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PREFACE

The following notes contain & survey of those
properties of convex cones, convex sets, and convex functions
in finite dimenslonal spaces which are most fregquently used
in other fields. HEmphsesis is given to results having appli-
cations in the theory of games and in programming problems.

Chapters I and II center about the interaction of
the two features of convexity in linear spesces and affine
spaces: 1. the original definition of a convex set as & set
conteining all gegments whose endpolnts are in the set and
2. the exlistence of & support through every boundary point.
The convex hull of a set 1s the set of all centroids of points
in the given set,while its closure is the intersection of all
halfspaces contsining the set. This fact may be considered as
the kernel of meny of the applications of the concept of con-
vexity. It indicates slso the important {though not quite
complete) self-duality of the theory. The projective and -
it 1s believed - most general formulation of this duallty is
given at the end of Chapter II.

The first part of Chepter IIT desls with the well-
known elementary properties of continuous convex functions.

No differentiabllity assumptions are wade, but the directlional
derivative which always exists 1s investigated and used rather
extensively. The second part of the chapter contains recent
investigstions. By means of a suitable polarity, an involutory
correspondence between convex functions i1s established and
applied to a generalized convex progrsmming problem. Finally
the level gets of a convex function are studied and the exist-
ence of a convex function with glven level sets is discussed.

Since the end of the lsst century numerous papers
have dealt mainly or partiaslly with convex sets or functions.



Many results have been discovered several times in different
formulations - often adapted to particular aspplications in
other fields. No attempt has been made in these notes to
quote for each theorem the first paper in which it appears
in the formulation chosen here. In fact most of the basic
concepts and results can be traced back in one form or
another to the very first papers on the subject. Short
historicel notes and references are gathered at the end of
this report.



Chapter I

CONVEX CONES

§1. PRELIMINARIES

Iet " be an n-dimensionsl Euclidean vector gpece
with origin 0, vectors x,y, ..., imner product (x,y),
norm x| =§T§j§), and metric d{x,y) = Ix - ¥il . Identify
the vector x with the n-tuple [x of its coordinates with

1
regpect to a particular

orthonormal basig of IX. X,
n

Then (X,¥) = X'y = 2 X;7;-
=

A subset M of L™ is called a coneg if 0 is in M and
XxeM implies AxeM for every non-negative real scalar A . The
perticular cones consisting of & non-zero vector x and all
its muitiples Ax (Az 0) are rays. A cone which contains at
least one non-zero vector is therefore just the union of the
rays it contasins.

Since g1l non-trivial cones may be thought of as
sets of rays, it 1ls desirable to introduce a topology on
these rays from the topology on 1. This might be done by

defining the angle
b(x,y) = arc cos Imxiny - (0Lo<m)

as a metric on L™ - 0. This engle depends only on the rays
(x) and (y) to which x and y belong. It may be thought of
as the angle between the two rays. The proof that this
angle is indeed a metric for the rays, in particular that
it satisfies the triangle inequslity is not obvious. An



equlvalent metric 1s

This new metric is the chord distance between the two points

. and on the unit sphere |lzil = 1. That is
x| liyli :

o . v
[x:33 = dlgrr - wym)-

Clearly [x,y] depends only on the fays (x) and (y). [x,y]
also satisfies the defining conditions for a metric on the
space of rays. The geometric description shows that the
two metrics are topologically eguivalent.

A gsequence of rays (x¥ ) is said to converge to a
ray (x) if [x” ,x] —» 0. A ray (x) is called a limit ray of
a cone M Iif there is a sequence of rays of the cone which are

different from (x) and which converges to (x). A closed conse

or a closed set of rays is & cone which contains all its
1imit rays. A cone is closed in thig sense if and only if
it 18 cloged in the usual topology of ™. A cone is open
if and only if the complementary set of rays is a closed
cone. This is equivalent to the definition?

DEFINITION. M is open if and only if
for every (x) in M there is an ¢ > 0 such
that 211 rays (y) with [x,y] <€ are in M.

The set of such rays (y) is called an € -neighborhood of.
(x). An open cone as a set in 1™ 1g an open set of i plus
the origin. A ray (x) is called an interior ray of a cone
M if M contains an & neighborhood of (x) for some ¢ > O.

A ray (x) such that the complementary cone to the cone M
contains a neighborhood of (x)} 1s cslled an exterior ray

of M. A boundary ray of a cone M is a limit ray of M which
is not an interior ray of M. —




With any cone M there is essociated s smallest
linear subspace S{M) of 1" which contains M. This gpace
may be defined as the intersection of all subspsces con-
taining M. The dimension d(M) of the space S{M} is called
the linear dimension of the cone M. In the theorems which
follow S(M)} will often play a more important role than I
1tself’. For these results cones, open or closed relative
te 3(M), and interior, exterior, and boundary rays relative
to S(M) will be considered rather than their counterparts
in the topology of the full gpace 1B, They wlll be calleg
for simplicity relative interior, relative exterior, and
relative boundary rays.

§2. CONVEX CONES

A cone C 1s convex i1f the ray {x+y) is in C whenever
(x} and (y) are rays of C. Thus a set C of vectors is a con-
vex cone 1f and only if 1t contains all vectors

Ax o+ puy (N, p2 05 x,7 € C).

The largest subspace s{C) conteined in a convex cone C is
called the lineality spsce of C and the dimension 1(C) of
5{C) is called the lineality of C.

IEMMA 1. If (x) 1s an interior ray of a
convex cone C relative to S{C) and (y) 18 a
boundary or interior ray of C relative to 3(C),
every ray { ) X +4y), where A andf! are posi-
tive real numbers, 1s sn interior ray of C
relative to S{C}.

PROOF:
Case 1: (y) = (-x), that is (A x +/my) = (X} or (y).
It will be shown that C = 3(C). It may be assumed that y¢ C.



Otherwise therse 1s & y*g C so cleose to y that (X*) = (—y*) is
in & neighborhood of (x) contained in C. Thus, x" and y*
satisfy the assumptions of the lemma. Iet z + 0, + X be any
vector in 3(C). Consider the plane P spanned by x and =z.

Now C.nP containg an angle around (x). In this angle there

is & ray (X) such that z is in the B84ES sangle determined by
(X) and {y). Hence z is a linear combination of x and y

with positive coefficlents. Therefore z is in € and C = 5(C).
The lemma follows in this cese because every ray of S(C) is
relative interior to S(C).

Case 2: (y) # {-x) which implies (Ax + hy) # (¥).

2.1: ng,Umm%isanv>OSmmimm;C
contains an n-neighborhood of (x) relstive to 3{(C). It has to
be shown that there is an ¢ 0 such that C contains an
€-neighborhood of { A x tﬁy) relative to S(C). Congider first
an arbitrary € > 0. Let (2) be any ray in the & -neighborhood
of {(AX +My). Put 2 =AXx +My + v and suppose 2 is normalized
so that |lz{] = ![AX +fAyH. Then

Thx + T o+ v, AX + fy1f = HVI'IE_ <e?,
/ /! Thx +/uyu2
hence '
WiF <e® ihx + /xyflgn
Consider now the vector x + %v for which &(X + %v) +/#y = Z.

The distance of {(x + %v) from (x) satisfies

T 1 1
1 2 Ix[© + zv'x AAxl - v
[x + v, x]° = 2-2-5"— <22x+1_'v

lx + Sillix ]
_}_'"'___‘
Y 4| I ¥4 N
belt + 5 gy AR



o Mxin®
~ J—E—i&/\X u-r/uy]i“

This will be less thany 2 when ¢ Hence

X + %v endz are in C whene is this small.

2.2: y4C. There is & sequence of vectors
yﬁe C tending to y. Since the bound found for ¢ remains
greater than a positive constant when y varies in a bounded
region, there 1s a fixed ¢ > 0 such that the & -neighborhood
of Jix +ﬂﬂy” s in C forv= 1,2,... . Since Ax +ﬁ,y%;+ix +/ay
every vector z for which [z ,Ax:+/;y] {& will be in this
neighborhood for sufficiently large v . This completes the
proof.

The following 1list gives some of the more important
simple properties of convex cones.

1. The closure C of a convex cone C ig convex.

' This fcllows directly from the definition of

convexity.

2. The interior of a convex ccne C relative to
3(C} is a convex conse.

This 1s & corollary of Lemma 1.

3. A convex cone has interior rays relative tb

S(C).

This follows because the set of vectors v{A) =
}?Xé T oee. Adxdﬁwhere xt, L., x9 are fixed vectors of C
which form & basis of S(C) and A1’ nn,,),d are positive

variables) form a set of rays in C which is open in S{C).

L. In every nelghborhood of a relative boundary
ray (z) of a convex cone C there is a ray exterior to C.
Iet (x) % {-z} be sny relative intericr ray of C.
If N 1s a given neighborhood of (z} select some ray {(w}
in N such that w = “V]X + Z’V1> 0. {(w} is therefore a ray



near (z) in the plane of (x)} and (z) such that (z) 18 in the
smaller angle between (x) and (w). If (w) were not an exter-
ior ray of C, Lemma ! would state that all rays (Ax +4w)
{) f/£> 0) would be relative interiocr rays. In particular (z)
= {7 X + w) would be a relative interior ray. Hence (w) is
an exterior ray of C.

This property does not hold for cones 1n general as
18 shown by the example of the cone which is-the whole space
with exception of one ray.

5. A convex cone C and its eemp%emeﬁt have the same
esleasn

boundary rays. . . .
y v am vwmed Ll Cowrtgua-ce
This 1s me%e%y—&—%eﬁ%a%emégg of Property L.
6. A convex cone which i1s everywhere dense in i
is 17,

This follows from Property L.

§3. SUPPORTS
A closed half-space defined by a relstion x'u £ 0

for a fixed u £+ 0 is called a support for a cone M 1f M is
contained in this hslf-space.

THEOREM 7. If C is a convex cone and (z)
a ray exterior tc C, there is & support of C
which does not contain (z).

To prove this thsorem a vector u must be found such
thet x'u { 0 for a1l x in C and z'u » 0. It will certainly be
sufficlent to show this for any closed convex cone, since a
ray exterior to a cone 1s also exterior to the closure of the
cone. Since the rays of a closed cone form a compact set,
there 1s some ray (x°) such that [2,%°]
be assumed without loss of generality that izl = x°1 = 1.

= min [z,x]. I} can



Case 1. [z,xo} = min [(z,x] = 2. Then
(x3eC ,
x° = -z and any vector u such thet x'u { 0 defines a support

for C for which z'u > 0.

Case 2. [x,x°1 < 2. Since [z,x] is a mono-
tone decreasing function of z'x if z and x are unit vectors,

(o w0 . , ey 2! X e -
[z,x7] X%%n4{z,x] implies z W§W'§ z'x” for all x££ C.

Recause x°£ C and Xxc C implies that (1- 8)x° + ex¢ C (Og ® { 1),
it follows that

: 0
(1-g) .
gr LLZ8Ix” ¢ X < z'x° for sny 0 { 8 < 1 and any x¢ C.

ij ( i_e )XO G- SX H e

Therefore

EE

o
2(1-8)ex" x-1

1 ¢© \f (1-03% o e

{z'x - 2'x°) { g
If & tends to zero, the limiting relation

z2'x - z'x° ¢

is derived. (The right side is the derivative of the square
recot with respect to 6 at ® == 0.: Hence
f
ztx { (2'x°)(x° x) or
' - iptxC1xCy 8l '
x'(za {z'x )x" Yy < 0 for all x in C.

Since z end x° are linesrly independent

z - {2'x7)x° 4 0

Trnerefcre the vector u = 2z - (ZVXO}XO defines a halfspace of



support for C. Now z'(z - (zﬁxo}xo) =1 - (Z*XO}2 which is

greeter then zero since z  and x° are not opposite unit

vectors. This completes the proof of Theorem 1.

COROLIARY 7. A convex cone which 1is
not the whole of L™ has » support, i.e. it
is in some half-spsce.

There must be at least one ray (z) not in C if C & 1™,
If this is not an exterior ray then by Property 4 there is some
other ray {zT) which is an exterior rey. Theorem 1 says that
C is conteined in s halfspece not containing this exteriocor ray.

COROLIARY 2. If (z} is a boundary
rey of C there is a supporting half-space,
xtu < 0, to C such thet z'u = 0 that is

z ig on the boundary of this support.

o 4 .
Let z' 7z~ be a sequence of vectors exterior

LA |
to C and converging to z. For each t there 1s o support
. 1:, i 1 . &=
such that xtu < 0 for x&€C, 7" ut2 0. The u’ may be
assumed to be unlt vectors snd hence contaln & subsequence

which converges to some vector u. Now x'u 0 for all x€C

and z'u > 0. Since z€C, z'u = O

§4. THE CONVEX HULL AND THE NORMAL CONE

If M is a cone, the cone (M| which is the inter-
section of s11 convex cones containing M 1s called the convex
hull of M. The convex hull of M is the smellest convex cone



containing M.

For any cone M, (M| D {fll because [M] is & closed
convex cone containing M and hence M and {M]. The more
interesting question is when (M| < [} that is when M} = M} .
Examination of the peossible two dimensional cones shows that
M} = (@] if d(M) -2. It will be proved later that if M
congists of & finite number of rays or if M is closed and
1{{M]} = 0 the equelity also holds. That the equality does
not hold in general is shown by the following example in 7.

L3

M = (vectors iXT’XE’XE) ! (X,i - ]X5| )2 + Xi( Xg),

Here M - M and [M}! is the open half-space defined by Xé> 0

plus the line x, - X, = 0, On the other hand M} is the

c¢losed half-space defined by Xy > 0.

JR———

THEOREM 2. fThe closure (M| of the
convex hull of a cone M is the intersection
cf' 211 the supports of M.

The intersection I of all supports of M ig a closed

convex cone containing M. Therefore I D (M!.

If (z) were a ray of I which was not in the closed
CONVEX COone 5&&, it would be an exterior ray to §ﬁﬂ snd hence
by Theorem 1 there would be 2 homogeneous hyperplans gepara-
ting {z) from ] and hence from M. The halifspace defined by
this hyperplene which contained M would be a support of M
which did not contsin {(z). Therefore MIDT.

The cone M* formed by a1l vectors u such thsat

x'u < 0 for every vector X in a cone M is called the normsl

cone of M; for, it consists of all outer normals of supports
to M. Clearly M* is convex and closed and hence M= M .

9



If M is & subspace, M° is its orthogonal complement.

* %

THEOREM 3. M = [M]

If ye M, then y'u { ¢ for all u such that x'u £ 0

for all x in M. Therefore y is in the half spece of support
of M which is defined by z'u £ 0 for a particular u in M.

Now as u ranges over M*, this half spesce ranges over all
supperts of M. Therefore y is in the intersectlon of the

—1

supports of M and hence in M| by Theorsm 2. Since M** is a

——

convex closed cone, 1t follows that M D Ml. Hence M & = M1,

COROLIARY: If C is a clcged convex cone

¥

c = C.

Because of this reletion, the normsl cone C* ls &also
called the polar cons of C when C 1is clesed end convex.

THEOREM 4: For any two cones M and N

MuUN) =M Ny

and '
MmNt My N

If u'x { 0 for all xe MUN then u'x { 0 for all xcM

end for a1l x in N, and conversely. Hence

(MyN;* = MNN
Substitution of M° for M and N° for N in this eduation glves
(M*u N*)* = M NN . If the normal cone is now considersd

e

M N e U N = M ) e )T

i0



COROLIARY: If C and D are convex cones,
#
(c + D) = Cc*n D"
and
(CnD)" =0 v Dr .

For generel cones M and N, MUNi>DM + NODMuUN.

&m%&HMUNH* =(MUNf,(M+Iﬁ*m{MUNf. Hence for
convex cones (0 + D)* =0 ND. Also (C* + If)* =0 'n D=

* K

CND. Therefore 0F + D* = (C° + D) " = (CnD)™.
THROREM 5. For any cone M,

aM) + 1M ) = n

and
M) + a{M™) { 1My + dM) = n

From the definition of the normal cone, it follows
that S{M*)CfM* implies S(M*)*3>M*f3 M. Now S{M*)* is a sub-
space of dimension n —1(M*}. Therefore nf—l(M*) 2 d(M). On
the other hand S(M)DM. Hence S(M)C M . Since S(M)* is o
subspace of dimension n - d(M), it follows that n - d(M) 1(M").

Hence 1(M") + d(M) = n. Substitution of M for M in this
relation gives

1)« @My = 1TMI) + (M) = n.

E3

Since 1({M}) £ 1(IMT) the theorem is proved.

# The sum M + N of two cones M snd N is defined as the cone
of all vectors x+y, xeM,yeN.

11



COROLIARY: 'For s closed convex cone C

1(C) + d(C7) = n
and
1(C™) + d(C)

!
x

§5. THE CONVEX HULL AND POSITIVE LINEAR COMBINATIONS.

THEOREM 6. Any vector x of {M| is of
the form x = A x' + ... +ATXT for x3¢ M and

/\532 0.

This follows immediately becsuse the set of all such
non-negative finite linsar combinaticns is in {M] and on the
other hand these linear combinations do form a convex cone.

THEOREM 7. Any vector x # 0 in (Ml 1s
a positive linear combinstion of linearly
independent vectors in M. (This shows that
sny vector of M| can be expressed as & non-
negative linear cowbination of some d(M)
vectors of M where d(M) is the lineer dimen-
sion of M.}

By Theorem 6, X = A1x1 Foees + Arxr for some vectors

x5 of M and some constants )W‘z 0. If the vectors x', ..., x¥

are linearly dependent then there are some real numbers/a1,
.u,/Mr not all zero such that /ﬁx§ Fouee ﬁﬁ%xr = 0. It may

be assumed that at least one/p? is positive. Let r be an index
such that

12



e | y
e Min 0.
Mt psuch that /f7
Ho> 0
Now

XmA.lX.i +..u+/j?}{ - ‘E(/’/‘] c..,,‘ +/{;I‘Xr)m

‘X‘- ‘ ’\r‘.‘ ry I

(A‘I ..../.u_fili +n.a+(xr"—7;§—}}(

Since ( Xg~ *ﬁ?ﬁi) > 0 for all\f and = O forbf =T, the
expression above represents X as & non-negative linesr com-
binstion of fewer than r vectors. Therefore if r is chosen
minimal, X1, ooy ¥ must be linearly independent. This

proves the theorem.

ITEMMA 2. If H is a supporting hyper-
plane to a cone M

M 0B = M} M H.

Now M N H] < M} and M N Hl < H. Therefore
M NH C Ml N H. Consider the union D of {M N1 B} and the
open half space determined by H which is a support for M. D
is convex and 1t contains M hence iMi. Onthe other hand
DNH= MN H}. Therefore M N HI D M| N H.

TEMMA 3. If s = s(iM]) 18 the largest sub-
spsce conbained in the convex hull M} of a
cone M, then

2

M sl =

The proof is by induction on d -1 where d is the

13



linesr dimension of M, and 1 is the lineality of (M| that
is the dimensicn of 3.

Ifd=1, §=38M)soMNsg =M. Therefore MO s}
= {M]. Since s C MICT S(M) eand s = 3(M), IMN sl = 3.

If d >1 , let H be a supporting hyperplene of M in
the space S{M). By the preceding lemma M N H| = M| N H.
Now M N H} is of dimension at most d - 1 and g is the
largest subspace contained in (M N H|. The assumption § =
f(M N HYN s| therefore immediastely yields s = M n (En 8)l
= M7 sg}. This proves the lemma by induction.

THEOREM 8. Tet M be a cone such that
M| = 8(M). Given any finite set V of
vectors in M which contains at least one
non-zero vector, there is a set W of at
most d = d{M) vectors in M such that the
vectors of VvV W are linearly dependent
with pogitive coefficlents. Conversely,
if there is a finite set of vectors in M
which span 3(M) end which sre linearly de-
pendent with positive coefficlents, then
the convex hull of the rays determined by
these vectors and, hence, M} is S(M).

Let yT, oo yr.be the vectors of V. Then by Theorem
7 the vector ~y1 - .. = yF is & non-negative linear combi-

nation of et most 4d vectors in M.
Suppose that x', ..., X are vectors of a cone M

which span S(M) and there exist constants /%,> 0 such that

1 r o
/,11}( + ase +/UJ:‘X = (.

1k



let N denote the cone consisting of the rays (21), ce o

(xy. If [N| is not SIM), by Corollary 1 to Theorem 1, there
is some half-space of support relative to the space S(Mj for
§. Iet such a half space be defined by the relation x'u g 0

for a fixed vector us0. Then ' u {oforf =1, ..., r.
Therefore QMEX' + e +/err}'u = 0 implies Ex9? u= 0 and
hence xf u = 0 for all p . Slnce the %P’ span the whole

gspace S(M), this is lwpossible. This proves the last state-
ment of the theorem.

‘ COROLIARY: If for a cone M,

M| = S{M), @ = &(M} > 0, then there is
a set of at most @ + 1 non-zero vectors
pf'M which are linearly dependent with
positive coefficients. There is alsc in
M a set of at most 2d vectors spanning
8{M) which are linearly dependent with
positive coefficlents.

This follows from Theorem £ when V consists of one
vector or d linearly independent vectors.
The following example shows that 4 + 1 1s the best

poésible number in the first statement. Ilet Xg, coes Xd form
a basis of a subspace of I®. The cone M consisting of the
rays (x?), o a0, (xd), and (“X? - ees "~ Xd) hag d{M) = d and

contalng no set of d vectors which are linearly dependent
with positive coefficlents. The cone consisting of the rays
(x?), cees {xdﬁ, Q—xi}, ey (de) igs an example showing that
2d 1s the best possible result for the second statement.

. THEOREM S. Iet M be a cone and let
1 > 0 be the lineality of {M|. There is

15



a set of at most 1 + 1 non-zero vec-
tors of M which are linesrly dependent
with positive. coefficlents. There 1s
also a set of at most 21 vectors of M
which span s(fo} and which are linearly
dependent with positive coefficients.

If there is & set of vectors of M smong
which r are linearly independent end
such that the set of vectors as a whole
is linearly dependent with positive co-
efficients then r { 1 and the convex hull

of the rays determined by these vectors
is an r-dimensional subspace of s{ M}).

By Lemma 3 this reduces to Theorem 8 and 1ts corol-
lary applied to the cone MN s.
By means of the preceding results the former state-

e

ments concerning the validity of [M] = [M! will now be proved.

THEOREM 10. If M consisgts of a finite
number of rays M} = (M].

s s Tl ) W 1 r-
If x is in M} there are vectors x =| x + ... +erx f
P=1, 2, ..., in {M! such that xﬂ¥~mvx as ¥——wos . Here the
vectors x5°e€ M snd the vectors Xvw; o ey x"?can be assumed

linearly independent because of Theorem 7. It can be assumed
without loss of generslity that sll the vectors x, Xw, and X’”’GL
are unit vectors. By replacing the sequence of xPrg by a
subsequence of them, r can be made to be constant with

respect to® . A still finer subsecuence can be chosen

such that the unit vectors x?ﬂ can be mede to converge

to some unit vectors X°. Since there are only a finite num-
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ber of rays in M this means that this subsequence can be
assumed to have xf7 = X! for all# and § . Suppose there-
fore that the original sequence x® had been chosen so that r
> = 2T
does not depend upon ¥ and x* = )\/wx F oae. + Xrux .
. . _ =1 cry2
Congider the fun;tlon £im, "’"/Ur) = ”/H.‘X + o +/er [
O the sphere Z/M; = 1 this function has a positive mini-

mum m since the x’are linearly independent. Therefore
i )\.]5{:1 e+ ,\”rirﬂg > m{ )\? oo+ )\]2?) Since || AWPE; +

.+ >‘r1~% x| = 1, the )gsm,ar.e bounded by \’;H . Therefore

there is a subsequence of the x¥ such that for each £,
ng"‘*}\g a8 W— o fOor some non-negative number )\ 9 - There-
fore x = \1553 ¢ ..o+ \X . Hence x is in M].

THEOREM 11. If M is closed and
1 (M]) = 0, then [M] = (M.

et x be a vector in (M} and let x? be a sequence
of vectors in (M} which approach x. Then

X o= A?BX Foeae b &l}x for some xgv?_?, 0 and

some 5% ¢ M.

