a dummy variable for each product. These are separated out
because they are the only variables that enter into the simpler, linear part of
the estimation needed to obtain the average parameter values, (α,β). Denote
by X2 the matrix of directly observed explanatory variables that enter into
the nonlinear part of the estimation, the estimation of (Π,Σ) for the random
coefficients (i.e. the individuals’ deviations from the average coefficients): the
prices and any other common variables which affect consumers with different
characteristics differently, and the product characteristics, but not product
dummies. Also, neither X1 nor X2 includes the consumer characteristics,
since they enter the estimation separately, at the point where the market
shares are estimated by aggregating across consumers. The modeller must
also choose instruments for price and perhaps for other common variables.
All this data must be collected, as must the market shares for each product
and a distribution or actual sample of consumers with their characteristics.
The estimation then take the following steps (the labelling of the steps is
adapted from Nevo [2000], Appendix, p. 1).

(-1) Select arbitrary values for δ and (Π,Σ) (for step 1) and for (α,β) (for
step (3)) as starting points. Recall that δ from (17) is the vector of the mean
utility from each of the products, that (Π,Σ) is the matrix of parameters
showing how observed and unobserved consumer characteristics and product
characteristics interact to generate utility, and that (α,β) is the average value
of the parameters across consumers.

(0) Draw random values for (ν i,Di) for i = 1, ...ns from the distributions
P∗ν(ν) and P̂∗D(D) for a sample of size ns, where the bigger you pick ns the
more accurate your estimate will be.

(1) Using the starting values and the random values, and using the assump-
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tion that the εijt follow the extreme-value distribution, approximate the in-
tegral for market share that results from aggregating across i by

sjt =

(
1

ns

) ns∑
i=1

sijt

=

(
1

ns

) ns∑
i=1

[
e[δjt+Σ6

k=1x
k
jt(σkν

k
i +πk1Di1+···+πk4Di4)]

1 +
∑50

m=1 e
[δmt+

∑6
k=1 x

k
mt(σkν

k
i +πk1Di1+···+πk4Di4)]

]
,

(11n)
where (ν1

i , . . . , ν
6
i ) and (Di1, . . . , Di4) for i = 1, . . . ns are those random draws

from the previous step.

Thus, in step (1) we obtain predicted market shares for given values of
the individual consumer parameters (Π,Σ) and for given values of the mean
utilities δ.

(2) Use the following contraction mapping, which, a bit surprisingly, con-
verges. Keeping (Π,Σ) fixed at their starting points, find values of δ by the
following iterative process.

δh+1
·t = δh·t + (ln(S·t)− ln(s·t)), (12n)

where S·t is the observed market share. and s·t is the predicted market share
from step (1) that uses δh+1

·t as its starting point. Start with the arbitrary
δ0 of step (-1).

If the observed and predicted market shares are equal, then δh+1
·t = δh·t

and the series has converged. In practice, keep iterating until (ln(S·t)− ln(s·t))
is small enough for you to be satisfied with its accuracy.

Thus, in step (2) we come out with values for δ.

(3) Figure out the value of the moment expression, using the starting values
for (α,β) from step (0) and the δ estimate from step (2).
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(3a) Calculate the error term ωjt.
6

ωjt = δjt − (−αpjt + xjtβ) (13n)

(3b) Calculate the value of the moment expression,

ω′ZΦ−1Z′ω (46)

You need a weighting matrix Φ−1 to do this, which ideally is

Φ−1 = (E(Z′ωω′Z))−1. (47)

In practice, we use a consistent estimator of Φ−1. Until step (4c), just use
Φ−1 = (Z′Z)−1 as a starting point.

(4) Compute better estimates of all the parameters:the common parameters
(α,β), the individual parameters (Π,Σ), and the weighting matrix Φ.

(4a) Find an estimate of the parameters that are common to all consumers,
(α,β), using the GMM estimator,

(α̂, β̂) = (X′ZΦ−1Z′X)−1X′ZΦ−1Z′δ (48)

This is a linear estimator that can be found analytically by multiplying
matrices without any need for numerically minimizing something with search
algorithm. Separating out the parameters that can be linearly estimated
from the parameters that require a search algorithm is why we use all these
steps instead of simply setting up the moment expression and then using a
minimization algorithm to find parameter values that minimize it. Searching
takes the computer longer than multiplying matrices, and is less reliable in
finding the true minimum, or, indeed, in converging to any solution.