Here the xp} may be assumed to be unit vectors and r may be
assumed less than or equal to d the dimension of 3(M). As.
in the proof of Theorem 10 the sequence x¥ can be selected
50 that r does not depend on ¥ and x3° — xf a5 ¥ — oo

Since M is a closed cone and the x5*  are unit vectors, the

%% are also unit vectors in M. If y', ..., ¥y are unit
vectors in (M) which are linearly independent with non-
negative coefficients, the function 1I/U1y" e +/{/ryrj| =
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| r
f(/“w.'”’/“r) for/ls,_}: 0 and 3351 /;(9 ? =1 is positive and

continuous. Hence it has a positive minimum m(y', ..., y7).
Congider the function m(zi, v zr) over sets of r unit
vectors in M. Any relation}jﬁz1 + .. +/Mrzr = 0 with

r
/UZ 0, 52%/Mg2 = 1 would contradict the hypothesis that

{M} contains no lihear subspace (Theorem 9). Hence any r uniit
vectors of M are linearly independent with non-negative co-
efficients. BSets of r unit vectors of M range over a closed
gset in the product of r unit sphéres because M is closed.
Therefore m(z}, ceny zr} hag & positive minimum m. Hence

”X#ﬂ = Hx?vxjﬂ'-a- ca. d )\m}x?ﬁ'ﬂ 2 m :ij‘gi_ Since

A 5 oo
X —+X, gV and, hence, = Ag} are bounded. Therefore

pe=1
a subsequence of the x° can be chosen so that Xygﬁf&for

V- on . With such a selection
X ﬂ-x1£q oeee + Xﬁir so that x € M.

THEOREM 12. 1Iet C be & closed convex
cone which is not the whole space . and
let H be the hyperplene which bounds a
support to C defined by x'u 0. Then
CnH = s(C) 1f and only if (u) is a rela-
tive interior ray of C*.

Suppose that (u) is a relative interior ray of cx.

Put 4(C") = d* and let v', ..., v3™" be vectors such that
u, V;, s se s vé‘"1 form a basis for S(C*), Congider the vectors
L Wy vd"1, P R s
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These &lso form & basis for S(C*).
Suppese that the selected vectors v%, cons WV
are go short that uT, caay ud are in C°. This is possible

. . . . #*
because {(u} is relative interior to C . Now

d-1

u == é{ui 4+ oae. * ud)o
1y ! 1,4
Supposge that x<C N H. Then x'u g 0, .., X'u g 0 and

x'u = 0. Hence x'ul = O, o503 x'ud = 0, Since the uf

span the subspace S(C*), X 1s in its orthogonal complement
which contains s(C) and bas dimension n-d(C*). By the
corollary to Theorem 5, 1 = n—d(C*)u Therefore the two
gpaces colnceide. This proves the suffilciency part of Theo-
rem 12.

Suppose on the other hand that (u) 1s a relative
boundary ray of ¢t A seguence v1, ve, e, V¥, ... can
then be selected so that x'v*'g 0 does not define & support

¥ oan

of C but v¥ tends to u. This mesns that for every v
x%C can be found such that x¥ v¥ > 0. Bince w'x = 0 for
any w ¢ S(C*),and x € 8(C), x° 1sg not in s(C). Write =
as yﬁ + 27 where z 7 is in s(C} and yﬁ' is in C but in the
orthogonal complement of s{C). Then v vF = g v > o,
It may be assumed without loss of generality that [ y&i= 1.
If only a suitable subsequence of the y? is considered,
these yﬁ will converge to some unit vector y. For this

¥, y'u 2 0, and hence y'u = 0. However, y is not in s{C).

This completes the proof of the thecrem.

§6. EXTREME RAYS AND SUPPORTS

THECREM 13. If C is a closed convex
cone of dimenslon greater than one and C
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is not S{C) or a half-space of S(C),
C is the convex hull of itz relative
boundary rays.

The assumption that C is not & subspece or a half
subspace mesns that 1 = dim s(C) g d{C) -2. BSince s(C) is

contained in every supporting hyperplene of C in the space
3{C) and gince there is at least one such hyperplane because
C + 3{(C}, every ray in s(C) is a relative boundary ray of C.
Iet z be any vector in C which 1s not In s(C). Since 1 g n-2,

there i1s a plane P in S{C) which contains the vector z and
intersects s{c} only in the origin. The at most two dimen-
sional cone P N C contains z but no two opposite rays because
P i1 s{C) = 0. Therefore it 1s & sector of less than 180° in
the plane P. Hence z 1s a non-negative linear combination of
boundary vectors of P 1 C. A boundary ray of P/ C is however
a relative boundary ray of C. Therefore (z) 18 in the convex
hull of thegboundary rays of C. This proves Theorem 13,

DEFINITION: A ray (x) of & convex cone
C is an extreme ray of C if x is not a posi-
tive linear combination of two linearly
independent vectors of C.

Clearly this definition does nct depend upon the
choice of the representative vector x.

THECREM 14%. A closéd convex cone C
with 1(C) = 0 i3 the convex hull of its
extreme rays.
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This 1s true for g one dimensionsal cone with 1{C) = 0
because the one ray of the cone 1s necessarily an extreme ray.

Suppose the theorem has been proved for cones of
dimension less than d. Let (x) be a relative boundary ray of
the d dimensicnsl closed convex cone C. Belect a supporting
hyperplane H containing (x)}). C N H is a closed convex cone of
dimension at most 4 - 1. By the induetion hypothesis C /1 H
1s the convex hull of its extreme rays. Since C 1s all on one
side of H, an extreme ray of C N E 1s also an extreme ray of C.
Therefore every relative boundary ray of C is in the convex
hull of the extreme rays of C. Theorem 13 therefore glves
that C is in the convex hull of 1ts extreme reys. This finishes
the induction proof.

- For the determination of the extreme rays of a parti-
cular cone 1t 1is helpful to note that any ray which is the only
ray in the intersection of a supporting hyperplane snd a convex
closed cone 18 necessarily an extreme ray. It 1s not true,
however, thet for a general convex closed cone every extreme
ray is the interssction of a supporting hyperplane end the cone.
For example if in L5, C is the convex hull of a circuler cone
D and a ray (x) such that both (x) and (-x) are outside D, the
extrene rays which are at the juncture of the curved surface of
the cone and the flat surface of the cone 2re nct the inter-
section of the cone with sny supporting plane. Any supporting
plane which contsins one of these two rays contains the whole
two dimensional cone spanned by this ray and (x).

DEFINITION: A support x'u { 0 of a con-
vex cone C is an extrems support if u ig not
a8 positive linear combination of twe iinearly
independent outer normel vectors of supports
of C, in other words if (u) 1z an extreme ray
of G
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THEOREM 15. A closed cone C
with d(C) = n is the intersection of.
its extreme supports.

This follows from Theorem 1% applied to ¢* and
Theorem 6.

DEFINITION: A cone 1s called poly-

hedral 1f it 1s the convex hull of a finite

number of rays. |

A subspace 15 a polyhedral cone.

It is obvious that & sum of polyhedral cones is
polynedral.

The polar of a polyhedral cone 1s The intersection
of a finite number of halfspaces. For, let C be the convex
hull of the rays (a?),§== Ty +.., Tr; then C* consists of all
vectors u for which u'a’ 0,§=1, ..., r. Hence ¢ 1s the
intersection of these halfspaces.

THEOREM 16. The polar of a poly-
hedral cone is polyhedral. In other words,
a convex cone is bolyhedral if end only 1if
it is the intersection of a finite number
of halfspaces.

Let C be the convex hull of the rays (ay, p=1,
ey I Theén ¢ is the intersection of the halfspaces uta’ g 0.
If (u°) is an extreme ray of C*, the vector u must satisfy
n-1" linearly independent equations uolay = 0. For, other-
wise there would be an at least two-dimensionsl neighborhood
of {u®) all of whose rays satlisfy all the inequalitles u’a?g 0
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and (uc) could not be extreme. Since there are only & finite
number of systems of n-1 linesrly independent equations uw?¥ = 0,
c* has only a finite number of extreme rays.

If 1(C") = 0 that is d(C) = n it follows from Theorem
14 that ¢ is polyhedral If d{C) { n this, applied to C in
S(C), yields that C N 8(C) is polyhedral Now C* is the sum
of C°N 3(C) and the subspace s(C ) = S(C) , hence polyhedral.

§7. SYSTEMS OF LINEAR HOMOGENEOUS INEQUALITIES.

Various theorems on the solvebility of systems of
lznear homogensous inegualities are obtained by specializing
some of the preceding results to polyhedral cones.

In this section the inequalities x » 0 or x > 0

for & vector x mean that the corresponding inequalities hold
for each component. x > 0 means x ) 0 but x # 0,

let A be an wm by n matrix. Denote by*% and X
vectors in I and 1P regpectively (both considered as column
metrices). Let A be fixed,{ and x variable. Then the follow-
ing statements are valid: |

I. One and only one of the two
systems
| Ax > 0
and

A'Y = 0,%> 0

cf linear inequalities has a solutlon.

IT. One and only one of the two
systems
4 AX 2 O

and -’
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AY =0,E>0

has a golution.

These statements may be interpreted geometrically
either in 1™ or I®. 1In each of these spaces there are two
mutueally polar interpretations depending on whether=§ and X
represent vectors or hyperplanes. The two mest convenient
interpretations are described in the following.

FPirst interpretation:

Conslider x &8 a normal vector of a hyperplane and
the rows of A a&s vectors in I”. The existence of a solution
of AxX > 0 means thst the coné M consisting of the rays deter-
mined by the row vectcors of A has a supporting hyperplane
whose intersection with M 1s the orlgin only. This is the
~cege 1if and only if the lineality of M} 1is 0. On the other
‘hand, this is equivelent with the non-existence of a non-
trivial linear relation with non-negative coefficients
between the rows of A, that is A'{ = 0 and £2 © imply § = o
(Theorem 9). This ylelds I.

' et d = d(M) be the linear dimension of M. Then
d is just the rank of A. Suppose AX > 0 has no solution,
that ig 1 = 1(IM|) > 0. From Theorem 9 it then follows thst
there are 1 + 1 or less among the rows of A which are linsarly
dependent with positive coefficients. This together with I
implies that the system Ax > 0 of m lnegualities has a sub-
system consisting of at most 1 + 1 inequalities which has no
solution. Now 1 { d; hence: Ax > 0 has a solutlon if and

only if every subsystem consisting of 4 + 1 of the inequalities
has a solution. N
Consider now the system Ax 2 0. The existence of a

solution mesns that M has a supporting hyperplane which does
not contain the whole of M. This 1s the case if and only if
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ﬁ%} is not a subspace (Theorem 12). Now {M} 1s a subspace,
1f and only if there is a linear relation with positive co-
efficients between all the rows of A (Theorem 8). Thils yleids
IT.

From Theorem 8 and its corollary it follows further
that 1f {M} is a subspace there are 2d or less rays in M
such that their convex hull 1s the same subspace; hence:
Ax > 0 has a solution if and only if every sygbsystem with rank
d conglsting of 2d inequalities has a solution.

Second interpretationl

Dencte the closed positive orthant of Lm, that is
the set of all &§ » 0, by D. Consider & and the columns of
A as %éctors in I™ and let 8 De the subspace spanned by
the column vectors of A. The orthogonal complement S¥ of 8
consists of the solutions & of A' & = 0. The statements I
and II then follow by substituting C = 3% and € =8 in
the followlng theorem:

A cloged convex cone C contains
no peint of D except the origin if and
only ir 1ts polar cone C¥* contains an
intericr point of D.

This 1s the case k =m of

THEOREM 17. Iet € be a closed con=-
vex cone, D the closed positive orthant,
and Ek, 0 £k £ m, the subspace of all
Yectors whose first k components vanish.

Then C N DCE,_ 1if and only if, for every

€ > 0, the polar cone % containg a

vector whose k first components are great-

er than a fixed positive constant ¥ and whose

m - k last components are greater than -~-&.
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If C is polyhedral the condition may be
simplified to: ¢ D contains a vector
whose k first components are positive.

To prove the sufficiency consider an arbitrary vector
Z € C/ND. The polar Cone C  is contained in the half-space
) < o, 7 verisble. For an 7 € ¢*  such that %, > r,
e M D My D = € ey Ny > - € 1t follows that

(&, + .o v BT S (Z g e Em)a‘go.

0, this can be valid for all £ > 0 only if 51 =
0; that is, if § € E .

The necessity may be seen in the following way. From
CNDCE it follows that (CN D)" D E,. Obviously, E,
contains the vector & = (1,...,1,0,...,0). Bince (C/D

Since & 2
L= E, -

)*

k m-k
* * i %
C +D (Corollary to Theorem 4) there are vectors n-&c,
ZleD*,i-:i,e,.“, such that 77_14»:1—} E Now

Ci € 0, since _Ci €D . Hence, given 0< £ < 1/2, it
follows that % > & - £ for sufficiently large i. This
is the statement of the theorem with ¢~ = 1/2. If C is
polvhedral, ¢* + D 1s closed (Theorem 10}. Hence there are
vectors 7 & c* and & € D such that 7+ & =&, and
the vector 7 = E - : > 2 satisfies the requirement for
every & > 0.

Consider sagain an m by nmatrix A. Let m=k + 1
with fixed non-negative integers k and 1. Write

s (n). 2= ()

where the matrices B, [7, 7 s K are k by n, 1 by n, X
by 1, andl by 1 respectively. Then the following state-
ments hold:
ITT. One and only one of the two
systems
Bx > 0, [Mx >0
26



and

B+ T''§ = 0, 1) 0, X> o0
has a solution.

IV. One and only one of the two
systems :

Bx >0, x> o0

and

B%+{ﬂ§==0,q>0,§2 0
has a solution.

V. One and only one of the two
gystems

Bx > O,Iﬂx 20, x20

and
B'q+r‘"‘5go,l’}f‘z__o,320
has a solution.
VI. One and only one of the two
systems

Bxao,i"xzo,'xzo

and
B + ' < o, vlyo,Bg 0

has & solution.

To prove these statements'apply Theorem 17 to the
following polyhedrsl cones C: the subspace of all vectors

(?) satisfying B'q +§ﬂ'§ = 0 (III), the subspace of all
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Bx

vectors ( ) {x unrestricted) (IV), the cone of all vectors

"x

(g>setisfying B'q + ™5 £ 0 (V), and the cone of all vectors

, 0 (VI).
- X 2 0 (VI)

Theorems on systems of infinitely meny insqualities
may also be obtained. ILet &” denote a vector in e depending
on the index o which may run through any set. 1Iet M be the
cone consisting of all rays {(a®). (For instance,« may be a
real variable. Then the point a™ might describe a curve in
L" for which M would be the cone projecting this curve from
the origin.) As an example take the following generalization
of statement I which 1s derived in the same way as I using the
first interpretation above:

The system of inequelities x'a% > 0
has no solution if and only if there are
finitely many smong the vectors a® which
are linearly dependent with positive co-
efficients.

Let b be a vector with the property that x'b { 0 for

every x which satisfies all the inequalities x'a® < o.

Gecometrically this meens that b is contained in all supports
of M, hence b€ [M]. If in particular (M| = [M} which is the
case 1f o runs through a finite set {(Thecrem 10) or if%ﬁM s
_has lineality 0 (Thecrem 11), then b ig in M} and, hence, b
ig 8 peositive linear combinetion of at most n of the vectors
8% (Theorem 7). In the general case b is a 1limit of such
linear combinsations (generalizatioh‘of a theorem of Farkas).
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Chapter II

CORVEX SETS

§1. LINEAR COMBINATIONS CF POINT SET3

The cones of Chapter I weres alweys considered to be
in en n-dimension Ruclidean vector spsace 12, In s vector
space the origin or zZero vecltor 13 necesserily distinguished
and its coordinete representation is invarient under a change
of the coordinate basis of the space.

Convex sets, however, are more naturally thought of
in an n-dimensionsl affine sp=ace A% 1P a particular coordi-
nate system has been chosen a point 1s described by the

. 1
n-tuple X =f‘(
*n

coordinates x by X. If t is s fixed n-tuple and'T is a non-

] of its coordinetes. Denote the polint with

singular n x n matrix,
x—>X = T(x - t)

is a transformetion of the representstion of A" in terms of
- the coordinates Xy into a representation in terms of coordi-~

nstes ii, For An all allowable coocrdinete transformations

are of this type.
In terms of particular coordinates the expression

r 43
X m:ZE: %FXE { Agreal) represents a peint X which is a "linear

I
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~
combination" of the points x* . If }fz 0 (f =1, ..., I),

~
A .
x is called a non-negative linsar combination of the x¥
N
If X > 0 j =1, +.., ), X i85 a pogitive linear combination.

These deflnltlons sre not independent of the choice of coordi-
nates, for if X = T(x-t)

é/\i = £ dord vy =1 2 A xS’)—Z,\Tt
Z e Z ;

(1 - Z,\}Tt
f?

+

=1 Z D

r r |
= 5. A x (1 - = A )Tt
= p=1 "3

This shows that if the cooyglnates §¥1nstead of x ars uged
the llnear comblnatlon of x with coefflclents

%1, .o,,A may be a point Whlch is different from X It

should be noted that this difference depends on ;Z:) and

f=t

t but not on the points x? . In the particular case that
t = 0, that is the change of coccordinates does not shift the

, r - r
origin, 25‘%?x3 =‘?Z: *fx? . This is also the case whenever
== =1

25'} = 1. These linear comblnations with jf')f =1, for
5= $=

which the resulting p01nt is Independent of the ch01ce of
coordinstes, are particulsrly lmportant as the followlng ex-
ample shows.

A line through the points with coordinates x° and x'

is just the set of all points repreéented by
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X = AOXO + AIX1 = (1-8)x0 + x| ( >(>+'A1 =1, 8 =‘X1)_

Those points on thig line w;th 0 e <1 form the segment
between the points XO and x'.
N I\

The points XO, ..., P are defined to be linearly

dependent if

//'OXO oo +/(/lpxp-—» 0

for some real numbers/ﬁ%-with

/MO+ +/4pm08nd/u§+ +/;12_)>o.

Iﬁ/io is one of the non—zero/mw

0= x'+ .4 Apxp where A? —-—and z?j)

A
Therefore the point xG 18 expressed ag & linesr combination

of the other points in a fashion which is independent of the
cholce of coordinates.

A
Equivalently the polints x7, ..., xP are linearly
dependent if end only if ’

1 e e e e . 1

0 P

XT o L] L3 - a L X1

rank : : {p .
a D
xn x5
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That two points are linearly dependent means. they
are the same polnt. Three points are linearly dependent pre-
cisely when they are collinear. Similarly four points are
coplansr if and only if they are linearly dependent.

A p-flat is defined to be all polnts with coordinates

Fas PN
X = kogo F oae. + xpxp where Ao + ee. + Xp = 1 and XO, Ceay %P

are linearly independent points. Note that a p-flat is a
p-dimensional affine space. Similserly a p-simplex is the set
of points with coordinates

X = XOXO + +%pxp where Xo + .,..+ Xp = 1,ng 0 (p= 0, ..., p),

N A
and XO, cee xP are linegrly Iindependent.

Although all the proofs that follow are affine proofs,
it is desirable for conceptual clarification occasionally to
introduce & projective interpretation. Identify the point
X A
1%18 of AT with the point ’*1|of the projective space P".

on .
)\}Ch
With this identification A" may be thought of as the "finite"
portion of P, (The "hyperplane at infinity" consists of the
projective polnts with first coordinate 0.) It is now seen
Fas

FAS
that the points XO, caey xP of A gre linearly dependent 1f and
s }p
. %4 X2
only if the projective points with ccordinstes [: |, ..., |:
. "0 e
Xn *n

are linearly dependent that is

xy x5

rank . < p-
OO Ip
Xn Xy
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If M and N are sets of points inf}An, M+N is
defined to be the set of all points %4y for % in M and
¥ in N. Since ﬁ:} may be different from x+y, M+N must
be expected to vary with the choice of coordinates. However
x+y always differs from =x+y by (1 - (1+1)Tt. Therefore
M+N 1is determined up to a translaticn.

The set of peints with coordlnates Ax where 2
is some point in M 1is denoted by A M.

Relative to & fixed coordinate system the following
rules of calculation are valid:

1) (M+N) + 0 = M + (N+0)
2) M+N = N+M - b

30 NAD = (ApM

) A (M+N) = AM+ AN

5) (>\+/4)M C AM+uM.

It 1is not true in general that (A +m)M = X M+uM, for if
/M = - A+ 0, (A ﬁ;L)M consists of only the origin while
A M +M M contains more points if M has at least two points.
It is true, hovever, that (A +/u)M =AM +uM If M is a
flat and A e +0 or if A > o0, /a.z 0, and M is a con-
vex (see below) set.

The previous calculation with linear combinations
of points shows that a BEM]ééii’Xf M¥  is independent of the

v
choice of coordinates if S AP = 1, otherwise it is deter-
=1

mined up to a translatlon.

The distinctlon between the points of AM and their
coordinate n-tuples is not important for the properties which
follow. Therefore the point % will be identified with its
coordinate n-tuple x from now on.
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§2. CONVEX SETS AND THE CONVEX HULL OF A SET

A set M 1g called convex 1f M contains every seg-
ment Joining a palr of points from M. Expresgsed 1in terms of
coordinates thls means that (1-8)x + 6y (0 £ @ £ 1) repre-
sents a point in M whenever x and ¥y are in M.

An example of a convex set 1s the “ellipsoig" of all

points x such that Q(x,x) < 1, where Q(x,x) = = B4 5%3 %y
- 1,J=1

1s a positive semidefinite quadratic form.

n
With the nctation Q{x,y) = = =a

X
1,3=1 1] iyj’

QU xtuy, Axtpuy) =
(1)
APQ(x,x) + 2 Ama(x,y) + 4PQ(y,¥) 2 0
for all real A spe . For A= -m=1 this ylelds

2Q(x,y) < Q(x,x) + Qly,y).

1

i~

Use of this in (1) when A =1-8, & =86, 0¢86
Q((v-8)x + ey, (1-8)x + 0y) < (1-6) Qlx,x) + ¢ Q(y,y).

This shows that  Q((i-@)x + 6y, (1-6)x + @y) <1  whenever
Q{x,x) < 7, Qly,y) ¢ 1. Hence the ellipsoid.is convex.
Certaln properties of convex gets wilill now be listed.
1., If the sets M& are convex CDM“' is
aisoc convex.
This follows Immediately from the definitlon of

convexity.
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2. If the sets Mf(gﬂ, c..s ¥T) are
convex, then £ )‘S Myis convex.

9=1

r
If x and y are in S A\ M., x = Z_)\X and
g=1Sf $

= Z)\gy for some x~ and yg in M. Now
§=1

r
(1-8)x + 8y = lem—e)x" + o)
§ =1

r
Therefore Z)\S,MY ig convex if the sets MS’ are.
§=1

3, If M is convex and N1, cees NT

are any sets such that N M, then

r

Z%N CM, if ZJ« - and}yz 0 (§=1, .., T).
2

for all x' in N1CM and x° in NEC M because M 1g convex.
Hence >\3N1 + XENEC M. Assume the property has been proved

forrms—zge. Now

N +>\
‘ 171 3- 1
>1N1 + 2N2 + e + >\SNS = }\? . .. +>\

Ts- L1-)g) + AN

g-1
8

if Z,\gm 1 and /\S 4+ 1. This last condition may be assumed
=1

without loss in generality. By the induction assumption

M Moo

A']4’..’_&)\8;?1"1@.]+...+/\?+:‘._1‘/\ N_.%CMifN_fCM.

8
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From the case of r = 2 it follows that A1N1 F oeea * XSNS<:M if
-8
N, CM, > o= 1.
s o= 8

The convex hull M} of a set M is defined to be the
intersection of all convex sets containing M. By Property 1,

it is the smallest convex set containing M.

y, If N . N are sets such that
No<M (M any set), then E{:X §<: M} 1if
¢= 5
' r
%go(§m1,.ourﬂam Z;Mm1
f.....

This is an 1mmedlate consequence of Property 3 and
the definition of M].

- .
A polint x = égf)gxg (A 2 0, ZE;)3>= 1) is called a
p=

§=1

centroid of the points x .

5. The convex hull M! of &g set M
consist of all centroids of all finite sets
of points from M.

That all such centrolds are in M| follows from
Property 4. To prove the reverse inclusion, it is sufficient
to show that the set of centrolds is convex. Suppose

S L R
EE:X x and y = y® for some % and y° in M. Then
g=1 o=1"

r s '
(1-8)x + &y = (1-8) ZE:{fX? + B QE:/%fygand hence (1-6)x + 8y

P=1 6=1

is a centroid of x', ..., x, v', ..., y°.
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6. If zelMl, z is a centroid of
linearly independent points of M. (A
set of linearly independent points in
M contains at most n+1 polnts. )

Suppose zZ = XOXO Foeee o+ X ( f = 1,>?2 0)

where xo, cony x* are linearly dependent, that is there are

r I r
real number c¢h that L= 0, -~ 0 and 2 4o,
& S/U(g su =Zo/ug é/f{z a %{{Aj +

Let&m Min >\ . Thenz=£()\g“
P+t

//f,\’ o/

Kg- /@_2 0. Repetition of this procedure proves Property
6 for any particular z.

/):’;E /AI)X? and

[}

7. If M snd N are convex sets

MUN| = e -6 M+ 8N
! | Og@g} ((1-6)M+ON)

This follows because every point of M u Ni is a
centrold of & point from M and a point from N.

g. If Mo is any set and

My, = Og_ag(('i“ﬁ)l\/!i M) (1 =0t, 2, een)s
then iMé! = M, 'where k 1s the smallest
K

integer such that 2" is greater than or

equal to n+t.

This is a corollary of Property 6.

§3. METRIC AND TOPOLOGY

If a pasrticular coordinate system hes been chosen,
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the definition

ax,3) = Y(x, -y )% + oo+ (xmy,)°

ives a Euclidean metric on.An(x s +-e5 X ). This metric
1 n

is not an invariant of AY for d(x,y) is invariant only under
orthogonal transformations of coordinates. In general

ax,3) = \alx;s oo X0 1 eees 3L
where x£ and y{ are new coordinates and Q is a positive definite
guadratic form. While this metric is not an invariant of An,
the uniform topology it defines is. From here on it will be
assumed that A™ has this topology. It ig coavenient to con-
sider A™ metrized with a particular Eucllidean metric. This
1s no actual restriction of generality, but it allows simple
geometric interpretation of the theorems.

9. If M} is a non-empty open set of
A" and X1‘is a non-zero real number,

X1M1 + oea. * Aer 18 an open set for any
sets N%,( ¢=2, ..., r) and for kf
(§=2, ..., r) any real numbers.
CIf MT is open and X} + 0, XTMT is also open. Now
)ﬁM1 % N = k} ()\?ME + X). Since A1M1 + X 1s open when M is

¥xelN
open, A1M1 + N 18 open. Iet N = AEME Foaa. + XPMT.
10. If M1, e ees Mr are closed setsg
and M,, ..., M, are bounded, kﬂw1 o +}\TMr
is closed.



Suppose 2z ig a limit pointﬂ%1M1 + oee. * Aer.

Then there is a sequence &= hx™y Arxf”'(x?ﬂc,mg)

1
such that x° converges to z agV¥—eeo. 3ince M,, ..., M, are

s
closed and bounded, it may be assumed that =% converges to
‘9.
some x' inMg for § =2, ..., r. :x:15L - ()\2}(2 + e+ Arxrlﬁ

¢ .
must also converge, so ATXT converges to some point k1x1 of
)ﬁMq. Therefore z = X1x1 + ...+ X?xru

If M is any set and U is the open unit sphere with
center at the origin of the coordinates,M + ¢U is the €-neigh-
borhood of M. If M is convex, this neighborhcod 1s also convex.
If M is closed and U is the closed unit sphere M +¢0T is a
closed €-neighborhood of M.

11. If C is a convex set C is
also convex.

This is true because if x—»x end y% -y, the points
of the line segment jolning x and y are limit points of the
points on the segments joining x* to yv.

ILet S{M) denote the intersection of all the flats
containing a set M. This is just the flat with sny maximal
set of linearly independent points of M as e basis. The
dimension d(M) of S{(M) is called the linear dimension of M.

A point is called a prelative interior point of M if
it 1s interior to M relative to the topology of S(M). (Note
thet iff M is a polnt, that is d(M) = 0, this point is & rela-
tive interior point of M.} A boundary point of M is called
8 relative boundsry peint if it is a boundary point relstive
to 3{(M). Since peints of 3(M) are exterior to M relative to
S(M) if and only if they are exterior to M relative to A%,
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ne distinctlen need be mede between exterior points and rela-
tive exterior points.

12, If C is & convex set with
d(C) > 0, then every point of C ig & iimit
point of C.

. If d(C) > 0 end x is any point in C, there must be

some other point y in C. x is a limit point of points on the
segment joining x and y. Since this segment must be in C, x

is a limit peoint of C.

3. A convex set C hasg relative
interior points.

Let d = d(C) snd suppose xo, ces Xd are linearly
independent points of C which span $(C). The d-simplex spanned
by XO, s ees Xd has interior points reletive to S(C) and hence

C does also because C containsg this simplex.

14, If x is a relative interior
point of a convex set C and z is in C,
all points of the segment joinineg x to
z with the possible exception of z ere
relstive interior points of C. If z
is & relative boundary point of C, the
polnts on the line through x snd z which
are separated from X by z sre exterior
points of C.
Suppose y = (1-8)x + 6z for 0 { 8 < 1. Iet Uk(e)

be the open sphere of radius € with center x. If x is rela-
tive Interlor to C, there is some £) 0 such that Ux(é)fls(C)CCJ.
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let z¥ be & gequence of polnts of C converging to z. The set
((Ewe)UX(g) + 8z%) 1s an open sphere of radius (1-e)€ and

center (1-8)x + 6z°. From the convexity of C
W+

((1—@)UX{Q) + azﬁ) N 3(C) 1s contained in C. S8ince z—— 3,
(1-8)x + ezﬁw-—yn Therefore for ¢ sufficlently large y 1ls
interior to (1*B)Uk(€} + 6z%. Hence y 1s relative interior
to C. This proves the first statement of Property 1h4.

| Suppose 2z is a relative boundary point of C and

y=(1-0)X + 62 (6 > 1}. Now z = %y + (1 - %)x so that, if y

were nct an exterior polnt of C, z would be in the relastive
interior of C by the first part of Property 14. This contra-
diction proves the second ststement.

15. If C is convex, the relatlve
interior of C is conwvex.

This is & corollary of Property 14.

16, If C 1s convex and everywhsre
dense in 3(C), C = S(C).

. This 1s because a convex set C with no exterior
points in S(C) can have no relative boundary points and hence
is 3(C) itself.

§4. PROJECTING AND ASYMPTOTIC CONES, s-CONVEXITY

A ray §§(X + p)} consists of all points (1-8)p + 6x
for 8 2 0. - The projecting cone Pp(M) of & set M from a point
p is defined to be Up““x. (If M = p, set P (M) = p.) Note

xXeM

that Pp(M) need not be closed when M is closed. For example if
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M is an (n-1)-flat and p is & point outside M, Pp(M) is an

open half-spece through p plus the point . p.

17. 1If C is convex, Pp{C)_is

convex (for any p).

This 1s a direct consequence of the definition of
Pp(C).

DEFINITION: A set C is ecalled
s-convex if for every polint p not in
C, S(Pp(C))f\C ig empty.

18. An s-convex set C has the
property that if x€C and ye G,
p= {1-8)x + 8y i in C for 0o<e<1.

S(PP(C)) contains the line xy and hence s(Pp(C))f\C

is non-empty. This shows that p is in C.

Property 18 shows that a s-convex set 1s convex.
Clearly closed and relatively open convex sets are s-convex.
On the other hand an open triangle with one point of the
bounﬁa?y ad joined is convex but not s-convex.

DEFINITION: If M is any set and
p any fixed point, the set of rays px
which are the limit of a sequence of
rays px* where x¥€ M and x"—s oo 1g
called the asymptotic cone Ap(M) of

M with vertex p.

19. AP(M) is closed for any M and p.
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An ordinsry diagonal process shows that a limit ray
of Ap(M) is a limit ray of rays PX, xeM, x>0,

20. For any set M and any points
P and q

Ag(M) = A (M) + (Q-D).

—

This follows bescause the convergence of px° to 5%
88 X'~ lmplies that dE“ converges to i§'= x + (q-p),
and conversely.

217. If M is any set end p is
any point

) = [T + (-

By definitioa.Aq(M}‘: Pq(M), Therefore by Property 20
Ap(M)cqu(ME + {p~q) for every polint g. BSuppcse ﬁ% g'Ap(M).

There is then a nelghborhood Ne(ﬁi) of rays emansting from p
such that N (pX) {as & point set) has a bounded intersection
with M. A point q iﬂ.N&(pX) can therefore be selected sc that
(N, (pX)+4-PNM is empty. For this g, X¢W + (p-aq).

This completes the proof of Property 2i.

22. For a convex set C and
any point p, AP{C) 18 convex.

This may be regerded as a corollary of Properties
i7 and 21%. '

.23, If C is ean s-convex set
end p is any point of C, Ap(C) 1s

the set of all rays contained in C.
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Dencte by Aé the cone consisting of all rays emana-
ting from p and contained in C. Obviously A;c:Ap(C). let
{ﬁ%) be a ray of AP(C)° Then there is a sequence of points

x%e C such that Xﬁwm#tw and (pxﬁ)-=»(§§). Since the segments

pxﬁ are in C, (px)C . From the Property 18 1t follows that
?
(PX)C C if pEC. Hence Ay = A,(0).

COROLLARY: 1If C is an arbitrary
convex set and p is a relative interior
point of C, A {C) 18 the set of all reys

\/”’ontalnethg.C—fLDUA"P e

Apply 23 to the relative interior of C.
Consgider the cone Ap(C) (C convex) &s & cone of the
linear space of the vectors with initisl point p. Ap(C)
then contains a largest subspace S(Ap{C))with dimension
1(Aép)) (the lineality of Ap(C)), This subspace considered iﬁ

AT is the largest flat in.Ap(C) containing p.

- 24, If C is an s-convex set, C is
the union of 1-flats parallel to s(Ap(Cﬂ,

that is

C=s(A(C)) + [CN s(Ap(C))*}.

By Property 23, Aq(C) for g any point of C simply

consists of all rays §§ contained in C. Therefore C contains
S(Aq(C)) = 8{A_(C)) + (g-p). Hence C is just

p .
qyc(smpm)) + (a-p))-
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If C is a convex set in three space and 1(Ap(C)} = 1,
Property 2k says that C is a cylinder.
§5. DBARRIERS AND NORMAL CONES

Any oriented (n-1) flat F may be described az the
set of all points x such that x'u = U, where u is & vector

in the positive normal direction to the flat. If sup x'u < s
XeM

F 1s called a bourd of M and the set M 1s said to be bounded
in the direction u and to be in the "negative" halif-space of F.

If sup x'u = Ug s I is called a supporting flst for M snd the
XxeM

negative hslf-space of F (the points with x'u uo) is called

a support of M. Note that if u and Ug define a supporting

flat for M, u and ug +€{€> 0) define a bound of M in the

direction u. A flat which 1s elther & bound or a supporting
flat of M 1s called a bgrrier of M.

25, If M-is any set and p is a
fixed point, 211 vectors from p which
are positive normsl vectors of barriers of
M through p form a closed convex cone
Np(M), the normsl cone of M at p. This

cone 1g . 1in the linear spacs of vectors
with origin p. If the projecting cone
Pp(M) is interpreted as being in the
¥*
S M) = P_(M) .
same space Np( ) p( )

This eguation just states that all the barriers of M
containing p are supporting hyperplanes of Pp(Mju
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Property 25 18 of particular interest when M is
~convex and p 1s a relative boundary point of M, Pp(M} isg
. e .
not the whole space because the ray p{p-x) contains no points
of M 1f p + X is in M (Property 14). This cone has & support-

ing hyperplane, and hence M has a supporting flat through p.

26. If M is any set, the vectors
from the coordinate origin which are posi-
tive normals to barriers of M form a convex
cone B&(M)C:(AQ(M))*. If M is convex
Bo(M) = Ag(M)”.

If x'u {u_ and x'v { v, for all x in M,.

o)
X*(%u +/MV) g,KuO +/AVO (Az O,ﬁxz 0) for all x in M. There-

fore 1f u and v are in Bg(M), hu ANV 0, 42 0) is also.

This shows that Bp(M) is a couvex cone. If the flat defined

by x'u = u_ is a barrier for M, the flat of points x such

o)
that x'u = Max (uo, ptu) is a barrier for M v AP(M)' Hence

the hyperplans of vectors y with y'u = 0 in the linear space

with origin p is a supporting hyperplene of the cone AP(M)'
E 3

Therefore 1f u € By(M), tze(Ao(M))

Suppose now that M 1s convex. Let 8 = s(A4(M)) |
and 1 = 1{(A,(M}}. To prove B (M) = {Ae(M))*, it is sufficient
to show that if a ray is not in BG(M), it is not a relative
interior ray of (AQ(M})*. By Property 2Lk, the relative ‘
interior of M is the union of 1-flats parallel to s. If the
n-i1-flat defined by xtu = Ug is not & barrier for M, the

gtructure of M shows that there is a point y in MNs™ (g% 1s
the orthogonal complement of s) such that y'u > U For a u
not in Be(M}, such a y may be selecied for each U,- From
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these y's & sequence which tends to infinity may be chosen so
that the rays é§ {or (7)) converege to a ray 6z (or (2)) in
AG(M)q Since (y) is in s* for each v, (z) is also in s . In
Chapter T it was shown that the supporting hyperplane to a
convex cone O corresponding to a relative interior ray of the
volar cone ¢* intersects C only in s{C}. Therefore (u) is not
a relative interior ray of A,(M) and B, (M) = (AB(M))*u

That this equation cannot be strengthened to .
B4lC) #.AG(C)* for C convex is shown by the following example.
In the X, X plane let C consist of all points such that

Xy 2 &1, Then Bo(C) is the half-open quadrant defined by
X, 2 0, %, < 0. AQKC) ig the closed quadrant given by
x, £ 0, x, 2 0. Therefore (Ag(M))" is not B(M) but its

closure.
Note that if coordinates with a different origin

had been used for An, the set Bg,(M} would be & translate of

BL.(M}. More preclzely

@_(
B (M) = Bg(M) + (@ ~).

Property 26 shows that B@(M) determines Aﬁ(M),
but the example above demonstrates that Ag{M) does not
determine BGﬁM} uniquely.

§6. SEPARATION THEOREMS

27. If C and D are closed convex
sets with an empty intersection and C
is bounded, there is a support H of C
such that D N H is empty. There is also
a support Hf of D such that C 1 H' is
empty.
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Since D 1s clesed there is a point p(x) in D such
that the minimum of the distance from points of D toc a fixed
polnt x 18 atteined at p(x). Because C 1s compact, there is
8 point g of C such that the distance from g to p(g) = p is
less than or egual to the distance from any point x of C to
any point y of D. Let H be the half-space of points with

xt(p-q) £ a'(p-q).

The oriented flst which bounds this halfspace passes through

g and has p-q &5 normal vector. If X lsg some point in C
different from ¢ the segment from x to g is in C. The short- -
est distance from this segment to p is either |x - pll, the
length of the altitude from p of the triangls (p,g,x), or

flg - pll. By assumption the last of these three possibilities
must be the case. For this to happen, however, the vector

X ~ g must make an obtuse or right angle with p - g. There-
fore C ig in H. If H' is the halfspace defined by

x'(g-p) { p'{g-p) or x*(p-a) 2 p'(p~q)
an analogous argument shows that D is in H'. Since HN H' = ¢,

HAND=H'NC=¢ and H and H' are the desired supports.

28, If C and D are convex gets
- such that no common point is relative
interior to both C and D, there is in
S(CuD) a {(d(CuD)-1)-dimensional hyper-
plane separating C and D. (1.e. there is
a vector u and a number U, guch that

x'u ¢ u, for a1l x in C and x'u 2 u, for

all x in D.}
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The theorem for the cleosures of C and D implies
the thecrem for C and D. Therefore assume C and D are clcsed.
Suppose X 1s a point in CND relative interior to € and vy is
& point in CND relative interior to D. By Property 1k,
(1-8)x + 8y (0<8<1) is a point which is relative interior to
both C and D. By the hypothesis of the theorem this is
impossible. Hence it can be assumed that Cn D contains emdy A0
relative boundary polnts of one of the sets (say £). If in
particular C consists cf a single polint p, CND is empty
since p 18 relative interior to C. This case when C is a
point disjoint from D 1s covered by the last theorem. Assume
therefore that d{(C)} > 0. Define

‘I -
Cp =1 - 50 + )N T B (w=1,2, ..., )
where p is a2 fixed point and Up(wj is the closed sphere of

radius ¥ and center p. Cy is just a linear contraction with
center p of the part of C near p. Choose p es & relative
interior point of C. Then Cy is in the relative interior

of C by Property t4. Therefore CypNnND is emplty. Theorem 27

asserts that there is & hyperplane defined by I’ = ug

gsuch that X’uwg ug for x e Cp and xru? > ug for x€D.

R
G

Suppose the vectors u® had all been normalized to length one.
Then 2 subsequence of the ¥ could be selected so that the
corresponding u? converge to a vector u and the corresponding

g’ converge to a number U - For u and uo,x‘u,z U, for all x

in D and x'u g ug for all x in the relative interior of C.

In particular p'uﬂug u. < q?uﬁ (g any point of D).

u

It immediately follows that x'u u, for every x in C.

if D is just a single relative boundary point of C,
Theorem 28 states that there 1s a supporting hyperplane of C
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through this point.

29. For eny met M, §Nﬂ = IS = Ibd ﬂibr

where I, is the intersection of all the
gupports of M, Ibd is the intersection of

the half-spaces on the same side of a bound
as M, and Ibr is the intersection of all

half-spaces on the same side of a barrier
as M.

——

Clearly H\E}c::{brc I,CI, 4. If p is mot in (M}, by
Theorem 27 there is a support of M (defined by x'u g uO) which

does not contain p. For € sufficiently small, the hyperplane
defined by x'u = Uy + € 1s a bound of M which separates M from

D. Therefore p ¢:Ibd and [M] = Ibr = ZS = Ibd'

30. [M]D iM| for any set M and
IM{ = M} 1f M 18 bounded.

P ——

That {M}> IM} is obvious. If x is in [M},
- A1
X = éjfi %: )\g”x S”Z o, SZ )\Sq,m 1, X9 € M) for a fixed
r £ d(M) because of Property 6. Since M 1g bounded a sub-

-Sequence may be selected so that Xy-uw»-x ; _p» X? Therefors

Since xfe M, x € M| and M} = {M].
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§7. CONVEX HULL AND EXTREME POINTS

51, If M is any set and H is any
supporting hyperplane IMNH| = M{NH.

Clearly IMNEI CMInE. If I is the interior of
the support of M bounded by H, the convex set I ViMNH|DM.
Therefore I v iMN HI > M} and

MAHl = {((TuiMnH]| Y)AHl = (Zy MnH])NEDIMINEH.

22. If C 1s & closed convex seth
which is neither a flat nor a half-
flat, then C is the convex hull of
1ts relative boundary points.

Let p be any relative interior point of C. It is
sufficient to show that thers 1s In 3(C) & line L through p
which has no other point in common with Ap(C}s For, then

CnL is bounded and L contains two relative boundary points
such that p is on the segment determined by these polnts.
ifr d(ﬁp(C} { d{C), there is clearly a line through p which

has no other point in common with Ap(C}u If d(Ap(C)) = d(C3,

Ap(C) is neithef a flat (because C would equal A_(C) and be

p
8 flat) nor a half-flat (because C would be a half flat).

This means 1(Ap(0)) < d(Ap(C))-—Qn Since in S(Ap(C)) = S(C).
there 1s a support to AP(C) which has only S(AP(C)) in
common with Ap(C)Q there i a line L in 8(C) with the

required property.
' A point of a convex set is called an extreme point
1f it 1s not interior to any segment in the convex set, that
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1s, it 1s mot the centroid of other points of the convex set.

33, A closed bounded convex set
1s the convex hull of 1ts extreme points.

This is cbvious 1In one dimensicn. If C 1s n dimen-
gional and p is & boundary polnt of C, there 1s a supporting
hyperplane H of C passing through p. Now the extreme points
of the n-1 dimensional closed bounded convex set CNH are ex-
treme points of U. This 1s because any segment not in H
containing a point of H as an interior point would have to
pierce H, i.e. have points on both sides of H. From the
theorem in n-1 dimensions, ;t follows that p 1s & centroid
of extreme points in CnH. Therefore the relative boundary
of C ig in the convex hull of the extreme polnts of C. By
Theorem 31, C itself must be in the convex hull of its ex-
treme points. This completes the inductive proof of
Theorem 33.

§8. POLARITY IN THE PROJECTIVE SPACE

DEFINITICON: A point set C in the pro-
jective space is celled p-convex 1f it has
the following properties:

1) C is not the entire projecti&e

gpace but not empty.

2} C is connected.

%2} Through every point not in C there
is a hyperplane which has no peints 1n common
with C. . '

A hyperpiene set | in the projective space
is called p-convex if it has the following
properties:
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1} "does not contain all hyperplanes
of the projective space but is not empty.

2} {7 is connected.

3) In every hyperplane not inl" there
is a point which is in no hyperplane of [ .

et C be p?convex snd choose any hyperplane outside
C as the plane at infinity. Then C is an s-convex point set
in the affine space. For let x and y be any two points in C,
and suppose there were a polint z on the finite segment xy
which 18 not in C. Then there would be & hyperplane through
z which does not meet C. This hyperplane (together with the
plane et infinity)} would separats x and y in contradicticn
to the gssumption that C is comnected. Hence, C 1s convex.
Let p be any point not in C. There 18 a hyperplane through
p not intersecting C. Now this hyperplane bounds a support

to Pp(C), hence it contains s(Pp(C})° This proves the

s-convexity of C.

Conversely, every s-convex point set 1n the affine
space 1s p-convex in the ﬁrojactive gspace cobtained by ad-
joining the plane at Infinity. For, the points at infinity
do not belong to C and they are in a hyperplane which does
not intersect C. € 18 obviocusly connected. Through every
exterior point of C there is a bound to C. Through every
point yeié"but not in C there 1s a supporting hyperplane
which has no points in common with C. This is true because
'Fgfﬁj'has a supporting hyperplane which intersects F;(ﬁT

only in s(Py(C)), and S(Py(C))f1C is empty.
34, If C is a p~convex gebt, the

set [ of all hyperplanes which have no
point in common with C is p-convex.
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35. 1f 1" is a p-convex hyperplsne
set, the set C of all points which are
in no hyperplane of T 1s p-convex.

PROOF: The two statements are duals of each other;
hence it is sufficient to prove one. Let C be given.ahd
denote by [ the set of all hyperplanes not intersecting C.
Since C i not empty [ does not contain a1l hyperplanes.
Choose one of the hyperplanes of |7, as the plane at
infinity. BEvery other hyperplane of [ then is a barrier to
C. Bince the barriers form s convex set and since there are
berriers which are arbitrarily far away,‘“‘is connected.
Every hyperplane which is not in (" contains s peint of C and
no hyperplane through this point is in | .

Obviously the set of 211 those points which are in
no hyperplane of I is exactly the original point set C. Hence
the sets C and [’ determine each other in this simple way.

Consider any such pair of sets ¢, | and apply any
correlation { = Ax. Then ™ = AC and ¢* = A" form
another peir of the same kind. TIf the correlation is in-
volutory, that is if A = ¢+ A', we have

In the case A = A', C* 1s called the polar body of C with
respect to the quadric x'Ax = 0. By meang of the bilinear
gquation X'AX = 0 the polar body ¢ of C is determined asg
follows: For each fixed point x é C this is the equation of
8 hyperplane in [ﬁ*, and ¢ consists of all points x° which
are on no such hyperplane.
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and choose X, = 0 as the plane at infinity. Then the bi-

linear equation is

The origin corresponds to the plane at infinity. In the
k.3

euclidean space, putting X, =X, = 1, we have the polarity

with respect to the unit sphere. To a bounded convex set C
with the origin as an interior point corresponds a c* with
the ssme propertles. If C 1s open ¢* 1s closed and conversely.
The closures of C and Cf obviously determine each other, and
this gives Minkowski's polarity for convex bodies.

Iet C be a closed convex cone whose vertex is the
origin. Then ¢* is the polar cone of G in the forwmer sense,

1f it is defined by means of | = AC. Otherwise the origin
hag to be added.

Replace now . 1n by n+t, denote the homogeneous
coordinstes by Xos o0 Xps 25 and consider
00 ... 0 =1
01 ... 0 0
A = - o
g . 1 0
-1 0 .. 0 0
The corresponding bilinear equation is
#* *® 3* *¥ = (O,
X2 Xy Zo+ XX o+ oo+ XX

This is the polerity with respect to the parabocloid of

©+ ...+ x5 if the inhomogeneous co-

ordinates are interpreted as rectangular coordinates. The
infinite point of the z-axis, that 1is, the point with all

revolution 2z = X
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= 0 and z = 1, corresponds to the plane at infinity,

x, = 0. To all other points at infinity correspond hyper-

planes parallel to the z axis. The origin corresponds to
the hyperplane 7 = 0. If a convex set C has an asymptotic
cone which containg the positive z—axisf'the polar set C*
has the same propsrty. For a closed convex cone C whose
vertex is the origin and which contains the positive z-axis
the polar set C* ig a half-cylinder generated by open half-
lines whose end points make up a c¢losed convex set in z = 0.
This polarity is especially useful in treating convex
functions. |

¢ odd: bubach B tegahot 2 -6
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CHAPTER TIII

CONVEX FUNCTIONS
1. DEFINITIONS AND ELEMENTARY PROPERTIES

DEFINITION: Let D Dbe a convex set
of An(xl,ﬂ..,xn). A real-valued function
f{x) defined for x 1in D is said to be
convex in D if ’

£((1-8)x + oy) ¢ (1-8)f(x) + of(y)

for 0<£©<1 and x and y in D. If
< 1is always valid for 0 <8 < 1 and x
and 7y distinet points in D, f(x) is

said to be strictly convex in D. A func-

tion f£(x) is called concave (strictly
concave) if -f(x) 1is convex (strictly
convex).