(4b) Estimate the value of the error term in (13n), ω̂ and then the moment
expression in (46), using the improved estimates of (α,β) from equation (48).

6In my original version, and in Nevo’s equation (13), there is a mistake: the minus sign
in front of α is omitted. This expression comes from equation (3) in Nevo and equation
(17) of the present paper. Equation (13n)below has the mistake fixed now—November 18,
2011.
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(4c) Estimate the value of the weighting matrix Φ = Z′ωω′Z using the ω̂
just calculated.7

ω̂jt = δjt − (−̂αpjt + xjtβ̂) (49)

(4d) Use a search algorithm to find new values for (Π,Σ). Take the new val-
ues and return to step (1). Keep iterating, searching for parameter estimates
that minimize the moment expression (46), until the value of the moment
expression is close enough to zero.

Nevo notes that you could then iterate between estimating parameters
( step 4a) and estimating the weighting matrix (step 4c). Both methods are
consistent, and neither has more attractive theoretical properties, so it is
acceptable to skip over step (4c) after the first iteration.

Conclusion

Now that we have gone through the entire procedure, it may be helpful
to list some of the ideas we have used.

1. Instrumental variables. We use instruments to correct for the endogene-
ity of prices, the classic problem in estimating supply and demand.

2. Product characteristics. We look at the effect of characteristics on
demand, and then build up to products that have particular levels of the
characteristics. Going from 50 products to 6 characteristics drastically
reduces the number of parameters to be estimated.

3. Consumer and product characteristics interact. This is what is going
on when consumer marginal utilities are allowed to depend on con-
sumer characteristics. This makes the pattern of consumer purchases
substituting from one product to another more sensible.

4. Structural estimation. We do not just look at conditional correlations
of relevant variables with a disturbance term tacked on to account for
the imperfect fit of the regression equation. Instead, we start with a
model in which individuals maximize their payoffs by choice of actions,

7The mistake in equation (13n) above carried over to equation (49). I omitted a minus
sign in front of α, but I have now included it— Nov. 18, 2011.
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and the model includes the disturbance term which will later show up
in the regression.

5. The contraction mapping. A contraction mapping is used to estimate
the parameters that are averaged across consumers, an otherwise diffi-
cult optimization problem.

6. Separating linear and nonlinear estimation problems. The estimation
is divided into one part that uses a search algorithm to numerically
estimate parameters that enter nonlinearly and a second part that uses
an analytic formula to estimate the parameters that enter linearly.

7. The generalized method of moments. The generalized method of mo-
ments is used to estimate the other parameters.

Not all of these are special to the BLP method. Ideas (1), (2), and (3)
can all be used with least squares (which itself is a simplified version of (7)).
Idea (4) is used in standard logit. Ideas (5) and (6) are special to BLP, but of
course BLP is a combination of all seven ideas, which is why it is so complex
to explain.

The BLP method has been widely used because it is general enough to
use for a variety of estimation problems in industrial organization, not just
for simple demand problems. It is attractive compared to older methods
because it imposes relatively little structure on the theoretical model, and
so allows many different kinds of firm and consumer behavior to be tested.
This flexibility, however, is achieved at the cost of considerable intricacy. The
BLP method is made up of a modelling part and an estimation part. The
modelling part is a logit model of a maximizing consumer’s choice of product
depending on consumer and product characteristics. This is a structural
model, and really any structural model of maximizing choice, by consumer,
government, or firm, could be used in its place. The estimation part estimates
the importance of the product characteristics, consumer characteristics, and
prices using the generalized method of moments. This is a highly flexible
method, requiring weaker assumptions than maximium likelihood but like
that procedure requiring a large number of observations and much computing
power. I hope in this summary I have made clearer how the economist would
go about combining this modelling and estimation that forms the BLP model.
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