If f(x) is a function defined in the set D of

n n+l(

A7, the set of all peints in A
X =(xl,.,.,xn) ig in P and z » f{x) will be denoted by
[D,f].

xl,,..,xn,z) such that

For each of the properties listed below the domains
of the functions are always asgumed to be convex unlesgs a
contrary assumption is explicitly made.

1. The function f£{x) is convex

in the set D 4if and only if the set
[D,f] is convex.
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If f£(x) 1is convex in D and (x,zo) and (y,Zl)
are points of [D,f],

(1-8)z, + 02 2 (1~0)f(x) + 6f(y) » £({1-0)x + @y).

L

This means the point ((1-@)x + 6y, (1-8)z  + ezl) is in
[D,f]. The proof of the reverse implication is even more
obvious.

2. If f£(x) 1is convex in D and
X =My + Db where M is an n by m matrix
and b 1is a vector of A", then f£(My+b) is
convex in the inverse image of D, that 1s in
the set of all y = (yl,...,ym) for which
My + D €D,

4
This is true because

FM((1-0)y° + 6yt) + b) = £((1-8) (My°+p) + oMy +p)).

3. If fg (x), f=:9;,...,r, are convex
functions in D and Af > 0, the function

T
S Aefe (%) 1s also convex in D.
2o 57T

This follows from the ruleg for adding inequalities.

4, 1f f£{x) 4is convex in D,
r

f & p, )gf;o, and fi )\f:l,'
r
£z Axl) < 2 Aor().

The definition of convexity says that this is true
it r = 1. If AO = 1 the statement is frivial. Suppose

r
Ao < 1. Because of 1 - A = 3 kf’ Property 4 for r - 1

and 1 vyields



(3 AxS ) = 2( A0 + (1- A) % 28 5T

£=0 p=1 o
< ,Xof(xo) + (1~ AO) £{ g 3¢3§%-x e)
fml o}
¢ APE0) 4 (1-A) 3 2 p(xF)
= o) o p=1 l—.AO
- 5 Aff(xf’).
£=0

Property 4 follows by induction.

5. A function f{x) is both con-
vex and concave in D if and only if
it i linear in D.

The sufficiency of the condition is obvious. If
f(x) 4is both convex and conecave in D, Property 4 applied to
f and ~f yields

r r e
(*) f( = Afxf’)m Z Apr(x")
F=0 fwo
r
for )? 2 G, b )%:ﬁ 1. If r equals the linear dimengion
of D and the points =x{ are linearly independent, (*) shows
that £ 4is linear in the simplex with vertices x7% .
r j) r
Suppose now that x = 2 /gfx s Z ,&%,= i, 1s any point
§=0 F=0
of D. Application of (¥) to the point x and the centroid
r
?%T = XP of the simplex gives
$=0
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f(fio (r+l + eﬂf)xf)

1
= (1-0) f(mffoxf) + 9f< = = fox’

r
. . . - [ . .
for 0 ¢ © < 1. Since the point y§0 77T t S )xP 1 is in
the simplex with vertices xf ror some © sufficiently small,
it follows from (¥} that

1- £ Too1-6 ?
#(x ( + QU)X ) = & (== + B £(x7 ).
p=o ‘THL e o2 T e )
Therefors
S ) 1 I ¢
fio r+l + 9/43,) £(xF ) == JO,Z:O £(x7 ) + Qf(ff‘.‘:o/ufx )
and

r p r f
f(fifo/?,x ) mfio/a),,f(x

6. If fp(x), Y= 1,2,,.., are con-
vex functions in D and f,(x) converges
pointwise to f(x), f{x}] is also convex
In D.

This is because the inequality defining convexity in
D for f£(x) isg the limit of the corresponding inequalities
for fp(x),

7. If £, (x), where « runs through
any set, are convex functions in D, the
set of all points =x of D at which
sup fu (x) is finite is convex and
sup ﬁx_(x) is a convex function in this
set.
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Define %(x) = Bup £ (x) where this supremum is

finite., Let x and y be any two pointy for which %?p ﬂx
is finite - Then

£ ((1-8)x + 8y) < (1-0)f, (x) + of, (v)

< (3-8)g(x) + egly).

This shows that sup £{(1-8)x + 6y) is finite and
g((1-8)x + 6y) < (1-8)g(x) + ea(y).

, 8. If f(x) is convex in D
and @ (t) 1s a monotone inereasing
convex function over an interval which
contains the values of f(x), QD(f(x))
18 cenvex in D.

From the convexity off f and the monotone charac-
ter of @, and from the convexity of @

P(r((1-0)x + 67)) < P((1-0)2(x) + 6£(y))

A

(1-8) p(£(x)) + 6 @(£(y))-

9, If f(x) is convex in D
and D! 1is a compact set in the rela-
tive interior of D, f(x) is bound-
ed above in DV,

Cover D' with a finite number of closed slimplexes

contained in D. - Every point x of D' 1is a centrold of

the vertices of any simplex which contains it.

By Property
4, (=)

is less than or equal to the maximum of f(xi)

61



o

as x* ranges over the vertices of a gimplex comtalning x.
Since the nuwber of simplices is Finite, f{z) is bounded abeove
i DY,

10. If f(x) is convex in D, it is
bounded below in every bounded subset of D.

Let x° Dbe & fixed peint relative interior to D.

Select & positive mumber § 8¢ small that, in the flat spamned
by D, the closed sphere K abowt x° with radiug & i in
the relative Intericr ~f D. For an arbitrary point x  in
D, denete by y that point of the lire Joininmg x and x
which does not separate x and x° ard which 1= & distance &
from x°. This definition insures that y € XC D, From the
convexity of £ 1t fellows that

a

. 5 . £
=)< F‘;:"g-*f(?@} + };‘fg-swf(y)
where p derotes the distance \\meﬁn . Herce
§tix) z{p+8if(x) - Pyl

Since K is compact ard reliative intericr to D, f£{y) is
bounded above (Property 9). Hence f£(x} is bounded below
for JD bownded.

il. If f£ix) iz a convex function
in D which attains & maxinum value at a
relative intericr phint ¢f D, then
£f{x) is zonstant in D,

Suppose f(x)} has a maximem at a relative interior
o

peint x". If x is any point of D, for some sufficiently
small positive n the polint y= (1+~?}xc -px is alsoc in D.
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£(x°) = f(-ﬁ_—% X + T}i ¥) < ﬁ% £(x) + -i,%ﬁ- £(y) < £(x°).

Hence r(x)} = £(x°).

Thizg argumerit also ghows that a convex functlon canmot
have a local maximmm in a relatively open nelghborhood unlese
f(x) is constant in that neighborhood. If this doesm happen,
the next property shows that this congtant value must be an
abgolute minimum of f(x).

iz. If f£(x) is counvex in D,
f(x) has at most one local minimum.
If there 1 such a minimum it is an
abgolute minimum and is attained on &
convex Bet.

Suppose there iz & local minimm at x°. For any
point' x of D,

£(x°) < £((1-8)x° + ox) ¢ (1-0)£(x°) + of (x)

if e 1s a sufficlently small positive mumber. Hence

£(x) » £(x°) and £(x°) 1is the absolute minimm of f.
Tr x° and x* are two points at which £(x) attains its
minimum value <,

=

A < £((1-6)x° + oxt) < (1-0)£(x%) + of(x’) = .

Hence [ also attains 1ts minimum at (I—Q}XO + @xl,

13. Iet f(x) %be a convex func~
tion defined in & get D which con-
tains a flat F. If there exists a
(non~homogeneous) linear function

63



Az} in A" such that F(x) ¢ L(x) 1in
F, then f£{x} - £ (x) 1s constant in F
and Iin every flat which 18 a translate of

F and ig in the relative imterior of D.

The function g(x) = £(x) - £ {x) 1s convex in D
-and non-positive throughout F. If x° is a fixed point in
F end x 1s any cther point inm F, the points XA =
(1- A)x® + Ax are 1% F for all A . If A > 1 the con-
vexity of g{x) implies that

gx) ¢ (1 - e + et ) ¢ (1 - PeB®).

Ietting ) — oo gives the relaticn

g{x) ¢ g{x%).

If A< 0, it follews from the ganvexity of g{x) that

(%) § mEeg(x? ) + vLg(x) € g (x).
TN T N~ T

—

Tetting A —> - 0o  shows that
g(x) » 2(zx°).

Hence g(x) is constant over F. Suppose that for the vector

v the translate, F! = F + v, of F 1is relative interior to
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D. Seleet A\ > 1 so0 large that the point x° +

v
I\ A -1

is in D. With x and x as before, the definitiorn of

convexity applied to the points x° +-_§Tv, z° + v, and

xA gives

glx+v) < (1 ~‘%Jg(xo + Tféﬁﬁj +-§g(zﬂk) < (1 - %JE(XO+'33&TV).

By Property 9 g 1s bounded abeove in 2 neighborhood of x° + v.

Hence, (1 - %Jg(xo+ )fllv) is unifeormly bounded above for

all sufficiently large A . Thus g{x+v) isg bounded above
for x € F, that is to say g 18 bounded above iIn Ft.
That g is constant on Fl fellows from the first part of
the theorem applled to the function g in the flat F71.
Property 13 is also a consequence of Chapter i1,

Property 24 applied to the set [D,f].

14, Iet f(x) be conmvex in D and
let p be s relative intericor point of D.
Agsume that f{x) is linear on each of
finitely many (finite or infinite) seg-
ments In D which have lireariy inde~
pendent directions and which have p as
a common irterior point. Then fix) is=
linear over the convex hull of these

gegments.
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There is a (non~hemogenecus) linear function £ (x)
in  A¥ which is identical with £(x) along the segments. Hence,
the comvex fumction gf{x) = f(x) - £{x) vanishes cn the seg-
ments. Now every point x of the convex hull of the segmerts

ray be wrltten

- £ z
xmf%OAPK , /\fﬁe, fz )\fml

with points xf belenging to the gegmernts. Hence, by Property

g(x) < 5 )\fg(x") = 0.

p=0

But p is a relative interior point of the convex hull and

0. Therefore {Property 11} g(x) is identieally zero

hie

P

ol
Il

in the convex hull of the gegmernts.

DEFINITION. A furnction f{z} defined
in a cone D with the origin as vertex is
said to be posiltively homogernecus (of degree
1} in D 4if F(Ax) = A £(x) for every
x € D aad all A 2 0.

15. A positively normogenecus functlon

f(x} in a convex cocne D is convex in D
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if and only if

f(xt+y) & £(x) + £(y)
for every x and 'y in D.

Convexity of f(x) implies

1 1 1 1 1
Sf(xty) = £zx + 5y) ¢ 3£ (x) + 32(¥).

On the other hand thils inequality implies for 0 £ © <1
that

£{(1-0)x + oy) £ £((1-9)x) + £(8y) = (1-6)f(x) + of(y}.

Important examples of positively homogeneous con-

vex functiong are the support functions ¢f point sets in AR,

DEFINITION, ILet M be an arbi@fary
point set in A®. Dencte by B(M) the
convex cone with the origin as vertex
conslsting of all vectors & such that
M is bounded in the direction §

(Chapter II, Section 5). The function

hM(g') = ngpm X'
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defined in B(M) is called the support

funetion of M.

That %M(Eﬁ ig positively homogeneous in B(M)
c¢lear. That it is convex follows from Property 7.

Obviously, hy(&) < hN(E) in B(N) if MC N.

Ir IlE‘\ =1, IQM(E) is the distance from the
crigin to the supporting flat of M with positive normal
vector & . Thus, by (§ ) determines all the supports of
M. The converse holds because }%a(f) is positively homo-
geneous. Therefore M and §M} , the closure of the con-
vex hull of M, have the game support function. Also two
sets” M and N have the same gupport functicn if and only
ir M} = [NY.

Iet M be a pofﬁt set with the support function
%M(g) and ) a real number. Then the set A M has the
support function Ahm(g) defined in B(M) 1if A » O,
and the support function - Alny(- g) defined ih -B(M) if
A < 0.

If M and N be point sets with the suppert
functions =y (%) and by(§), the set M+ N has the

support function
h‘M-{-N(E) = hM(E) + hN(E)
defined in BM) N B(¥). This follows because

68

is



sup  (x+y)' £ =sup (x'§+y'E) =sup x'E +swp y'& .
X+y € M+-N XEM xEM - yE€N
vEN

2. CONTINUITY AND DIFFERENTIABILITY OF CONVEX
FUNCTIONS OF ONE VARIABLE

The cage of a convex function 9D(t) over a convex set
D of At (-o0<t<oo) will now be considered. Here D must
be an interval (open, closed, or half-open, possibly un-
bounded). If X #y and © #0 or 1, the inequality used
in Section 1 to define convex functions ls equivalent to

.-t th-t
3.2 e "1

for any three points 6y < t2 < t3 of D, If x =¥y or
@ =0 or l1 the lnequality of Section 1 is valid for all

functions. Hence the present inequaiity is no weaker than

the previous one.

16, If sﬂ(t) is convex in D

@ (t,)-P (%) ) P (t3)-P(t,) ) P(t3)-P(v,)
tg-tl = tS“ﬁl = t3-— 5

%

for t;< %, < t3. Conversely, if one
of these inegualitiles is satimsfled for

a1l tl < t2 <t in D, the function

3
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qo(t} is convex in D.

The first irequality of Property 16 follows from the
defining inequality above by subtraction of go(tl) from both
sides and divisicn by t, - tl' Reversal of the steps proves
the oppesite implication. Similarly the second inequality of
Property 16 is also equivalent to the defining ineguslity.

Property 16 shows that 9ﬁ(t+h); P(t) is monotone

degreaging ags h —> + 0. Hence, the right hand derivative

* - . Pt+h)- P(E)
P (o) n i§m+ o n

exists and is either finlte or -~o00. Similarly the left hand

derivative

Prlv) - i Bl @)

h =3 4 0

exists and 1s either finite or + 00 . From Property 16 it
also follows for an interior point £ of D and a

sufficilently small & > 0 that

L H H )
P e-E) <P (t) L PE) L P (B+E).
Since @, < 00 and P > -00, both derivatives are Finite

at any intericr polmt of D. Thig implies the continuity of @

in the interior of D. Furthermcore, at avy peint where one of
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the derivatives 1 contlnuous the two derivatives agree, 1l.e.
go(t) has an ordinary derivative. Since both derivatives
are monotone increasing functlons, they have af most a de-~

numerable number of Jump. discontinuities. For & sufficlent-

1y small fixed h # O, ?(t%—h.};}gﬂ(t) is conbinuous in sn
arbitrary closed interval intericr to D. Therefore

99i(t) is the iimlt of a decreasing sequence of continuous
functions and congequently is upper semicontirnucus. Simllar-
1y goi(t) iz lower semicontinucus. The combination of
semicontinuity and monotonelty shows that qﬂi(t) is continu-~
cus from the right and qﬂi(t) 1z contlnucus from the left.

These facts may be suwmmarized as follows:

17. If gp(t) is & convex function
in an interval D, at every interior polnt
cf D 1% is conbinwous and has finite one-
sided derivatives 9Di{t) and 90;(t).
Theme derivatives are monctone increasing
funcetions which have identical valueé
everywhere except f£or-an at nmost. denumerabls
number of polnts where they both have
Jumps., The value of ?Di(t} at 8 Jump
1s the left hand limit, while the value
of @i(t) is the right hand Iimit.

18. 1If qﬂ(t) iz a donvex function

in D, 99“(t) exists everywhere in D
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except on a set of Lebesgue meagure zero.

Where it exigts 1t 1s nom-negative,

Thig follows from the Lebesgue theorem that a monotone

furction has a derivative almost everywhere,

19. A function g?(t), which is
continucus In an Interval D and is twice
differentiable in the intericr of I, is
convex in D 1f @ (t) » 0 for all t

in the interior of D,

Ascording to 16 it only has to be shown that

go(t?))"' Cp(te) qg(te)" Cp(tl)

tg«»t2 tg”tl

4
L)

for any tl < tE < t3° This is true, because repeated applica-
tion of the Theorem of the Mean shows that the left hand side,

apart from a pogltive factor, eguals some value of 90“,

20. Under the same assumptiloris as in Property
19 P(t) is strictly convex if and only
if ?9“(t) 2 0 for all t in the interior
cf D, but is not identically zero in ény

(non-trivial) subinterval of D.



Property 20 is egquivalent to the fact that CP(t)
is convex but not strictly convex if and only 1f 1t is corn-
vex in D and linear on soze subiuteryal of D. Here the
latter condltion is cobvicusly sufficlent. 7That 1t is nec-
egsary 1ls seen in the following way. I gv(t) is convex
but not strictly conmvex there are values tc_ and tl such
that

Y(e) = ((1-8)t, + 057) - (1-0) () ~ @ P(Ey) £ O

for 0< 9 <1 and }&(90) = 0 for some 8, 0 <8, < 1.
This means that the convex function }é(@) has & maximum
at o, and is, therefore, comstant {(Property 11).

The behavior of a convex function @@(f) at the
endpoints of ity domair D way be described Iw the follow-
ing way: cp(t) 419 monotorie either ir the whole of D or
in each of two complementary subintervals of D separated
by a polwt at which 5:9(1:) is & mirimum (Property 12).
Hence, a8 + approaches an exdpoint e of D, c/z?(t) hasg

a Finite or infinite 1limit. If e ig finite, 1im @E)>~oo
L o
because of Property 10. If e Dbelongs to D, the convexity

of (¢) implies 1im (t) < @(e). OUn the other hand
? b —> e? £ P ’

it is easy to mee that @ (e) may be given an arbitrary
value satisfying this irequality without viclating the con-
vexity of qD(t)g It is coften convenlent bo redefine D
and 59(1:) in the Following warmer: If e 18 an endpolnt
of D belonging to D, change the value of 5?9 at e, if

necessary, 80 that cpie) = 1im {t3. If e is a finite
B —— e
endpoint of D not belonging tu D, and if 1im ?(t-)
t —> e
i1z finite, adjoin e %o D &andi defime cp(e) = lim gv(i:).
t —> e

By these inespential changes a convex [unctlion §D(t) s
obtained which is comtinucus in the whole interval D of
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definition and @(t) —> oo as t approaches a finite end-
point of D which iz not in D. For a function with these
properties the set [D, ¢] is closed. Conversely if the
convex set [D, ¢#] is closed, @ is such a function.

3. CONTINUITY PROPERTIES CF CONVEX FUNCTIONS
OF SEVERAL VARIABLES

21. 8Suppose f{x) 1is a convex func-
tion over a convex set D of A" and D!
is a compact convex set in the relative
interior of D. Iet & > 0 be such
that the closed relative & -neighborhood
D" = Df 4+ &T of D' is also in the
relative interior of D. Here U denotes
the closed unit sphere of that subspace
through the origin which is a translate
of the minimal flat containing D. Ieb
M and m be numbers such that
mg £{x) <M in D" (Properties 9 and
10). Dnder these conditions

'f(x+y) - f(X)i g-—Mj§4§- ilyi{

for any x € DY and any vector y for
which =x 4 y € D".

If y = 0, the statement is trivial. If 7y # O,
consider the function f(x+ty) of the real variable t for
fixed x € D', vy e S(D) - xg This is agponvez function at
least in the interval -~ <t < . From Propert

st in © intervy -7T§ﬂ" x4 §E~WE;W“ p ¥

16 it follows that for 0 < t < ——ﬂgﬂ—
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| 5 S ‘
f(x)-f(x - ~ﬁ§ﬂ~y)Ily“ ‘ fxtbyi=f{x) ‘ fx +-H§ﬂ—y)mf{x

)
s T = I vl -

Hence

,f(x+ty) ; f(x)l g_M g ﬁ'”y“ .

i []y’l < &, the value ore may be substituted for +©. The
inequality obtained is cbviously also valld when '!y” > &
provided x + y € D",

The inequality in 21 shows that £ satisfies & uni-
form Lipschitz condition in DY. Hence a wniformly bounded
family of convex functions over the domain % is eguicontinu~
ous in DF. From thlsg follows

22, If a pet of convex [fumetlons
over d relatively open convex get D ig
uniformly bounded in every compact sub-
set of D, a seguence of funstlonsg may
be selected from this set so that the
seguence converges in D to a convex
fusction. Morecover, this couvergence
is uniform in any compact subset of D.

Ant immediate congequernce of 21 is
23. If f{x}) is comvez In D,
it is ceombirucus in the relative in-

terior of D.

The behavior of a convex function at the boundary of
its domain is essentlally descrilbed by

24, If f£(x) is eouvexr In D
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and y 1s a relative boundary point of D

lim  £(x) > - co .
X —2> ¥

It y&Dd

lim f£(x) € #(y).
X —> ¥ -

The first statement follows from Property 10 and the
second is true because

1im  £(z) < lim f£((1-6)x° + &y)
X — ¥ T8 —> 1
< um o ((1-9)2(x°) + ef(y)
o —> 1
= f(yj

ig valid for any fixed x° & D.
Let
flepsxp) = =

for x, > 0 and define £(0,0) to ve an arbitrary non-negative
number. Then f 1is convex over the half-plane x5 > 0 plus

the origin. Now 1im f£(x) = 0 'while Iim f{(x) = +00.
x—> 0 x —> 0

This example shows that "lim" in 24 cannot be replaced by
"1im" and that the inegquality cannot be strengthened.

25. ILet f£(x) be convex in a rela-
tively open convex set T. Dpenote by D
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A function obtained in the way described in 25 has
the properties given in the

DEFINITION: A convex function f(x)
defined in a convex set D is called

closed if l1im f(x) = 00 for every
X —> ¥
relative boundary point y of D which

is not in D, and lim f(x) = £(y)
X — Y
for every relative boundary point vy of

D which is in D.

A cloged convex function may be obtained from any con-
vex function by removing the relative boundary point§of its
domain and then extending the function in the way described in
25.

26, If f(x) in D 1is & closed

econvex funetion 1lim f£(x) = f{y) where
X —>y
¥ is any point in D and x approaches

vy along a segment belonging to D.

ILetting x approach vy along the segment from x°

to ¥y 1s the same as allowing © to approach one from below

O

in the expression (1-8)x + ©y. Since

o

£((1-0)x° + 8y) & (2-8)£(x°) + of(y),

Tim  f£((1-9)x° + oy) < £y).
g —> 1

On the other hand, f(y)
statement.

I
"
=)
e
e}
2
Mg

This proves the

27. A convex function f(x) in D
is closed if and only if the set [D,f]

of An+1 is cloged.

78



the set obtained by adding %o E;
all relative boundary poinks vy

for which lim f£(x) < o@ .
P
Define

fly) = Lim £(x)
X iy
la¥)
for y in D Dbubt not in D
and x 1in TD. With these defi-
nitions D 1is convex and f{x)
is a convex function in D.

it yo and yl are any two points of D, there

o) 1 . .
are gequences X * and X 1, 1= 1,2,e.0, 0f points from

such that x%t —> yof Xll s yl and

£((1-0)x°Y + ex'l) ¢ (1-0)£(x%1) + er(x™t).
Hence

lim £(x) < 1im £((1-8)x°" + ex’T)

x —> (1-8)7° + ey’ 1 =00

< (1-0)£(y°) + of (y1) < ov,

This shows that {(1-8)y° + @yleg D and that
1
)

£((1-6)3° + oy™) & (1-0)2(3°) + o£(y™) .

Ie4
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Suppose the set [D,f] in AP 4y closed. Tet
i

v be a relatlive boundary point of D and X7 & D a sequence

of points converging to y such that 1lim f(xi) =
i —3 00
1im £(x). If this 1im is finite, the sequence of points
X —pr ¥

(xi,f(xi)) in [D,f] converges fo the point (y, lim £(x))

K e Y
in [D,f]. This means that y &€ D and f(y) £ lim £(x).
X >y
From 24 it now follows that f£(y) = lim f(x). Conversely,

X —>
suppose the function 1s closed. Consider any sequence of

polnts (Xi,za) in [D,f]1 which converges to a point

(y52). Since z; 2 £(x*), z» 1im f{x). This implies
‘ T X —r 7

yed and z» f(y), that is (y,z) € [b,f].

4, DIRECTIONAL DERIVATIVES AND
DIFFERENTIABILITY PROPERTIES

28. If f(x) is convex in D,
the ¥directilonal derivative”

£H{zsy) = lim
L o 4+ 0

£xtby) - £(x)
T

exists and is either finite or - oo

for any % 1in D and any vector ¥y

such that x + y 1is in the projecting

cone PX(D)é For a Pixed x,

£¥{xsy) is either finite for all Yy

in the translate PX(D) - X of the

projectlng cone, or it is -~oo for all

relative interiocr vectors y of

P, (D) - x. When £¥(x;y) is finite

in P_(D) ~ x, £'(x3y) is a positive-

ly homogeneous, convex functlon in
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PX(D) - x. IF x 1is relative interdor to
D, the cone Pﬁ(D) ~ x i a subspace arnd
F1(x;y) is finite for all y in this sub-
space.

The above limit 1s the right barnd derivative at t =0
of the function f(z%ty) of t which 1s defined and convex
at least in some inferval 0 < © < b. Thus the 1limlt exlsts
and iz <oo (Property 17). If x is relative 1interior to
D, f{x+ty) is defined and convex in some interval contalining
t = ¢ 1n it intericr and, hemce, f£i(x;y) is finite.

If A> 0,

ﬂﬁAw)aﬂmﬂ‘XﬂHAw)%ﬂm
t AL *

(%) Pi{x; Ay) = AE'(x:3)

fPor A > 0. Thizg equation is clearly also valid for A\ = O.
If £7{x3y) = -0 for a partizular y, it must be infinite
or. the ray generated by vy 1in FX(D} - X. IF yo and yl
are in P_(D) - x,

f(x+t{y@+y1)) - £(x) _ f{%{x+2tyﬁ) +—%(x+2ty1))-u £{x}

t t

+,f(x+2tyl) ~ £(x)
2%

£ (z40ty) = £(x)
=%

(17N

If £1(x3y} iz - 00 on any ray (y°), it wow follows that
1t must be - 00 on every ray which iz strictly between (y°)
and arxy other ray (yl) of PX(D) — %, In particular
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f¥(x3y) = =00 in the whole relative interior of P_(D) - x.
If fi(x3y) for the x considered iz -c¢co for no y, the
above iﬂ@quafﬂ}' gives f*(x;yo+y1) < 2i(x37°) + ff(x;yl).
This combined with egualiow (¥) shows that £i(x:y) 1z a
pogitively homogeneoﬁs, convex function of y in the cone
PX(D) - x {Property 15).

That f£7(x3;y) need not be - oo on all relative
boundary rays of PX(D) -% when it is ~0o on the relative
interior rays 1ls shown by the following example: Iet D be
a closed strip of a plane and let f(x) be & convex function
over D with its graph half of a circular cylinder. If X
ig a boundary point of D, f£¥(x;y) = -00 1n any direction
from x into the interior of D but is Lfinite in the two
directlons along the edge of D.

29. If f(x) is convex in D
£(x) 3 £(x°) + £t (x"5%-x")
for all x and x° in D. If F{x)

is pogitively homogeneous and convex
in a convex cone D

£(y) 2 £ (x;7)
for all x and y in D,
o o o o . _
If x° and x are in D, f{x +t(x-x")) 1is a con-

vex function of © in an interval including © £ t g 1.
Herice for t > O

f(x0+t(x—zo}% - £{x°)

> £1(x°%5x-x°)

because the left hand side decreases as + decreases (Property
16). Substitution of ocne for t glves
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£(x+(x-x%)) - £(x°) » £ (x%;x-x°),

that is the first statement of 29. If f£(x) is positively
nomogeneous

£(x%) + £(x-x°) » £(z° + (x-x°)).

This and substltution of y for x - x° gives the second
statement from the first. _
30. If f(x) is convex in D, the
supporting hyperplanes of the set [D,f(x)]
which contain a fixed point (Xo,f(xo)) are
ldentical with the supporting hyperplanes
of the corresponding set
[r (D), £(x°) + £7(x°;%x-x°)] for the
X

function £(x°) + £7(x°;x-x°) of =x.

The set [P (D), £{x%) + 21 (x%;x-x")] 1s a convex
x

cone in APTl with vertex (xz°,f(x°)). This follows easily

from the facts that P _(D) is a convex cone and that
f‘(xogy)- is positivel% homogeneous in y. Hence every
supporting hyperplane of thiy set goes through (x°,£(x°)).
Furthermore

[D,e(x)1 CIp (D), £(x) + f;,\(;;r?;_;;ﬁx?\)g

because of Property 29, and the inclusion D CP (D). Every
. . S X

supporting hyperplane of the set [P (D), £(x°) + £+ {x%;x-x°) 1]

X
ig thus a supporting hyperplane of [D,f(x)] through
(x°, £(zx°).
To prove the converse consider a supporting hyperplane
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of [D,f{x)] which is not parallel to the z-axis and which
contains (x°,F(x°)). 1Ibts equation may be wribten '

%y + (%-x%)ru
with some vector u # 0 in A", Now

£(z) 2 £(x°) + (x-x°)ru  for all =x € D.

Hence, replacement of x by x° + t(x—xoj €D for 0<%t L1
glves

£ (x%4 (x~x°)) > £(x°) + t(x-x°)*u,

£+t (xx%)) = LG 5 (xx0) 1

and
£(2°) + £1(x%x-x°) > £(x°) + (x~x°)ru.

Since f‘(xo;y) ig positively homogenecus In y, the 1last
inequality holds for all x € P O(D), This means that &

p:e
supporting hyperplane of [D,f(x)] through (x°,£(x°)) and
not parallel to the z-axls is also a supporting hyperplane

of [P (D), £(x°) + £ (x%;x-x) 1.
X
A supporting hyperplane of [D,f(x)] through

(z°,£(x°)) which is parallel to the z-axis hax an equation
of the form (wao)fu = 0. For this u

(x~x°Jtu < 0 for all X &€0D

Clearly this ineguality also holds for all x E?P-O(D)
X
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because every x € P (D) may be written =x = x° + 4\(xlnzo)
%
with x@'é D, A2 0. This means that the gilven hyperplane

parallel to the z-axis is a gupporting hyperplane of
[z o, £(x°%) + £7(x"5=x-x") L.
31. let f{x} be convex in D, and
let x° be an arbltrary point of D. Then
there 1z & supporting hyperplane to [D,f(x)]
which contains the point (x°,£(x°)) and
which 1s not parallel to the z-axis if and
only if f£/(x;y) 1is Finite for all y in
O
PXO(D) - x .
Supposé f‘(xogxluxo) is finite for some xl rela=-

tive interior to P (D). The ray in A™" with initial

x
point (x°,f(x°)) and direstion determined by the vector
(x7-x°, £1(x%;x7-x°)) 1is a relative houndary ray of the con-
vex cone C = [P (D), £(x°) + £ (x%;x-x°)]1. Hence, in the

minimal fiat S(é) containing this cone there is & gupport-

ing hyperplane H of ¢ whick containg this ray. If H

were parallel to the z-axis, its intersection with the hyper-

plane % = O would be a supporiing flat of P O(D), On the

other hand it would contain the relative interior point xl

of P _(D), but this 1s impossible. Now H can be extended
X

tc a supporiing hyperplane in An+1 of € not parallel to

the z-zxis. From 30 it follows that H also supports
[D,f(x)]. 'The converse follows from the inequality
1 {x°;x-x°) > (x=x%)'u> - co

obtained in the proof of 30 for any supportling hyperplane

7z = £(z°) + (x-x7)'u
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of [Db,f(x)] which is not parallel to the zZ-axis.

Now let £(x) be convex in an n-dimenmional convex wet
D, and let x° be a fixed interior point of D. Conpider
the fumction on the Iine x = x° + ty where ¥y 15 an ar-
bltrary fixed vector in AR,  In some imterval f(x°+ty) is
a convex Tunction of +t whose right ha@dderi?atiVe at t =0
15 £#(x°,¥) and whose left hand derivative at & = 0 1g
-1 (x%;-y). Hence f(x+ty) 1s differentiable at t = 0
if and only if =£¥{(x%;-y) = £+ (x%;y) that is ir

£ (x%s Ay) = Art(x®;y)

for arbitrary real A . Therefore the partial derivatives
of f(x) exist if and only if for all real A

f'(xp;,Xui) = A (x5

where the ui, i=1,...,n, denote the unit vectors

{(0y00.,0,1,0,:..0). The partlal derivatlveg have the values

of

SEA = £7(x"su

. If they exist, fﬁ(xosy) is linear on every coordinate axis.
From Property 14 it then Tollows that £'(x";y) is linear
over the whole y-space. Hence

SF

1 (e - ‘
£1{x ,d:x:) ) '-gfz‘:‘l“ dXi

*

M

is the total differential of f{x).

32. Let f(x) be gonvex in &n
n-~dimensional convex get U, Let XO
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be an intericr point of D and suppose that
fv(xa;y) iy a linear function of y. Then
'r(x) 1is differentiable at x = x°.

Thisz gtatement 1im equivalent with the following: To
every £ > 0 there iz a &> 0 such that

|£(x%4tu) - £(x°) - tev(x%5u)] < €%

for all unit vectors u and 0 <t £ § . From Property 29 and

the definition of f*(xo;y), it follows that for ezch fixed
vector y there iz a § (y) such that

(%) 0 ¢ £(x%ty) - £(x°) - t2v(x%y) < €%

for 0<t g 5{3). Apply this to the vectors yl, 1= 1,...,En,
-all of whose coordlnates have the value + 1 and put
i

&5 = min é\hﬁﬁ. Then (*) is valid for each y =7y and
i

0<t<&§ . KNow for any fixed t in this Interval
2(x%+by) - £(z°%) - t21(z%;y) is a couvex function of y since
£t{x;y) 1s linear in y. Hence (¥) is valid for all y in

Y

the convex hull of the polnts yl (Properties 4 and 29), in

particular for all unit vecbors u. This proves the gstatement.

33. Iet f(x) be convex in & relative-
ly opern convex set D of dimension 4, and
let ¥ be m fixed vector parallel with the
minimal flat containing D. Then f£'(x;y)
1g an upper semicontinucug function of x
in D. The ovrdinary derivative of £(x)
in the direction y exists everywhere in
D with the posgible exceptlon of a subset
of d-~measgure zero, Where it exists the
derivative is a continuous function of X.
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In every compact subset of D the function £3(x;y)

of x iz the limit of a decvreaging seguence of conbinusus
| £(x+t,3) - £{x)
functions t1 where %, > 0, t; —> 0. Hemce

2

f¥(xsy) 4is upper seﬁiecntinueaso The owdinawy derivative of
f{x) in the direction y exists at a point x if and only
iF fH{z3y) = £ (x;~y). Now £¥(x;y; + £'{x3-y) > 0, since
£7(x3y) is positively homogerecus and sonvex in jﬁ Hence
the et of points at which the derivative does not exligt is
the set of x at which F¥{(z;y) + £'{x;~y)} > 0. Thus this
set 18 measurable. Its Interseciion with a 1ine parallel to
v containg at mest a denumerable number of points, (Property
17). Therefore the set ras d-measgure zero. Since I1(x3y)
ig upper semicontinucus For every fixed vy, -fi{x;-y) 1s
lower semlcontiwmuzous and, hence, £¥{x;y} is continvouy in
the met .at which f'(x3y) + f4{xs~-y) = 0.

34, If f£(x) is comvex in an open
convex set D, it i differentiable with
continucus partial derivatives everywhere
in D except for 8 geb of measure zero.

Apply 33 to each of the unit vectors ui = (000050,
1,0,...50) on the coordinate axes instead of to y. For
each 1 = 1,...,n, thers ig & set of measure gero at which
of
o Xy
measure zero, AL every x In I bub outside U all partial
derivatives exist, that is £ {xsy) is linear in y and £(x)
differentiable (Property 22). The conbiauity of the partial
derivatives is an lmmedlate congeguence of 33.

doesg not exist. The union 1 of these sets has

3B, if f£(x) 15 a twice differ-
entiable functlon in an open donvex setb
D, £(x) is convex in D if and only
if the quadratic form
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n - 2%¢
i,?ﬁlfij(x.)yiyj’ i,](x) =a Xj'_ ) Xj s

1g positlive semidefinife for every x 1in D.

From the fact that £(x) is convex if and only if it
is convex on every straight segment in D and from Properties
18 and 19 1% follows that f(x) is convex if and only if

2 X
dt P

[M] = 2 .. {x)y.y, > 0
, 3=1 i i’J =
for 81l x € D and all y.

A sufficient condition that a function f£(x), twice
differentiable in an open convex met D, i strictly.convex
in D is that Efij(x)yiyj is positive definite. It is even
sufficient that the form iz pogitive gemidefinite for all =x
i D and the determinant det'fij(x) is net identically zero
on any gegment in T.

5. CONJUGATE CCNVEX FUNCTIONS
Inn Chapter IL, Section 8, polarity with respect to
the parabolold

2 +'X:2

Py e
ZZ-—XI

in A (x ,...,x,,%) was described. This polarity will now

be uged to define an involutory corresgpondence between closed
convex Tunctions.

For the sake of brevity, a flat in An+1 will be
called vertical or non-vertical according as it is or i nob
parallel with the z-axig. The polar hyperpldne to a point
(x,%) of R has the equation T + 2 = x'& , where
(£, ) are variables in the space Am'l( El,..., g;i;,&)c

Let f(x) in C bz a closed convex functlon. To each polnt
T,

PHSE a5 .




(x,2) in [G,f] let correspucd the closed upper half-space
C 2 %' - 2 bourded by the polar nyperplane to the polnt.
The intersectlon of all these halfe-spaces for (x,z) in
[6,f] 1s a vlosed convex set ['{:‘Z.yfl% tn A ginee

x'E «- f(x) »x'¢ -~z forall (x,z)e€ [C,f], 1t is
sufficlent to congilder the half-spases

G zxtE - flx), xecl
Hence, [E:‘,.fl% is the met [[7 » Pl Tor the funstion
C = @(g) = sup (x7 - I(x})
?D E xe f

defined in the projection T in the & ~direction of

[il‘;,.x‘i'lée or the hyperplane T = 0. This function 18 comvex
and closed sinmce [C,r] is cunvex and slosed. A point &
im in [T if and only if the fuwmwbtion =¥ E - £{x) is bound=-
ed above fur x € C.

Tne set [[7, @l wmay alse be cbtaired from [§,F]
In a dual way. A uncn-vertical hyperplare hasg ayx equation of
the form ¥ = %% § - & with (x,2) variable. Ibg pole 1m
the point (&,Z). If and unly if thig hyperplame i3 a
varrier to [C,f], we have f£(x) » x'Z ~ & for all
xeC, that 1 (E,5)e [, @l. Taws, [[7,@] 1is the
get of the poles of all norevertical barriers te [C,.F].
Sirce there exist such barriers (Fropositions 28 and 31),
[, 9] is uct empty.

If glx) ip a ¢losed soncave funcbion defined in
the convex met D, let [D,g] dencte the closed convex set
of a1l points (x,z) in Al guen that z e D and
z 5 g(x). Toapoint (x,2) in [D,gl Iet correspond the
closed lower half-space & £ X'E = 2 bousded by the polar
hyperplane of the point. The irtersection of all thesge half-
spaces is the set [A,)] for the clesed concave Twmbion
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T o= Y(E) = ar (x7E - glx))

xe b

ed In the set A of all poizts & for which x7 ¥ - gixg
bewided belew i D. As in the somvex gase, [4,%] is the
set of the peles of all non-vertizal varriers to [Dyzl.

y » Q } i
DEFINETIONs Iet L0 5 be oEmvex
]
and sleved, Then the olemed goyvexn Tunctlon

Mg ®
o

- =T {'ﬁ@ - {’ ;
P (%) sup (208 - £ix

X‘& k=

dufimed 4 the set [ of all poimts E  for
whish %% & = £(x) 1s bewuded above for =
2w ©  im caliasd the cowndugate funcetion of
G (x4, |

et gix) in D Dbe sonwave and closed,
Then the ¢lemed concave Daowtlion

YIE) = iaf x'g - g(xj}

defined im the et 4 of 2ll peints & fur

which %' E ~ g{x) 1ig bounded below fur X

in D i #8lled the sonjugate funstionm of

Togix).

From what kas be'evz eali it follows that eguivalent
eftpitiong of the conlugate fumoetlidns are

g S

¢
PLgl =, . sup

(xv& - 2}, WPif) = s {~x18 +z).

g.x %) & [Dyel

Thege show that 50 5 }  is the mupport funstion of the point
set  [0,f] for the argumernt (£, -1} and that -UY(E) is
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the gupport function of [D,z] fer (= E,1).

From the above remarks ths following geomebrizal
interpretationg of the conjugates of cunvex and concave Duug-
tiong gre immediately derived: )

36, Let f£{x) in ¢ Dbe convex
{or concave) and closed, and let 99(§')
in [7 be itm conjugate. Then [ come
sists of all € such that [C,f] i=
bounded in the direction of the vector
(§,-1) (or (-¥,1)), ant -g(§)
is the =-intercept of the supporting
hyperplane of [0,F] with the normal
vector (§,-1) (or {(-%&,1}).

As already mentioned, the correspondence delined
above between vlosed eonvex or concave functions l1g involutory:

37. If g)(g) in [7 iz the
conjugate of the closed convexr (or cone
cave) fumction £(x) iIn ¢, then
f{z) dinm € 4is the sonjugate of

g?(g Y oan [T,

let £ (x) in G be the vonjugate of @ (g), /1.
From the preceding statements it follows that [C,£ | ig the
intersection of all supports te [C,f] whose bounding hyper-
planes are non-vertical. Thus the gtatewent {C%sf%l = [¢,r]

follows frowm the

- LEMMA: A cleosed convex gt M in
Aﬁ+l having supports bounded by nom-
vertical hyperplanes is the Intersection
of all these gupports.
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Since M iz the intersection of all its supports,
the statement iz that the supports bounded by wvertical hyper=
planeg may be omitited without changing the intergection. A
point (E{ﬂ,c}J ot in M  is outside some bound or support
of M. It has to be ghown that there is such a bound or
support bounded by a mon-vertlcal hyperplane. Let H be a
barrier of M such that ( 2{39520) is separated from M by
H bt (£°,Z,) isnot on H. If H 1is nom-vertical
there 1z nothing to prove. Suppoge H is vertlcal and let
HY. be a non-vertleal barrier of M. The hyperplanes H and
Ht divide the space A" into four wedges, one of which
contalns M but mot (E°,&,). Now turn H about the inter-
gection of H and H' away from the wedge containing M, butb
so Iittle that H remains in the wedges adjacent to that wedge
containing M and that (£ ,& ) is still separated from
M. The hyperplane c¢btained bounds & bound or support with the
reguired propertiesn.

38. ‘Iet £{x) in € and ;p(%‘)
in [7 be cdonjugate clowed convex functlons.
Then

P8 <f(x) + P(§) terxec, Eel .

To every x € C for which f£t{x,y) is
finite for 2ll ¥y for which it is defined,
there iz at least one £ € /7 psuch that
equality is valid, and dually. For concave
functiong the ineguality im reversed.

The inequality follows immediately from the definition

of the conjugate function. The statement conderning the eguality
sign is a conBeguence of Propositions 31 and 36.
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In gereral there ig v piwple relatien bebween the
properties of the demalxs € axd [ of two sJugate  Huno-
tions. Te & podnt x in ¢ corregpond all podnts & of
[ with the property that through the point  {x,£(x))
there i = supporbing hyperplare to  [0,F] with the norsal
direction (& ,~1), &nd dually. Thug, the correspundence
between the sets depends strongly on the behavier of the
furcction £(x). But there iy oue very simple direct rela-
tion between ¢ and [’ whish will play & rele in the
following:

If one of the sets iz bounded Ixn the dlrection 77,
the agymptotic come of the other wre contaling the ray with
the direction 7).

This iz seen in the fellowing way: Suppome that
¢ 1is bounded In the directlion 77. Then [C,£] 1s bounded
in the dlrection (77,0) and like every set [C,fl, ix
some directiom (& ,~1). Since the directiong In which a
gset iz bowrded form & convex cene, LC,F] is bouzded In
all directions (E +p7 s=1), £ x 0. Hemoe M contains
the half-lize § +p%m, P 2 0.

I the remainivg part of this sectisn, orly convex
Functions are congsidered. The corregpornding regults for con-
cave Tunctiong are cobtalined by rather obvicus charnges follow-
ing from the fact that O,-f =md -/, = P are conjugate
it G,f and [7,@ are conjugate. More generally:

39. Iet #£(x) %= O be a closed
convex furction and @(E) ix [1 its
conjugate function. Then for amy redl
A A0 the corjugate funetic
AE(g) 1n O 1sm )\529(%;)

Thig follows from the relaticns
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sup (x'& - A £(x)) = A sup (Xﬁg - £{x)},

p Al IR ¥ X el
rer A0, Fe [ am
sup (27§ = Af(x)) = A inf ELE £(x}),

x€C xe o A
ror A<0Q, e A[.

Other obvioug congequences ¢f the defizition of con-
Jugate functiong are the fellowing:

ho, Tet f(x) 1in € be a cloged
conyex function and @ £y i [7 1ts
corjugate functiorn. Then the conjugate
function of f£{x) + % in €, Xk a coo~
stant, iy @ EY -k in [7. The con-
Jugate funsticn of Fflzx-v ) in €+ v ,
v a2 congbant vector, is 929( E)+vlg

m [,

The first statement is e¢lear and the second follows
From

sup (218 -f(x-v )) = sup ({z~v}'& ~ £{x-v) + v'E.
X € C4v X=v €T

New let f£y{(x) in ¢; and £y {x) in C, be closed
convex functiong, where {';3'1 and {:‘2 have polxts in comson.
Ther fq(x) + f,(x) 1is a convex function defived In ¢, C,.
It iz easily seer that this function im clesed. To prove 1it,
let y be a relative boundary point of €; /N C,. If
y € C; M G,y we have _fl(x.‘) —> £4(7}, fa(.,x) ——r fE{y) as %
approaches y on any segmert in ¢y N ¢, (Propositicen 26} .
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{v) under the sawe

condition. This impiies that . 1lim (fl(:zs:} + fz-{x)) < co
. , X o> 5
as X appréacdhes v arbitrarily and (again by Froposition

26) that this lim is fl(y) + fz(y). Iif v 4ig not in
clﬂ C,; we have elther fl(;x;‘) -3 00 o f‘,a.(x) — OO
as x —>y, and hence f,(x} + fgix.) —>00 , mince I
and fg. are bounded below in a neighborheod of y.
41. Iet fy(x) in € and fz(x)

in C2 be closed convex functlong with

the conjugates 991(5) in /_’1 and

P,(5) 1in /_'2. Assume that C; /1 C,

is not empty. Denocte by ;ﬁ(E) in [7

the conjugate of the function £ (A}:) + f,é(x)

in C;/\VC,, Then :

(%) M@l =[r, #1+ 7, P,
-7 -7 -
17+ /E.C/—'C NN
- and, for E & /71+ /-Ias
. i3 el
?(E) - inf (791(5 ) +?2-(§ ))
1 2
Ele /1, 82 e/}
i 2
Er+ 5 -¢
To prove the Tirgt statement, 1t will be shown that
the conjugate of the function P on the set /7 defined by
(*) 1s fl('x) + () in ¢, N €y. According to an observa-

tiornn made in connechtion with the definition of the conjugate
function, fl(x) and fe(x) are the support functicns of
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the sets [ [, $;l and | fE} ?%J with (x,-1) .as argument.
Now, the setb £f71ﬁ?91] + [fvg,tfbl, d "therefore its closure,
is bounded in all directlons (x,-1) in which both [ [7, ;]

[ /7, $,1 are bounded, and conversely. Henve, the support

Function of [f"Iﬂ PI+ 17, P,] taken for (x,-1) 1is de-
fined in C /) C, and equals f£y(x) + £,(x) (see the end of
Section 1 of this Chapter). The two last statements of Ul
follow from the fact that [ FZ} P 1+ | [;V q9 1 con518ts
of 211 points (% ,Z) for which £ =% + 22, gl e /1,
:25/7 and G = &+ Ceﬂ - ?pl(%- )

%‘E )

For the application of this resuli which will be made
in Section 6 it is imperiant to have sufficient condltlions in
order that the inf in the statement of Propogition 41 may be
replaced by min. This may obviously be done 1f [ [, ?ﬁ} +

., 1 1is closed, which will be the case 1f ¢; and C,
have points in common which are relative Interior to hoth
gsetss that ig, if G and 62 carmot be separated by & hyper—
plane of S(Cltj'ﬁg) in the sense of the Separation Theorem
28, Chapter II, Section 6. However, this condition is not
necesgary. Necessary and sufficlent condltions in terms of
Clgfl and -Sggfé are rather complicated and willl not be
formulated here. To the extent that the question is of
Importance it will be discussed in Section 6 in a slightly
different and more intuitive formulstion.

Let Gy ,fy (x) where of rung through any set, be
¢logsed convex furctiong. Let € C {] Cee be the sget of those
points x at which BuD T (%) 1is fiﬁi%e and define
£{x) = sup £, % (%) fof % € ¢. According to Propomition 7,

C is convex, and f(x) is a convex funetion In . This
follows also from the relation

96

-



which shows in addition that f£(x) is closed in C.

42. Let Cro s Lo fx} be closed
convex functions and /[ ., 9&{X) their
conjugates. Assume that the set £ in
which syp f (x) X 00 is not empty and
put £(x) = sup fy (x) for x & C. De-
note by [, 90(%') the conjugate of
C,f(x). Then

[r.pl= (OTT, &

oy
?(g)mfmf 120 )\3_ Po(i(g ) s
where
*1 o, A s0, 5 A =1, 2 A ic(i~§’
5 oy L= g T et S0

that is, for a givan‘ % the inf has to
be taken over all representations of §
as a centroid of n 4+ 1 points taken
from any n+l of the sets dz .

First observe that [C,f]= () [c, ,f, 1. Thus the
polar hyperplaneg of the points of [C,f] are on the one hand
the non-vertical barriers of . [/[7, @] and on the other hand
the common non-vertical barriers of the sets [f;y #,1. Hence,
the sets [/[7,®] and &)[ CZ,.?L ] have the same supports
bounded by non-vertical hyperplanes. From the above Lemma it
now fellows thatb [!’ﬁgp] is the clecsure of the convex hull
of &/ [/}, ® ). From Proposition 6, Chapter II, Section 2,
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we have that every point (§, Z;) of EU [ r 9%(]2 is a

centroid of at most n + 2 points (g Z %’ % = C{,_;
l 1
. o
C ?90(1 %‘ 1= 0,1,...,0+1. Thus
n+1 n+1
?miiof*%’ Toz B, AL B (€0,
n+1 .
with A; » 0, £ A, = 1. This shows that furnic nciy S
1=0 !

and that ?(5) ig an inf of the form in 42, but where §&
is the centroid of n + 2 points. That n + 1 pecints are
sufflclent is seen in the following way: The n + 2 points

E 1 C'o( are the vertices of a (possibly degenerate) simplex

in A" 1. The vertical line through the point (%-’Zo) inter-

sects the simplex in a segment containing this point. That
point (£, gnin) of this segment for which & is minimunm is
on some face of the simplex and, hence is a centroid of at most

n + 1 of the points (39(1, :o(i), since & . < Cys in
the expression for §ﬁ(§) the original representation of &
may be replaced by the new one as the centroid of n + 1
points. This completes the proof of 42,

43, With the notations of 42
agsgume that the get € 1s bounded and
that f(x) 3 a in C, where a 15 a
constant: Then if &> 0 is given,
n + 1 functions fo(;;(x): i=0,1,...,0,
may be chosen from the functions £, (x)

such that
s A (x) N
2 f X) >a -§& c s
1=0  * %3 1 X3
for suitable A > 0, Z A, = 1.



Since [C,f] iz e¢losed, € is bounded, and £ 1im
bounded below, 1t follows that f(x) has a minimm Z,. Then
%z = Z, is a supporting hyperplane of [(,f], and so
P(0) = - Z,. The assumption that C 1is bounded Implies
further that /7 is the whole ¥ -space and that consequent-
ly, [ = ‘(;‘/ /Z(} In particular, the expression For sﬂ(f)
in 42 way be applied for & =0, giving

n A
@(0) = inf 2 Ay gﬂo(i(f 5 =7y,

¥i

of 5 n o«
where & ef;, Ay 20, = Ay =1, i%o,,\igi-._-o,

. % i
i 1=0 Y C
Hence there are n + 1 points g = Fo( and
i
n
A »0, X A, =1 sueh that

n of 2l o(-q
= A, Fl=0, = A (82 Y<~2_+&.
3=0 1 g i":O 1 Wo(i % 0

For the corregponding functions fp{ (), = € ﬂ C o ?
i 1 i

Propogition 38 gives

n n of 1. o
S Af L, (x) TS A Lo s A, P (E sz ~Eya-€
1=0 1 %37 E= T 4 1 8 120 ’ﬁii o = ?

whic:h 1s the desired result.

If closed convex functions C_,, £, (x) are given,
the guestion arises under which conditions f(x) = sup £ {x)
does exigt, i.e. iF finlte for some x. This 1y the cage if
and only if the gets [C,, ,f,, ] have a comwon point, which
in turn is the cage 1f and only if the sets [ /], Dl bave
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a common non-vertical barrier. There will be such a zommon
non-vertical barrier 1f fU [T B 1% is not the whole
space A™Y while ft} is the whole AT, i.e., if

f!{/ /1} has no barrier. "‘he latter part of the condition is
satisfled if the asymptotic cones A (Cx ; of the sets Cy
have no common ray, for the existence of a cowmmon barrier to
the sets Fd implies the exigtence of a common ray of the
cones A (Coy )o (Compare the remark following 38.) To en-
sure that {U[ [y s 7%]; is not the whole space it is
sufficient to assume that there iz a fixed hyperplane
z=x'§° - & such that any n+ 1 of the sets [0, ,f, |
have a common polnt below thig hyperplane., Then the point
(g°,Z,) cannot velong to {UJ [/}, 79,,\,1}“ If it didg, it
would be the centroid of n + 1 points (E + .Gy ) taken
from certain n + 1 sets [ /7 s 59«,}3 1 = O,l,o.%,n, In other

1
words there would be numbers A, » 0, X A, =1, such that

i k!
n
o l of]
= Z )\ Z; = X )\ C > ( }
E 1=0 g © i=0 o(i l““O i ?o( g
From 42 applied to the n + 1 functions ¢ o<, a, (x),

I =0,1,.0.,n, it would now follow that 2z = X! % - ;O

is a barrier to /() [CO( »f ! which confradicts the assumption.
1 i i

Thus the following theorem is proved:

Gk, 1et £, 1iIn C, Dbe clesed con-
vex functions. Agsume that the asymptotic
cones of the gets C, have no common ray
and that there is 4 fixed non-vertical
hyperplane below which any n + 1 of the
sets [C, ,f, ] have at least one point in
common. Then all the sets [C_ ,f, 1 have
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W oHot Dod e
a commor point, {;cf—é,/s;sé,p £ (%) 1is
finite for at least one X

In the special case where all ,, are ldentically
zero (and herice the sets Co¢ ATe closed) the ekiste:r;ce of a
hyperplane with the reguired property is obviocus (any hyper-
plane z =z  » 0 will suffice) and 44 becomes Helly's
Theorem:

45, let €, be closed convex sebs
in AP. Assume that the asymptotic cones
of the sets O, have no common ray and
that any n + 1 of the pets have & common
point. Then all sels have a commion polint.

Obvicusly the assumption that the asymptotic cohes
of the C, have no common ray may be replaced by the usual
ovie: There are sets among the C, which have a non-empty,
bounded intersectlion. '

Finally some special cases and applications of cone-
jugate comvex functicms will be menticoned.

Let f{x) be identically zers in a cloged convex
set C. The conJugate functlon

® (&) = U, xF & = ny(§)

is the support Dunction of ¢, and [ is the core of thoge
directions £ in which € is bounded. This implies that
every support fumction 1s cloged. Caonversely, let 99(5 )
be defined, pogitively homogerneocus, convex, and cloged in a
convex cone [1. Then [/,¥] 1ig a cone with the origin
as vertex, and herce all non-vertlcal suppeortivg hyperplanes
to [T, ] pass through the origin. This means that the



conjugate f£(x) of P (£) is ideutically %eros in some corn-
vex set € (which must be closed since F£{x) is clozed in
¢). Hence

§6. A funetlon @{&) defined in a
convex cone [’ 1is the support furnctlon of
some polnt set If and only 1P it is positive-
1y homogerieous, convex, awd clomsed im [7 .

In the pamticular case £, (x) =0 the @ (&)
of Proposition 42 ig the suppert Lurwcticn of the intersection
C = Q Cy expressed inm terms of the support functlonms 900(( E )
of the sets Cy . Because of the homocgeneldy of the functions
F¢  the expression may here be written

‘ Bt - 4

h,
=0 (3

. . S o( N A
where E‘x‘{ = /" S pA 2 = %— 3 that is, the inf hasg to be
‘ i=0

taken over all representaticns of E ag a suwm of 4 1 polats
taken from any w4+ 1 of the gely E‘.x .

Jemsider agaln an arbitrary coovex Punotiorn  £(x)
slosed In a sonvex set . Denote Itg sonjugate by r e ‘P(%.- Ve
The supporting hyperplane % = x! 57 - 2 E% to [o,r]
with mormal directicn (£9,-1), ¥ e 7, intersects fo,r]
ivw a {possibly empty) ¢loged convex set. Let U izﬁ} demote
the projestion of this set ow the hypesrplane z = 0. Thus,

x is in C(Z%) 1P and only if (x.{x)) iz in the hyper-
plane z =x'§% = @(§%); trat 18, if

£lx) = x(E - 2 (5.

Tnterpreted dually, =x is in C{ f m? AP and ouly If there ig

b
3
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a supporbing hyperplane to [/7,90] having normal direction
(x,-1) and passing through (§D, & EO')). In particular,
c{ EO) is empty if and only if there is no non-vertical
supporting hyperplane to [ [, ?] through (EG, P E°Yy,
This is the case only if E’O ig a relative boundary point
of [’ at which the directional derivative @71(Z°% %) is
infinite. Dually, to a given x°€ ¢ there corresponds a
subget of [7 with the analogous properties. This set will
be denoted by /7 (x°). Obviously, x° & C{E®) implies

E,G € [7(x°), and conversely.

The directional derivative f*(xo;y) as a function
of y 1s convex but not necessarily closed in its domain
PXO(C) - x°. But 1f it 1s not closed it way be made so by
the unessentlal changes descrilbed in connection with Propo-
sltion 25. Then we may speak of its conjugate function, which
is identically zero since £'(x%jy) is positively homozeneous.
To find the domain of the conjugate, consider first the con-
vex function £(x°) + £1{x%;x-x°), x &P 0(C), or, if neg-
esgary, the functlon obtained by closing ?t, Prom Proposition

30 1t follows that the conjugate of this Ffunction is the
linear function

PE) =58 - 2(x°), ¥ el(x").

Application of Propcsition 4O now shows that the conjugate of
£v(z%;y) (or of the function obtained by closing it) iz de-
fined in  [7{x“).
et %€ ¢ be such that £1{x%;y) is finite.
Denote by £{£+,x°) the lineafity of the cone
M z[P'O(C) - x°, ¥ (x3y)]; that is, the maximuim number of
x

linearly independerit dlrections in which f{x) is differ-
entiable at x°. Then
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Lg1,x%) + a0 [7(x°)) = n,

waere d( [7(x%)) is the dimersion of ['{(x”). 7o prove this,
cbrerve that 1f the come M is lald off from the point ({0,1),
1ts normal cone M‘"‘ ingersects the hyperplae z =0 in
(%Y. Hence (H Vo= 14+ a( M (x"y and, by the corcllary
to Theorem 5, Ghapter-is Secticn 4, .gkm + ﬂ{M Y = n + 1.

Suppose mow that € 1is cpeu a* that f{x) is
differentiable in €. Then for every x € &, [{x") cone-
gigts of onme point E’O whose goordinates are the partial
derivatives of £ at the point x°. Hens e, there is a cne=
valued marping x-w¥‘5 of € outs [1 determined by

ef
(‘%‘) Ei = mz S j.. = 1323-190335&0

If, morecver, 99{5') satisfies the sare zonditions as £{x).
t.e. Af £{x) 18 stristly convex, the wmapplng ig cne-to-on
and, beszause cof the involubory charaster of the con%ggate rew

lation, the inverse mapping must be glvew by %, = .
. i 5521
' This leads to the Lollowlzg procedure for the compu-

tation of the conjugate of & smooth conver fuwotion: Tet
f{x} be strictly couvex, cloged, and differentiablie iz an
open sonvex set . Ther the domalrn [0 of the conjugate
Furaticn q? is determired ag the lrxage of ¢ by the mapping
(#). By solving {¥*}, the x, are flund as funebions of the
g, and substituted i

Eat
Svae”

P(g) == £ - fix

to give @ in terms of g,



6. A GENERALIZED PROGRAMMING PROBLEM

Iet f(x) in ¢ be a closed convex function and
g{x) 4in D a closed concave function. Consider the follow-
ng extremum problem:

PROBLEM I: 7T¢ find a point =x°
in ¢ N D sguch that g{x) -~ £{x) as
a function in CMN D has a maxipum

C.
at x .

I g{x) ~ £{x}) ¥ 0 iz CND this problem, stated
geometrically, is to find the maximum vertical cherd of the con-
vex set [C,£f1N [D,g]l in aBtl o ogp P(x) =0 in C,  Prcb-
iem I reduces to a programming problem, viz. to maximize g(x)
under the conditicn X & C.

Dencting by ¢P( F) in [ and '}A(f YV oin A the
conjugates of ¢,f(x) and D,g{x) respectively, comnsider the
gimiliar problem:

PROBLEM II: To find a point E©
in I'NA  such that ?9(%')~=="W(§}

as a funstion in  ['NA  bhas a minimum
at EO,

it si)( gx - V" E) 20 in [T/ A  this stated
gecmetrically is to find the mirimum vertical segment Joining
the sets [F»‘P] and [A Jp] 1r Am»@-lﬂ

Thege two problems are comnecited by

B7. let the furction £{x) in C
ve comvex and clesed, 529(? Y oin [T iss
conjugate. Iet further gx) 1n D be
sonnave and closed, }é( £ in A its
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conjugate. If the sets CND and [NA
are non-empty, then g(x) - £{x) is
bounded above, 59( £) -% (&) is pouna-
ed below, and

L (x)-1(x)) = : ;-'-f*iri;‘hd(gﬂ(?%?’/(f))-

- We shall give fwo proofs. The first and more formal
proof iz based on Proposition 41 applied to the functions T
and -g {(instead of f; and f2)° let X(%) be the con-
jugate of r(x) + (-g(x)} in C /N D. From 41 and 39 it follows
that ){(g') 1s defined in a set containing [+ (-A). Since
[’ and A rhaVe points in common, /_T - A contains the origin.
Hence, X (0) is defined and, again by 41 and 39,

= inf b - ~¥°
x(0) E‘lel"fzgé _(Aﬁp(g ) =W (~E))
ghiE% -0
- inf (@ (&) - ®(F)).
£ e 'nd ? e

On: the other hand, the very definition of the conjugate of
r{x) - g(x), taken for § = 0, yilelds

X (0) = Xésrgpn.D (g(x) ~ 8(x)}. , .

This proves the statement.

A second proof, more geowetrical and more elementary,
is based on the interpretation glven 1n Proposition 36 of the
conjugate of a convex function. It does not give 47 in 1ts full
generality but, on the other hand, it allows an intulitive dis-
cussion of the existerice of the extremum values iz guesticn.
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1t § & ['NA, there exist supports z » x'¥ «P(¥)
and z < x¥ Z a’]&(g) of [C,f] and [D,g] respectively.
Since u?('g ) and -}’/(E) are the z-intercepts of the
supporting hyperplanes, gﬂ(gr) - }é(g') ig the vertieal width
of the strip bounded by these hyperplanes, taken with a sign
in the usual way. Now, for & & mna,

t(x) x5 § - @(F), =xec,
gx) ¢ x' & - YI(E), =xebD,

which gives,

g(x) - £(x) £ P(&) -p(§), =x€cND.

(I g(x) -~ £(x) » 0 in C/) D, this simply means that
[6,£]1 N [D,g]l 1is contained in the strip.) Hence, the left
side is bounded above, the right side is bounded below, and

(1) s (B0 - £)g « (P(F) - (5.

Denote by e the value of the left side of inequality (1).
Then

glx) < f(x) +p, x&CAND

Thus, the conly points (x,z) which are common to the setbs
[D,g] and [C,r+p], if any, are those for which

7z = g(x) = £(x) + ¢ . These polints are cbviously relative
boundary poilnts of both sets. Therefore, the Separatlion
Theorem 28, Chapter II, Secticn © may be applied, and cor=
seguently, there is in the smmllest flat S contalning both
sets & hyperplane h which separates [D,gl and [£,f+&]
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in the sense of that theorem. The normals to & through the
polnts of h form a hyperplane H of A with the follow-
ing properties: H does nobt combain both sets, [D,gl is cone
tained in one of the c¢losed half-spaces bounded by H, and
[C,f+/ul is contained in the cther closed hmalf-space bound-
ed by H.

Suppose first that there ls a nor-vertical separating
hyperplane h din S. Then H ftoo is non-vertical and 1ts
equation is of the form z = x' E° - & .. Now, the distance
of the two sets belng zerco, H 18 4 supporting hyperplane to
beth [D,g] and [C,f+u], and thus, by Propositions 36
and 40,

Co = Y(E®) = P(ET) = s

Together with (1) this shows that mim(?(?) - ’}ﬂ(? V) ex-
ists and that

' - g | = telkis] - i),
(2) LR SFE)-g(x)) g;rmm(;ﬁ(f) W(E )

Suppose now that there 1s no rnon-vertizal hyperplane
in S which separates [D,g] and [C,fvp]. Let o be a
vertlcal separating hyperplane and dencte by hﬁ its inter-
section with =z = 0. By projection parallel to the z-axis
[D.g], [G,f+/4l, and h are projected Imto D, ¢, and h,
regpectively, and h, separates ¢ and D. This shows that
the present case cccurs only if € and D have no points in
common which are relative interior to both mebs. Hence, we may
coriclude that if € N D coxmtalns points relative interior to
both sets, the minimuwm problem has a solubion and (2) is valid.

The preceding, together with the dugsl argument, leads
toc the followlng theorem:
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48, . With the notations of A7
suppose that € and D have points
in common whlch are relative infericr
to both sets and that [ and A
gsatlsfy the same condltion. Then
g(x)=f{x) has a waximum in C /N D,
P(E)-Y(E) has a minimum In /N4,

and

. emgxﬂ D(g(x)»f(x)) =§I6ﬁjf;l/)A(?(E )-%(E)N).

It may be mentioned without proof that if the direc-
ticnal derivatives fFV(x;y) and g'(x;y) are uniformly
bounded for x &€ (D and all y for which they are defined,
there 1s a non-vertical hyperplane separating [D,g] and
[C,f+4] even if € and D have no points in common which
are relative Interior to both sets. Hence, if this condiltion
and the corresponding condition for 50 and YW are satlsfied,
the conclusions of 48 are valid.

A continuwous function whoge domalin 1s closed and can
be divided into finitely many subsets in each of which the func-
tiom ig linear, wlll be called a plecewise linear function.
Observe that if such a function 1s bounded above (below), it
has a maximum (rmintwum) since 1t cannot approach its least
upper (greatest lower) bound asympbotically. Consegquently,
if the functions f,g and, thusg, ¢ ,Y are plecewlse linear,
and if the assumptiors cf Proposiiion 47 are made, the con-
clusions of 48 hold.

From the definitiong of the conjugate functions it
18 clear that Propositicn 47 is equivalent to either of the
two following statemenbs:

kg, TUrnder the assumptions of 47
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inf sup (V& -£{x)=%(% )
Eerny x€¢C _24 5

= sup 1nf (x+& -flx}-$(E 1)),
xe CND Eed g #is

and

sup inf (@ (¥ He(x)=x'E )
xe CND §e&l P -g

= inf sup ip(;“;-+~gix>mx5%’ e
felnd =eb

1 Problems I and II have goluticns, as ig the case
under the assumptisws of 48 or if the functlons involved are
plecewise liriear, the cuter inf and sup in the lmmedlately
preceding equations may be replaced by min and max respectlvely.

The pair of Prcblems I and II is eguivalexnt to each
of the two following saddle value problems:

PROBLEM IIL: ILet f{x} be couvex and
closed in C and let 7 (&) be concave
and closed in 4O . Pub

Flx, ) =x' &~ £{x) ~ (§).

Mo find an x° € G &nd & § € A such
that

F(x, £°) < F(x°, ") £ ¥F(x", §)
for all x € C and all E&€4 .

PROBLEM TIT': Let g(x} be concave
and clesed In D and let @ E ) be coavex
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and cloged in P Put

P(E,x) = P(E) + alx) - =7 .

To find arx x° & D and a §'G & [
guch that

L PE ) 2 PEC®) 3 P(Em)

for all féﬁ and all x & D.

e

Consider Problem III. Dencte the ccocnjugatesoef C,f
and A ,% by /', and D,g respectively. From the defi-
nitiong of the conjugate fumctions we have

(3) F(x, E) ¢ p(F) -p(E)
for x €¢, & € MNA , and

(4) F(x, &) » glx} -2£(x)

for x€CND, & el .

Suppoge Problem I has a solution %€ €N D and
Problem II has a scolubion EO e ["NA. Put

g(x°) - £0x°) = P(E®) - Y(EC) = 4t .
Theri (3) and (4) give

F(X.»EG) /Q
F(x", &) 2 s Eed.

» X €0,

A

Hence, F(x°

,EC) = p and
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Fix, £°) ¢ F(z%, %) ¢ F(x°, %)

for x60C, Eed .

Suppose now Probilem III has a sclution xz%€ C,
E°ed . From F(x,E%) ¢ F(x", &%) for x&C 1t follows
that x'£° - £(x) attains a maximm at x°. Thig implies
that ED € [T and that the maximum value is 9@(5 ®Y. Hence ,

F(x°, £%) = @(£°) - w(E9).

Analcgously, - F(x°, 2) 2 F(x°, %’O) for £ € 4 yields
x° € D and

P2, EO) = g(x7) - 2(x).
Now, by (3) and (&)
g(x)-f(x) £ g(x°)-£(x°) = 90(2””%7&(50) < @(E)-p§E)

for xe€CND, & & "NA , which shows that x° and E°
are golutions of I and IT resgpectively.

By interchanging the roles of [ and 99 anxd of W
and g it 1g immediately seen that Problem TILY alse is eguiva-~
lent with the pair of Problems I and II.

The main theorem cf the theory of the zero-sum two-
person game is a particular case of 40,

Let A be a given m by =n mairix. IL%t C de~

note the get of all peints x for which x ¥ 0, P 'xj = 1

" J=1

and define r{(x) -.ame in €. let /A be the get of all points
E =Am, u> 0, S u, =1, and defire Y(E) =0 i A.

=1, A
Then

xVE - £{x) ~ }é(g) = u'Ax
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n m
for x3y 0, X x;,=1, uzO0, = u, =1, andboth | and
' J=1 9 1=1
D are the whole n-space since € and A are bounded. Hence,
49 yields

v

min max UiAx = max min ur'Ax,
Fed x e¢ x e Fedl

The existence of the extreme values iz obvicus in this case.

et A bean m by n matrix, b an m-dimension-
al vector, and ¢ an n-dimensional vector. A pair of baslic,
mutually dual, linear programming problems is:

1} to find the maximum of c'x subject
to the conditions x » 0, Ax < bj

2) to find the minimum of b'u subject
to the condltions u > O, Ala > c.

If Ax { b for some x » 0 and A%u 2z c for some u > o
both problems have solutions and max c¢'x = min blu.

To show that this is a partlcular case of the pre-
ceding results suppose first that m = n and that A is
non-singular. Define (¢ to be the set of all x satisfy-
ing Ax < b and put f(x) =0 4in €, Define D to be the
pogitive orthant =x » 0 and put g(x) = ¢'x in D, Then
Problem I reduces to the linear programming Problem 1. To
determine the conjugate functions f_’,,?ﬁ(E) and A ,}é( Z)
introduce a parameter vector u by u =AY “% . Then

?(%) = sup £'x = sup u'Ax.
Ax < b Ax < b

Since Ax assumes any value less than or egual to b as x

varies in €, u'Ax 1g bounded above if and only if u 2 O
Thus, [' 1s the set of all & = A'w, u 3 0 and P(&) = uth,
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Further

74'(5) = 1nf (§ -¢)'x

x g {

where the right side is finilte (then havirng the wvalue zero) if
and only if & » ¢. Thaus, 4 iy the get of all & = Atu 2 ¢
and %(¥) =0 in A . This shows that Problem II reduces
to the linear Problewm 2.

The general cage where A is arbitrary rectangular
may be reduced to the éase Just consldered in the following
way. Denote by E, the 1 by 1 ddentity matrix. Instead
of A conslder the non-gingular m+ n by m+ n matrix

(q% Eﬁm) . Complete the vectors b, ¢, X, £, U to
n

(metx ) ~dimensional vectors {g), (8), (?‘;)_,, (-‘;), (3),

Ther the two linear problems take the forms: 1) to maximize
¢’z subject to the conditions

A E, X b z _
(s ()- (Do
wEﬂO v o AT
whigh' san be written Ax + 3y < b, x> 0, .y 2 03 2) to mini-

miz¥e b'u gubject to the conditions

AF Eﬁ i ¢ ¥4
g ] :’; Oa’
Em O v o v

-

or A'u ~-v x¢, uwz0, Vv >0, Sirnece c¢fx and bd'uw do not
depend on y and v resgpectively, thess problems are equiva-
lent with the criginal Preblems 1 and 2. For, if %" ,yc and

u®, v° are solutions of the new problems, x° ard u° solve
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1 and 2; and i x° and u” are solutions of the latter prob-
lems, Xo,yo and uO, v° solve the new ones for arbvitrary

yo and v° gatisfying O < yo’ < b-Axo, 0w oé Atu®-c.

Since the functlons cccurring here dre plecewise

linear, the assumptions of 47 guarantee the existence of the
two extreme values. Thege aséumptioﬂs take here the follow-
ing form: there exist x 2 0, ¥y 2 0 satisfying Ax +y < D
and there exlgt w > 0, ¥ 0 satisfying A'u -v 2 c.
Obviously, it l1s sufficlent
least one x > 0 such that Ax ¢ b and of at leant one
u > O such that Afu > ¢, for this x and thls u to-
gether with y =0 and v =0 sgatlisfy the stated con-
ditions. Herewith the statement concerning the Ilinear

programming Problems 1 and 2 is completely proved.

>
to reqguire the existence of at

7. THE LEVEL SETS OF A CONVEX FUNCTION

Consider an arbitrary real function ¢@(x) deflned
over & set D in A", For a given real number T the sub-
set L, of D conslsting of those points x of D for
which @ (x) ¢ T will be called the level set of @ (x)
for the level T . Clearliy, L,E, is empty for T < inf §D,
and L, =D for T > sup ?0 . Therefore T will be re-
stricted to the smallest interval {1 containing the whole
range of @ . This interval may be finite or infinite, open,
half open, or clesed. To exclude the trivial case when
929(:{.) is a constant, it will be assumed that L has in-
terior polnts. In the following all numbers 7T, 7,
are suppesed to belong to {L . On observing that
P(x} £ T, is equlvalent %o ?(X) £ T forall T > ’CO_},
1t is lmmediately seen that the family of level sels L’C'
hag the following propertles:

a6 B
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I. U I = D.

T E .S T

171, L,Elc: L,L,2 1 T4 < 72'2.
. ) Lp =L, , and M L, 1is
T > T, o Tell

empty if ()L is open to the left.

Conversely, given a set D In A" and a family of
subsets L,. 1indexed by the real numbers of some interval and
satisfying Conditions I-III, there is a function ¢ (x) de-
fined over D for which the sets L, are the level sets.

To exhibit such a function define @ (x) #Lingx’to Then,
99(}:) is finite for all x € D because for every x & D
I ensures that some L contains x while IIT ensures that

if Ll is unbounded below, there is some L, which does not

e

Lo

contain x. The level set corresponding to ’CO of this

funetion consists of all =x such that inf T ’CO. Thus,
Le2% 7
x 1z in this level set if and only if, t0 every £ > 0, there

is a T T,+& suchthat x €L Because of II this

TQ
means X & L for all T > T, and hence, by III, x &€ L .
T G T
A further conseguence of IIT 1s that ?9(::) = mwin 7. This
: L D%

equation establishes a one-to-one co:r’respondemc'g hetween the
functions @(x) defined over D and the indexed famililes of
subgets of D satisfying I - IIL.

It is well known that a function ¢@(x) with level
sets L’t’ is lower semicontinuous if and only if for all

Ted:

IV, L’Z‘ is cloged relative to D.

The condition for upper semlcontinuity:
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statement holds:

50, The level sets of a functlon gﬁ(x),
x € D, are convex if and only 1f sﬂ(x) ig
guasi~convex.

To prove the necessity let x and y be arbitrary
points of D and define 7T = max (@(x), @(y)). Then
x € Ly, v €L, and, since L, 1s convex, (1-8)x + Oy € L.
Hence 90((1-—--@):: + ®y) < «T. To prove the sufficiency let L,
be an arbitrary level get of @(x). If x & Lps ¥ &Lg,
it follows that (x} < T, go(y) < 7. Because of the quasi-
convexity of P(x), @({1-€k + 6y) ¢ 7T, that is (1-8)x + 6y € L.

A family of subsets LT of D satisfying I - V,
that is the family of level sets of a lower semlcontinuous, quasi-
convex function ¢(x) defined over D with range L2, is
briefly called.a guasi-convex family. Suppose now L’E is
trangformable into the family of level sets Kt" te W , of
a convex function f£(x) = F(}ﬁ(x))y briefly calied a convex
family. Then both f{x) and @ (x) are continuous. The in-
terval W, the image of L)L by t =F(7T), is open to the
right since a convex function in an open domain has no maxi-
mum. Hence ) must have the same property. This implles in
particular that all sets Lq: = Kt are proper subszets of D.
If W is closed to the left, (L is closed to the left, and
conversely, and we have a = F(eX ). Thus, with the notations
K =inf @P(x), B =sup P(x), a = inf f{x), =and
b = sup £(x) where -op0g X < f < 00 and -00ga<bL02,
Wois a gt <D, and 0 1is o((é)f< (8, where the
equalities can only occur simultaneously (and, of course, only
1f a and o« are finite). The open intervals a < t < b and
« < T< B are denoted by W, and ‘Qo respectively.

A rather obvious necessary coendition which a quasi-
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Lj L, 1s open relative to D,
T < To

will nop’be’used explicitly.

Let t = F(7') be a strictly increasing continuous
function defined for T & {). Denote Py W the range of
F(z), T7€{), and let = @(t), t & W, be the inverse
of F. Then the family of mets K =L (£)? tew, 1is
the family of level sets of the function £(x) = F(@(z))
and satisfies Conditions I - IV if L., 7 &2, does.

Hor the gsake of brevity two familles llke L ~ and Kt
obtained from each other by a strictly increasing and con-
tinuous index transformation +t = F(’c‘) willl be sald to be
transformable into each other.

The problem to be discussed in the following may row
be formulated:

Under what conditions is a family
of sets L,L.. satisfying I - IV trans-
formable into the family of level sets
of & convex function. To avold in-
esgential difficuliies the domain D
will henceforth be assumed to be con-

vex &nd. open.
An obvlous necegsary condition is:

V. L"t’ ig convex for T & _(}.

Bowever, thils condition is not sulfficient. Call a
function @@(x) qefined over D guasi-convex 1f

P ((1-0)x+0y) < max (P(x), P(v))

for 0490 <1 andall x and y in D. The following
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cenvex family Igr must satisfy in order that it be trans-
formable into a convex family is

U/ _
=l ’L‘OLT“ LTO for TO E'Q'o*

This expresses the fact that a convex funetion cannot assume
a constant value except possibly its minimum on a relatively
open subset of its domain. This condition will not, however,
be used explilcitly. The further discussion of the problem
stated above will be based on the fellowing characterization
of a convex family:

51. A guasi-convex family Kt’
t &€ W, 1is a convex famlly I1f and only

if
(%) {(1-8)K,. + 08K, C K

to tl t@
where 0 £ 0 < 1, to € W, tl e W,
ty = (1-e)t0 + Ot .

To prove this, suppose Kt are the level sets of
the convex function f(x), x & D. Iet x° = (1-8)x° + oxT,
where x° €& Ki s Xle— Kt , be an arbitrary point of

o S
(1-@)Kt + ©K, . Then
o} 1

°)

£(x°) < (1-0)r(x°) + er(x") < (1-6)t_ + ot = tg,.
Hence ngg Kt . Conversely, let (¥*) be satisfiled and define
8
f(x) = min t. As mentioned above, this function has the level
K. 2 x
v
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sets Kt' Iet x° ana X1 be arbitrary points of D and put

£(x°) = tos f(xl) = t;, and x° = (1-0)x° + 0xT. Then

x°e K, xle- K, , and x° € K because of (*). Hence
to £y t9

£(x8) - min t@ <ty = (1-0)£(x°) + or(xt).
KtZD X

This proveg the statement,

Let M be a point set. As 1in Chapter II, Section 5,
the cone with vertex at the origin consisting of all directions
in which M is bounded will be dencted by B{(M). The follow-
ing rather obvious properties of cones B will be used: For
any twe point sets M, N

B(A M) =
B(M+N) = B(M) N B(N).

i
o
E
H:
O
H
>
\4
N

T E _O_ , trans-

For a quasi-convex family L’C 5
formable into a convex family:

Vi. All sets L,r , T E ‘O'o’ are
bounded in the same directions, that is
B=B(L,), TE ), is independent of
T. If L, exists, B C B{Ly ) < B.

Since this statement is invariant under index trans-
fermations, it suffices to prove it for a family Kt gsatisgfy-
“ing (*). Let t & W,, t; &W_,, t; > %, be given and choose
t <t in W. With 6 = (tmto)/(tl—to) the relation (¥)

o
yields

(1-0)K, + K,

C K,_.
0 1 b

t
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Hence, because X, C K, CK

to 1

B(K, ) C B(Kt) C [B{K, YN B{K, 11l = B(Kt ).

13} o 1 1

Thus B(Kt) = B(Kt ) which proves the statement.
1

If L, exists, B CB(L,) because Ly € Lo
féﬂoa It only remains to prove that B(L, }< B when
Ly exists. Let & # 0 be in B(L, ) and let H be the
gupporting hyperplane of L°< with normal direction & .
In Lo< there 1s some point p wheose distance from H is
iess that a given & > 0. Denote by HE that hyperplane
parallel to H at distance & which is separated from p
by H. In Hg consider the (n-1)-dimensional closed (solid)
unlt sphere U whose center 1s the orthogonal projection of
p ©on HE‘ . The compact set U having a positive distance
from LD( sy there iz by IIT gsome + > & such that Kt and
U are disjoint. By the Separation Theorem 28, Section 6,
Chapter II, there is a hyperplane H' separating Kt and
U . The normal vector &' of H' which is directed to-
wards U ©belongs tc B Dbecause X, 1s bounded in this
direction. The tangent of the angle formed by & and E!
is less than 2 £ since HY separates p from U. Hence
the ray (&) is a 1limit ray of rays (gr) e B. This
proves B(L, ) < B.

Since the asymptotic cone A{(M) of a convex set
M is the polar cone, (B(M))* = —B—[—M—T* of B(M) (Propo-
sition 26, Seetion 5, Chapter II), the preceding result
yvields:

52. All level gets of a convex
function have the same asymptofic cone.
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Now let L, T € (), be a family of subsets of
D satisfying conditiong I - VI. Denote by

n(z,%) =h, (E)

=

the support function of sz: . From VI it follows that for fix-
ed ze {l,, n(T,E) 1is gefined over the cone B and no-
where else. If o is finite and GQ , h(ed, F) 1is de-
fined not only over 3B, but possibly on certain boundary rays
of B which do not belong to B. However, in the sequel it
will be sufficlent to consider h(X,§) for & & B. Further-
more, it suffices to consider unit vectors & . By II, hi{z ,§)
For fixed E ig an increasing function of T e (). which may
be interpreted as follows. Let T = @ (x} Dbe the function
with the level sets I”U' In the (n+l)-dimensiocnal space

x,7T consider the set [D,¢]. Its orthogonal projection upon
the 2-flat A° spanned by the 7Z -axis and the vector (& ,0),
£ € B, 1lald off from the origin is called the E -profile of
®. If -% is also in B, the (-& )-profile is identical
with the E -profile. In A° introduce the ~ ,y-coordinate
gystem consisting of the T -axis and the orlented line de~-
termined by (& ,0) as y-axis. Every line T = Tor o é.a,
in A% parallel with the y-axis intersects the & -profile in
a segment or a ray {(in the direction -~ &) whose end-point in
the direction § has the y-coordinate h(Z ,¥ ). This follows
because for ||¥]| =1, n(T,, £) 1is the distance from the
origin to the supporting {n-1)-flat with normal direction §

of L, . Thus y=n(r,%) or, in case -Z &B, y =

h('zt",.f? and y = -h(T ,- &) are the equations of the boundary
of the & -profile.

Suppose now there i1g a strictly increasing continuous
funetion t = F(T) such that f(x) = F(ﬁa(x)) is convex in
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D. Then the sets Kt = L@{t)’ T = é(t) the inverse of
t = P(T ), satisfy (*) and, hence, by the properties of
support functions stated at the end of Section 1

(**)  n(P(ty), &) 2 (1-6)n(P(t,), &) + on(P(t,), &)

where tg = (1-8)t_ + 6t,. This means that h(P(t),E) is

a concave function of t for fizxed £ € B w&xadom® wabhthe

fact that the & -profiles of F(¢?(x)) are convex sets.
Conversely, suppose there exists a strictly increasing

continuous function t =F(T), T7e€Ll, 7 =&k), teW,

such that for a family Ly, 7 € .LL, the function

h(@(t),ﬁ) is a concave function of § for every fixed

& € B, that is the & -profiles of F(@(x)) are all convex.

It follows from this hypothesis that PB(¢P(x)) 1is a convex

function in D. To prove this 1t i1s sufficilent to prove (*).

Now (*¥) is valid and for two point sets M and N,

hM(E) < hN(Z) implies {M} € {N] . Hence

X, D (1-0)K, + 6K, D(1-8)K, + K, .
tG Yo tl to tZL

Condition IV implies "K'tm D = XK . Consequently

X, 2D N((1-8)K

£ + ©K

4+ BX = (1-0)X .
& to 1 to tl

The latter eguality follows from the lnclusiong Kt < D,

o}

% C D, and the convexity of D. This completes the proof
1

of the following theorem:

K

53. Let L,, T& L), be the
family of level sets of a lower semicon-
tinuous, quasi-convex furction qﬂ(x)

123



such that the cone B(qu) = B 1is independ-
ent of 7T for Te& L), . et n(T,&),

£ & B, be the support function of L. .
Further let t = F(7Z) be a strictly in-
creasing continuocus function and

T = $(t), teW, its inverse. Then
F((x)) 1s convex for x & D if and only
ir n(P(t),E) for every fizxed § & B

is a concave function of t € W, that is

F(T,)F(Ty) 2 FlT5)F(T,)

for any three numbers T, < T, < Tb’ in L1 .

This condition may be given a different form. If
n(T,,8) =h(Ty,§), the inequality implies (T, &) =
h('t‘g,z) since h{,% ) increases with 7 . The inequality
being trivially satisfied in this particular case, 1t is equiva-
lent to

F(T5) - F(T,) n(T45 &) - n(T,,%)
F{Ty) - F(T,) 2 0(Tp 5 ) - B(Z1,8)

the right-hand side being interpreted as O whenever the de-
nominator vanishes. The quantity

n(T5,5) - n(T,,§)

}ﬁ (t—l’ (Z—g: TB) = ?Sél'pB nt Tg,g ) - h( Tl’ E)

which only depends on the family L., 1g used the state the

necegsary condition:

VII. There is a strictly increasing
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continuous function F{T), T eﬂfl .
gsuch that

(%) F(T o) 2 (FOTR)-F(T1)) R (T, Tos T3)

for any three numbers 2?1 < Th < 173

in _(2.

—

From the preceding it 1s clear that I - VII are nec-
essary and sufficient conditions in order that a famlly of sub-~
sets of an open convex set D sultably indexed by real numbers
forms the family of level sets of a convex function defined
over D. ¥While I - VI are simple and intuitive, VII is rather
complicated. There is no simple test to decide whether the
function B{('Zi,’fé,’tz) is such ag to admit a strictly in-
creasing continucus solution of the functlonal inequality
above. Both local and global properties of ?ﬂ(?7152ﬁ3r173)
enter decisively. Compared with the original problem There
seems to be nc progress. However, VII has the advantage of .
leading to a kind of construction of the required functlon
(7). To indicate the procedure the fellowing remarks may
be added.

Let T, < Tp; < T be fixed in L1 . Select numvers
Ty i = ly...,p. + 1 ~Buch that

T, < "Z‘2 Ceee €T, < Tp+1=’z.“,
Then (***) yields

F(Tyyq)-FlTy) 2 (FOT)-FUTy4)) 20Ty 15 Ty i)

for 1 =1,...,p. Multiplication of these inequalities for

1 =1d,00e3d g D, glves
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J
FlT ) -FlTy) 2 (Fl7))-F(7,) ;!le( Ty 10 Tor Toan

Summation over j gives
p

J
R(T)F(TY) 2 (F(T)R(T)) 2 Mettz, )7 7y

With the notation

k(TOﬂ tla T) = BUp K

d
) :D; KTy 10 Tys Ty

rM o

where the sup 1s taken over all subdlvisions le < 1?2 < ses <
of the interval ‘Z&,’Z}

F{T)-F(T

[\

(F(Tl)‘F( TO)) k(’l:o, Tla T)'

1)
Thus k(T,, T ,T) has to be finite for all T < T, < T
in (2. This involves a mixture of local and global conditions
on %€ . If k is finite, a function F(7) which has the de-
gired propertlies for 7T > 1:1 may be obtained as follows.

Tt is easily seen that the values of F(7Z) at two points,

150 and T, say, may be prescribed arbitrarily. Then any
strictly increasing continucus function F(7T), T> Wfl,
satisfying

Flz) 2 FlTy) + (F(7y)-F(T,)) (T, Ty T)

can be shown to have the required pPOpertieéu Such functions
exist since k(’rb,qfl,'r) is increasging in T . In similar
ways the function can be congtructed for 7= between 170
and ’Z.‘l and for - lesgs that Ton
Tn the next section the congtruction is carried

through in the cases of smooth functions.
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8. SMOOTH CONVEX FUNCTIONS WITH PRESCRIBED LEVEL SETS

et D be an open convex set in A", The problem
discussed in the preceding section will now be solved under
the assumption that the prescribed subsets L, of D are
the level sets of a twice differentlable function -z = @ (x).
As in Section 7 we set o = inf &(x), /.9 = sup ¥(x). We
ask for a twice differentiable strictly inecreasing functlon
F(T), o s, T < ,5 , such that f(x) = F(e(x)) 1is convex
in D. We start by deriving necessary conditions, which will
turn oub to be sufficilent. The results of Section 7 will not
be used.

We introduce the notations

Q@ Df
S5x; = Pu >%, - fr

i,*j""‘:lr n oo ’-'no

02 @
afxia)xj

i

2
Py oL -t

axiaxj 1j°

The derivatives of f(x)

]

F(® (x)) may then be written

() RN

(2) fij zF”gzDi?Dj +1‘H5Pij.

Suppose now f(x) = F( ?ij) is convex. Then f(x) has no
eritical points except possibly those at which it attalns its
absolute minimum. Obviously, ¢P(x) must have the same
property.. We formulate this as the first necessary conditlon:

A. ?ﬂ(x) has no critical points
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except those where it attaling 1ts absclute

minimum, if such a minimum exists.

- #rom {1) and F'(7) » O for « & T < B it there-

fore follows that ¥:'{7T) >0 for > o . Now £f(x) 1is con-
vex if and only if for every fixed x & D the guadratic form

= L,
o4
14

J(X)Yiyj = F”(?(X))(i ?i(x)yi)g + B ?(X)) _12:3 ?ij(x)yiyj

in the variables Yy i=1,...,n, 1g positive semidefinite.
If @(x)4 and hence f(x)y has a minimum, this con-

dition 1s obviously satisfied at all points where the minimum

is agsumed, that is at all x & L, . This is becauge gpi = 0

and izj‘?ijyiyj is posgitive semidefinite at these points.

Hence it is sufficient to consider those x for which

@(x) » «. TFor such x4 F' > 0 so that the notations

(3 W3,7) = 5 P,y T+ o 02,
) (7,7 i,j?iniyj igﬁiyl

may be used to replace the previous condiftion by: Qly,y) 1is
positive semidefinite for svery x in D bubt not in L.
Iet such an X be fixed. The characteristic deter-

minant of Q(y,y) is

CalA) = lﬁﬁij-— A 5£j + T PPy

= ?Ej -7 gij'% 6‘7%_73 9?

0
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Subtraction of suitable mulftiples of the added cclumn from
the other columns leadgto

Py - A 515 7
() = | .

- U'?E 1

Thig determinant eguals the minor of itsg lower right hand
corner, plus the value of the determinant when 1 1is replaced
by zero. Thus the characteristic determinant of Q(ygy) takes
the form

?Dij - A 5ij c@

- g s

(1) (A = 9”13"/\5-
P 0

If it is written as a polynomial in A y
ol n
GQ(,X) =T - Tn~1‘x +oeee + (-1)7T AT,
we have T, = 1, and‘ TF y P = lye..,n, 1s the pth
elementary symmetric function of the characteristic roots.

The first term on the right side of (4) is the char-
acteristic determinant

of the quadratic form

P(Y,Y) = .z_ ?ijyiy‘}”
tsd
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Here 8, =1, and SP s P = liv..sn, 1is the pth elementary
symmetric function of the characteristic roots of Ply,y). We
are going to show that the second ‘term of {4} is essentially
the characteristic determinant C (,X} of the quadratic form

P (y,y) in n-1 variables derived by specializing P(y.¥y)

to the hyperplane 2 P;¥; = 0. The characteristic roots of

P (y,y) are the statlonary values of P{y,y)} subject to the

censtraints Z @y, =0 and % yig = 1, Hence, by the multi-
i i

plier rule, they are the stationary values of the functlion

Z ?7 Yi:?' + 27 Z ?i;y A (E Z}"fie - 1)
X

with y,; unrestricted, 2z and A dencting the mulitipliers.
For the critical points Ty this gives the condition

1 ‘
(6) Z‘ ?Jy‘]# Cs
‘ J
{7) ' ; 312 = la
1

The exlstence of a solution Vis % of this system implies

7913 - A giJ ?Ji
(8) = 0,
Ps 0

Suppose that A satisfies this eguation and that Vis 2 golve
the system (5), (6), (7). Multiplying (5) by y,; end summing

120



over 1, we see that izj QEinyJ = >\_ s0 that A is the
’
stationary value in question. Hemce-(8) is the chiracteristic
eguation of P%(y,y), Formally the left side of (8) is a
polynomial of degres n in A . However, the coefficient
of A\' vanishes. The coefficlent of ,Xn"l, which is
needed for normalization, is obtained by dividing the deter-
minant (8) by A" andletting A—>00. If this is done
by dividing each of the first n rows by A and multiply-
ing thereafter the last column by A,. the coefficient is
eagily found to be

-1 0 ... 0 9
0 -1 ... O &,

® i * _ n 2
- Y . irir (""'.l) 2. ?:l -
. . i
C 0 B -
P P e P, 0
lWith the notation
K® =% ?12
i

we therefore have

2. -AS . P
* 1 1J
CP(A)"—"‘—? .
. 0
75
If this is written ag a polynomial
e

¥ * * ~1* yn-1
CplA) =8, 3 -8 A + .o+ (-1)77 855 AT,
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* ¥

then SO = 1 and SF is the jothAelementary symmetric func-
*

tion of the characteristic roots of P (y,y). Hence, () may

be writien

2

R
= . 4 .
CQ Cp ok Gp _

Thersefore

(9) o = 5 +{xPst p=1,...,n.

iy p-17

Now Q(y,y) is positive semidefinite if and only if
all characteristic valueg are non-negative, that 1s

(10) T

As is well known, this implieg that 1f one ?f = 0, all the
following Tf vanigh too.

Looking for necessary condltiong that there may ex-
ist an F(7) such that F{®(x)) 1is convex, we assume (10)
to be valid. The expression (3) shows that P*(y,y) agrees
with Q(y,y) for y; satisfying % P,¥; = 0. Hence,

k3
P {y,y) 4is positive semidefinite and thus
+*
SF"l 2 0, f>z 1,ece,n.

1et

!

Y
i\
v
;&

/42

and
% * *
Y N

¥
be the characteristic values of P(y,y) and P (y,¥v)
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regpectively. By the maximum-minimum properties of the char-
acteristic values of a quadratic form,

* *% *
PUL AL M e 2 e e e o 2

E
If r - 1 denotes the rank of P (y,y) {(which, of course,
may depend on x), then

% * ¥% *
A >0, vees My g X0, M= = =0,
Hence

A >0, ooy Mg >0,

and if r < n,

e 205 Sy = e ”/“n-l =0, M, <0

Thig shows that the rank of P(y,y) is at most » + 1, and
that

SI'+l = /ai et /ur /“h £0

*
if r < n. On the other hand, because S, =0, (9) and (10)
for £ =r+ 1 yield Sr+1 g 0. Hence Sr+1 = 0, that is
M. =0 or /4, = 0. Thus the rank of P(y,y) is actually

at most r.

B. In order that there may exist
a twice differentiable strictly increasing
function F(7) such that F(®(x)) is
convex, i1t is necessary that for each
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fixed x D the quadratic for = A9 R
€ q i nE %5 (x)y,47
restricted to the hyperplane E,fé{x}yi = 0
i
be positive gemidefinite, and if r - 1 de-
notes 1its rank, the rank of the zame form
without the restriction he at most r.,

This has only been proved for =x no%t in L« . However,
for x € L_, we have F%(X) = 0 and the statement is obviously
true.

“ The first part of the condition, P*(y,y) positive
semidefinite, expresses the convexity of the level sets of ¢@(x).
The second part is trivially satisfied when P¥{y,y) has the
maximal rank n - 1. At points x where » < n it restricts
the local behaviour of @(x} 1in a way indicated by the follow-
ing example: .

Iet n =2 and assume that for each T, of a cer-
tain subinterval of o( T< B the curve ?9(:{} =7 (T. a

= 0 0

congtant) contains a segment depending smoothly on 'tb, Then

the rank of P*{y,y) is zero at the points of the segments.

The surfaces 7T =¢(x) and, hence, t = £{x} then contain
pleces of ruled surfaces whose generators are parallel to the
X ¥5-plane. Such a ruled surface can only be convex if it is
a cylinder, that is 1f the generators and, thus, the segments
are mutually parallel. This is Just what the condition, rank
of P(y,y) at most one, requires in this case.

Even if ?ﬂx} is an analytic function, the
rank condition may restrict its local behaviour. Take
agaln n = 2 and assume that the curvature of a curve where
P(x) 1is a constant vanishes at some point. Then the rank
condition regquires that the Gaussian curvature of the sur-
face T = @(x) also vanish at that point.

Consider agaln a fixed x not in T, . In view of

(9) 2nd because of 5. - s;_l =0 for p>r the condition
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(16) reduces to T > T where

_ - Sp
U‘:G“(X)# max _W .
: 1 fi-f ' ¥ 3

Let this maximum be attalned for £ = _fb. For the coefficients
of the characteristic equation of Q{y,y) with o replaced
by o we then have

A

= 8, + 0 k° s_

i F£-i

v
O

ff fP: 1y000,7,

the equality sign'being valid for p = f%, As mentioned a-
bove, this implies = Q0 for jﬁ > _fb, hence, 1n par-

T3
ticular, for f =r > fb. This gives
3
.o r
(11) | o= 5%
» k Sr-l

For each fixed x not in L, and T = qﬂ(x)
we therefore have h

(12)  EXAT) L o) > = s Sy
T 59(:3— ?,(X‘)lg,c (" kés:ml) °

where the sup has to be taken over all x € D for which
?9(x) = T . Thus, we have the further necegsary condition:

C. If for a twice differentiable,
strictly increasing function F{7'),
X & T< B, the function F(P(x))
ig convex, then

125



3
T "E !
F . ; sSup - ~m~;§L-) .

-1

Conversely, let there be given a twice differentiable
function 7T = go{x), X &D, and a twice differentiable, strict-
1y increasing function F(7), X & T K< B, where o = inf @
and ,5 = sup ¢ , such that conditions A, B, and € are satlis-
fied. Then f(x) = F((x)) is convex in D. We have to

show that the quadratic form = flsy yJ
1,4
definite for each =x &€ D. For ths points x € L, , 1if any,

i1s positive semi-

this is obviously the case as mentioned at the beginning of
this section. For x not in L, we have to show that
Q{y,y) 4is posibtive semidefinite. Because of C,

aly,y) = Z ﬂjyy + 5T (Z P7,)°

)

)2

i

S
r -
RN £ ELECE B = @y,
i,Jd k Sr“1 1

It therefore suffices to prove that the latter form, call it
Q' (y,y), is positive semidefinite. From (3) and (9) it is seen
that the coefficients of its characteristic eguation are

) Sr * ‘
Tﬁg = Sf - Sﬁ""l} f# l,onn,’l’lo

*
r-1

.
Now, S? = Sf—l = {0 for ? = I 4+ l,...,0, becaugse of B.

T.' = 0, € =r,rtl,...,0,

5

which shows.that the rank of Q'{y,y) is abt most r - 1. On
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the other hand, Q'(y,y) restricted to the hyperplane
*

Z Py = 0 agrees with P (y,y). Because of 3B,

i

P*(y,y) has r - 1 positive characteristic roots.
Hence Q'(y,y) must have the same property. This
proves the statement.
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HISTCRICAL NOTES
CHAPTER I
CONVEX CONES

Sectiong 1 - 6. Important contributions to the theory of

convex cones are contained (more or less explicitly) in Minkowskil's
posthumous paper [48]. The basic paper on the subject is, how-
ever, Part II of Steinitz's paper [57]. Practially all the con-
cepts and results of Sections 1 - 6 are to be found in this

paper. Also many of the proofs given here are based con ldeas

due to Steinitz. Polyhedral convex cones have been the subject

of several more recent expositions, namely Weyl [66] (with

purely algebraic metheds), Gale [21], Gerstenhaber [24].

Section 7. As mentioned in the %text, the theory of (poly-
hedral) convex cones is closely related to the theory of
(finite) systems of linear inegualities. For the latter theory
and its variocus gecmetrical interpretations the reader is re-
ferred to Dines and McCoy {16] and especially to the disserta-
tion of Motzkin [49]. Included in the latter is a very com-
plete bibliography ﬁp to 1934. Of more recent papers Dinesg
[14], Biumenthal [5], [6], Levi [42], La Menza [40], Nagy [50]
may be mentioned. Further references may be found in Contri-
butions to the Theory of Games {Annals of Mathematics Study
24, Princeton, 1950).

For the second interpretation used in Section 7 see also

Gale [21]. Theorem 17 for polyvhedral cones hag been announced
by Tucker [63]; the corollaries III - VI are likewise due to
Tucker.

CHAPTER II

CONVEX SETS
For the liiterature up to 1934 concerning basie properties
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of convex sets the reader is referred to the report [8] by
Bonnegen and the author. Atfention is called to the disser-
tation of Straszewicz [6C] which gives a -comprehensive
account for compact sets and to Part I of Steinitz [57] which
deals with arbitrary convex sets. For convex polyhedra see
also Kirchberger [36] and especially Weyl [66]. More recent,
mainly expcesitory articles are Dines [14], Botts [9], Bate-
man [3], Macbeath [45]. For a generalization of the concept
of convex sets see Greenand Gustin [25].

Section 2. In Proposition 6 (stating that every point
of the convex hull cf a point set M 1is a centroid of at most
n+ 1 points of M) the maximal number n + 1 can be re-
placed by n if the set M has certain properties of
connectedness. See (8] p. 9 for references to the first papers
on this subject. Further references are Bunt [11], Hanner
[28], and especially Hanner and Radstrém [20]. The following
question is likewise connected with Proposition 6: What 1s
the smallest positive integer p with the property that every
point 2z relative iaterior to the corvex hull of a set M of
linear dimension d > 0 1s relative interior to the convex
hull of a subgset of M with linear dimension d consisting
of at mest p points? Thne answer is p = 24 asg is easily
geen by applying the Corollary to Theorem 8 {Chapter I) to
the cone with verfex =z consisting of the rays which Join
2 with the points ¢f M.  This result (essenfially due to
Steinitz) occurs implizitly in the discussion of systems of
lirear inequalities of the form Ax » O. (Cf. Chapter I,
Section 7 and e.g. Dines and McCoy [16], Dires [14].) A
direct proof has recently been givern by Guestin [26].

Section 4. Projecting cones and normal cones were in-

troduced by Minkowski [48], the cones of directions of bound-
edness and asymptotic cones by Steinitz [57}. For the theory
of asymptotic cones and various applications see Stoker [58].
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The concept of s-convexity {under the name of even convexity)
1s introduced in the author's paper [19].

Section 6. The Separation Theorem 27 is due to Minkowskil
[48]. The useful statement 28 is slightly more general. Theorem
I of Klee's paper [37) may be considered as a generalization of
Propogition 27 to an arbitrary finite number of compact convex
gets.

Section 7. For literature concerning extreme points and
supports see [8], p. 16, further, for polyhedra, Weyl [66].
Straszewicz [61] has shown that in Proposition 33 it is suffi-
cient Lo consider "exponed points" instead of extreme points.
An exponed point of a closed convex set 1s by definition a
point of the set through which there is a (supporting) hyper-
plane having no other points in commen with the set. '

Section 83 Convex sets in projective spaces have been

considered by Steinitz [57], Part III. (For a problem in
connection with the definition see alsc Xneser [38].) The polarity
with respect to the‘unit sphere has been introduced by Minkowski
[48], p. 146-7; ef. alsoc Haar [27], Helly [31], von Neumann [65],
Young [67 ], Bateman [3]. For generalizations to certain un-
pounded sets see Radstrdm [54], Lorch [44], Arbitrary polari-

ties have been considered by Steinitz {57, Part III, and, as

in Section 8, for sets which are not necessarily closed or

open, by the author [19].

CEAPTER III
CONVEX FUNCTIONS

For the history of the theory of convex funetions, various
applications, and generalizations as well as extensive bibli-
ographies the reader is referred to Popoviciu [51] and Becken-
bach [4]. Apart from some references to basic papers, only
more recent papers dealing or connected with the topics of this
report are quoted in the sequel, A modern, detailed exposition
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of many basic propertiles of convex functions is glven in Haupt,
Aumann, Pauc [30], I, Section 4.8, Section 5.4.2.1, Section
5.5, II, Section 2.2.5¢

Section 1. Proposition 4 which comprises many of the
classical inequalities of analysis seems to have been the
start of the theory (HOlder [32], Brunn [1C], and the basic
paper Jensen [34].) Convex functions defined over arbitrary
point sets have been considered by Galvanl [23], Tortorici {621,
and especially Popoviciu [51]. Homogeneous convex functions
(gauge functions, supports fuﬁctions) were introduced by
Minkowski [47], [48]. For further references see [8] Section
L, A recent papér ig Rédei [55]. BSee also the exposition by
Bateman [3]. | _'

Tt should be pointed ouf thap Propositions 5, 10, 11, 14,
which for systematic reasons are deduced directly from the
definition of convex functions,‘afe immediate consequences of
the existence of a'Support through every point x,f(x) (proved
in Section 4). | '

SeoticnS'E ~ 4.. For Teférences concerning the well-known

continulty properties of convex functions see Popoviciu [511.
The question whether a convex funiction is necéssari ily absolute-
1y contingous has been‘discussad by Friedman [20], the answer
being affirmative for ﬁ_: 1"on1y. For the behaviour of a
convex function at the boundary of its domain (Propositions
24-26) see the author's paper [18].

The first proofs of the existence of the one-sided de-~
rivatives of a convex function of one variable and of the
directional derivative of a convex function of several
variables seem to have been given by Stolz [59], p. 35-36
and Galvani [23]. The latter concept has been applied to
the study of homogeheous convex functions by Bonnesen and
the author [8], Section 4. The discussicn of the direc-
tional derivatives of arbitrary convex functions as given in
the present Section 4 probably has not been published
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elsewhere. A new approach to the gtudy of certalin smoothness
properties of convex functions has been made by Andergon and
Klee {2]. Busemann and Feller [12] and Alexandroff [1] have
proved the almost everywhere existence of a second differential
of a4 convex function of several variables. A new definition

of smooth homogeneous convex functions based on the definite-
ness of the quadratic form occcurring in Propesition 35 has been
proposed by Lorech [44].

Section 5. The conjugate of a convex functicn of one
variable has been defined by Mandelbrojt [46]. For the general
concept and some of its properties see the author's paper [18].
The inequality stated in Proposition 38 hag a well-known
analogue for homogeneous functions: Let F(X) and H(E)
be the gauge function and the support function, (respectively),
of a convex body € containing the origin in 1ts interior.
Then

<t E < F(x)H(E)

for all x and & . (Cf. Helly [31], von Neumann [65], Young
[671, Lorch [44].) This may be considered as a special case
of Proposition 38. For, put' f(x) =0 for x &C, that is
for F(x) < 1. Then ciD(f) = H(.&) and hence

x'E < H(E')r for F(x) < 1.

- Because of the homogeneity of F this 1s equivaient te the
above 1nequality.

The rest of Section 5 is unpublished. The corolliary,
Proposition 43%, i1s a slight generalization of a theorem due
to .Bohnenblust, Karlin, Shapley [7]. Helly's Theorem, which
appears here as a corollary (Proposition 45} and various
generalizations have been the subject of many recent papers:
Vincensini [64], Robinson [56], Lannér [41], Dukor [17], Rado
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[53], Horn [3%], Rademacher and Schoenberg [521, Karlin and
Shapley [35], Levi [43], Klee [37]. For references %o the
older papers see [8] p. 3. Proposition 46 generalizes Minkows-
kil'g well-kncwn characterization of the support functions of
(compact) convex bedles. See [8], p. 28 for the older litera-
ture. Further references are Rédei [55], Bateman [3]. The
determination cf the gupport function of the intersectlion
of convex mets following Propositicn 46 seems to be noted
for the first time by F. Riesz (who communicated it to Lannér,
see [&1]n)

Section 6. Unpublished. The results generalize the

duality property of linear programming prcblems proved by Gale,
Kuhn, Tucker [22] to non-linear problems of the type congider-
ed by Kuhn and Tucker [39}. The consideration of completely
arbitrary closed convex functions is essential for the formu-
lation and the validity of a simple duality theorem. For the
theory of programming problems in general the reader is re-
ferred to Activity Apalysils of Production and Allocation

(Cowles Commission Monograph 13, New York 1951).

~Section 7. The problem of the existence and the deter-
mination of a convex functilon with prescribed level sets was
raised and studied by de Finetti [13] uhder the assumption that
the domain D and, thus, all level gets are compact énd con-
vex. In this case the Conditions I - VI are trivially satisfied.
The part of Section 7 dealing with these conditions in the
general cage is noct published. Condition VII isg a generall-
zation to the case congidered here of a result of de Finetti.
For detalls of the construction of a convex function the read -
er is referred to de Firnetti's paper.

Section 8. Unpublished. In a footnote de Finetti [13]
states that 1In hls cage cf a compact D the smoothness of
the funetion ¢ (x) implies the existence of an F(7 ) such
that F{®@ (x)) is convex. This contradicts the results of
Section 8 of the present report. Apparently de Finettl had
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overlooked the fact that the smoothness of QD does not imply
the smoothness of the support function h(& ,7 ). This is only
the cage if the rank r - 1 introduced in Section 8 has its

B

maximal value n - 1 everywhere in D. Then the quantity o
{see equation (11)) 1s easily found to be

—  3°n 2 h
3 WYy

At points where r < n, the second derivative may not exiat
even if ?9 is analytic.

BIBLIOGRAPHY

i. Alexandroff, A. D., Almost everywhere exigtence of the
second differential of a convex function and some
properties, of convex surfaces connected with it.
[Leni?grad State Univ. Annals, Math. Ser., 6 (1939),
5-25.

2. Anderson, R. D., and Klee, V. L. Jr., Convex functions
and upper semi-continuous colleections. [Duke Math.

J. 19 (1952), 349-357.]

Aumann, George, see Haupt, Otto; Aumann, Georg; Pauc,
Christian.

A, Bateman, P. T., Introductory material con convex sets in
euclidean space. [Seminar on convex sets (The In-
sti;u%e for Advanced Study) Princeton 1949-1950,
1-206.

4.  Beckenbach, E, F., Convex functions. [Bull. Amer. Math.
Soc. B4 (1948), 439-460. ]

5. Blumenthal, Leonard M., Metrilc methods in linear in-
equalities. [Duke Math. J. 15 (1948), 955-9066. ]

6. mmm=—-m---, W0 exlstence theoremg for.systems of linear
inequalities. [Pacific J. Math., 2 (1952), 523-530.]

T Bohnenblugt, H. F., Karlin,S., and Shapley, L. S., Games
with continuocus, convex pay-off. [Contrdbutions to
the theory of games (Annals of Mathematics Study 24)
Princeton 1950, 181-192.]

144



10.

11.

12H

13.

14,

15.

16,

i7.

18.

i9.

20'

21.

Bonnegen, T., and Fenchel, W., Theorie der konvezxen
K8rper. [Ergebnisse der Mathematik 3, 1, Berlin 1934,
New York 1948, 164 p. ]

Botts, Truman, Convex sets. [Amer. Math. Monthly, 49
(1942), 527-535. ]

Brunn, Hermann, ’ber Curven ohne Wendepunkte. {[Minchen
1889, 74 p. ]

Bunt, L. N. H., Bijdrage tot de theorie der convexe
puntverzamelingen. [Disgertation Amsterdam 1934,
108 p. 1l :

Busemann, Herbert, and Feller, Willy, Krummungseigenschaf-
ten konvexer Flichen. [Acta Math. 66 {1935), 1-47.]

de Finetti, Bruno, Sulle stratificazioni convesse. [Ann.
Mat. Pura Appl. (4) %0 (1949), 173-18%. ]

Dinesg, L. 1., Convex extensions and linear inequalities.
[Bull. Amer. Math. Socc. 42 (1836), 353-365. ]

~~~~~ , On convexity. [Amer. Math. Monthly 45 (1938},
199-209. |

Dines,. L. L., and McCoy, N. H., On linear ineqgualities.

[Trans. Roy. Soc. Canada, Sect. III (3) 27 (1933),
3770, ]

Duker, I. G., On a theorem of Helly on collections of
convex bodies with common poeints. [Uspekhi Matem.
Nauk. 10 (ig44), 60-61.7

Feller, Willy, see Busemann, Herbert,and Feller, Willy.

Fenchel, W., On conjugate convex functions. [Canadian
J. Math. 1 (1949}, 72-77.]

——————— , A remark on convex sets and polarity. [Medd.
Lunds Univ. Mzat. Sem. (Supplementband tillignat
Marcel Riesz) 1952, 82-89. ]

——————— , see Beunnesen,yT., and Fenchel, W,

Friedman, Bernhard, A note on convex functions. [Bull.
Amer. Math. Soc. 46 (1940), 473-47k. ]

Gale, David, Convex polyhedral cones and linear in-
equalities. [Activity Analysis of Production and
Allccation (Cowles Commission Monograph 1%) New York

1951, 287-297. ]

145



22.

25,

24,

25.

26.

27 .

28.

29.

30.

51.

52.

55

Gale, David; Kuhn, Harold W.; Tucker, Albert W., Linear

programming and the theory of games.

[Activity Analy-

six of Production and Allocation (Cowles Commission
Monograph 13%) New York 1951, 317-329.]

Galvani, L., Sulle funzionl convesse 41 una o due vari-
abill definite in un aggregatc qualungue. [Rend.
Circ. Mat. Palermo, 41 (1916), 103-134. ]

Gerstenhaber, Murray, Theory of convex polyhedral cones.
[Activity Analysis of Production and Allocation
(Cowles Commission Monograph 13) New York 1651,

208-3%16. ]

Green, J. W., and Gustin, W., Quasiconvex sets. [Canadian
J. Math. 2 (1950}, #489-507. ]

Gustin, William, On the interior of the

euclidean set. [Bull. Amer. Math. Soc. 53 (1947),

259-301. ]

~~~~~~ , see Green, J. W., and CGustin, W.

convex hull of &

Haar, A., Die Minkowskische Geometrie und die Anniherung

an stetige Funktionen. [Math. Ann. 78 (1918), 294-311. ]

Hanner, Olof, Connectedness and convex hull.

on convex sefts (The Institute for Advanced Study)
Princeton 1949-1950, %5-40. ]

[Seminar

Hanner, Olof, and RA&dstrdm, Hans,A generalization of a
theorem of Fenchel. [Proc. Amer. Math. Soc. 2 {1951),

589-593. ]

Haupt, Otto; Aumann, Georg; Pauc, Christian, Differential -

und Integralrechnung. 1. Band, zwelte Auflage, Berlin

1948, 218 p., II. Band,

210 p.

zweite Auflage, Berlin 1950,

Helly, E., Uber Systeme linearer Gleichungen mit unendlich
Yielen Unbekannten. {Monatsh. Math. Phys. 31 (1921),

60~G1. |

HSlder, O., Uber einen Mittelwertsatz. [Nachr. Ges.

Gottlngen 1889, 38-47.]

Wiss.

Horn, Alfred, Some generalizations of Helly's theorem on

Convex sets.

923-929. |

[Bull. Amer. Math. Soc. 55 (1649),

146



Blh,

35

36,

37 .

38.

9.

40,

41.

4o,

4=,

by,

Jensen, J. L. W. V., Sur les fonctions convexeg et les
inégalités entre les valeurs moyennes. [Acta Math.
30 (1906), 175-193. ]

Karlin, S., see Bohnenblust «H. F., Rariin, 3., and
Shapley, L. S : 3

Karlin, 3., and Shapley, L. S., Some applications of a
theorem on convex functions . [Ann. of Math. 52 (1950),
148-15%, ] . '

Kirchberger, P., Uber Tschebyschefsche Ann8herungsmethoden.
[Math. Ann. 57 (1903), 509-540. ]

Kiee, V. L., Jr., On certain intersection properties of
convex sets. [Canadian J. Math. 3 (1951), 272-275.]

m—m= se¢ Anderson, R. D., and Klee, V. L. Jr.

Kneger, H,3 Eine Erweiterung des Begriffes '"konvexer
Kdrper". |[Math. Ann. 82 (1921}, 287-296.]

RKuhn, H. W., see Gale, David; Kuhn, Harold W.; Tucker,
Albert W.

Kuhn, H. W., and Tucker, A. W., Nonlinear programming.
[Proceedirgs of the Second Berkeley Symposium on
Mathematical St atlstles and Probability, Berkeley

- 1951, 481-4g2. ] :

La Meriza, Francisco, Log sistemas de inecuaclonesg
lineales y sus aplicacicneg al estudio de los cuerpos
convexos. [An. Soc. Cis Argent. 121 (1936), 209-248;
122 (1936), 86-1i22, 297 310, 381~-394; 124 (1937)
157-175 2&8 27k, 1

Lannér, Folke, On convex bodies with at least one point |
in common. [Kungl. Pysiografiska S&llskapets 1
Lund FSrhandlinger 13 no. 5, #41-50 (1943%), also
Medd. Lunds Univ. Mat. Sem. 5 (1943).]

Levi, F. W., Ein Reduktionsverfahren fir lineare
Vektorungleichungen. [Arch. Math. 2 (1949), 24-26. ]

-~-~, On Helly's theorem an: the axioms of convexlby.
éJ gn%lan Math. Sce. (N. 8.) Part A, 15 (1951),
5-7 v

Lerch, E. R., uleerentlahle inequalities and the theory
of convex bodies. [Trans. Amer. Math. Soc. 71 (1951),
2L3-266, ]

147



45.

46,

47.

48,

49.

50.

51.

52.

- 53,

54,

55.

56.

Ma.cbeath, A. M., Compactness theorems. [Seminar on convex
sets (The Institute for Advanced Study) Princeton 1949-
1950, 41-51.]

Mandelbrojt, Szolem, Sur les fonctions convexes. [C. R.
head. Sci. Parig 209 (19%9), 977-978.]

McCoy, N. H., see Dines, L. L., and McCoy, N. H.

Minkowski, Hermann, Geometrie der Zahlen. Lelpzig and
Berlin 1896, 1910, 256 p..

~~~~~~~~~ , Theorie der konvexen Kdrper, insbesondere
Begrundung ihres Oberfléchenbegriffs. [Gesammelte
Abhandlungen, Zwelter Band, Lelpzig and Berlin 1911,
131-229, ]

Motzkin, Th., Beitrédge zur Theorle der linearen
Ungleichungen. [Inaugural-Disgertation Basel, Jerusa-
lem 1936, 71 p.l

Nagy, Béla de Sz., Sur les lattis linéaires de dimension
finie. [Comment. Math. Helv. 17 (1945}, 209-213. ]

Pauec, Christian, see Haupt, Otto; Aumann, Georg; Pauc,
Christian,

Popoviciu, Tibere, Les fonctions convexes. [Actualités
gcientifiques et industrielles 992, Paris 1945, 76 p. ]

Rademacher, Hans; and Schoenberg, I. J., Convex domains
and Tchebycheff's approximation problem. [Canadian
J. Math. 2 (1950}, 245-256. ]

Rado, R., A theorem on Abelian groups. [ J. London Math.
Soc. 22 {(1947), 219-226.]

Rédstrdm, Hans, Polar reciprocity. [Seminar on convex .
sets (The Institute for Advanced Study) Princeton 1949-
1950, 27-29. ]

~~~~~~~~ , see Hanner, Olof and RAdstrdm, Hans.

Rédeil, L., Uber die Stiitzebenenfunktion konvexer Kbrper.
[Math. Naturwiss. Anz. Ungar. Akad. Wiss. 60 (1941),
64-69.] (Hungarian, German summary.)

Robingon, Charles V., Spherical theorems of Helly type
and congruence indices of spherical caps. [Amer. J.
Math. 64 (1942), 260-272.]

Schoenberg, I. J., see Rademacher, Hans; and Schoenberg,
I. J.

148



57

58.

59.

60.

61.

62.

63.

64,

65.

66.

67 «

Shapley, L. 8., see Eochnenblust, H. F,, Karlin, 5., and

Shapley, L. 3.

——————— , gee Karlin, 2.. and Shapley, L. S.

Steinitz, E., Bedingt konvergente Relhen und konvexe
Systeme, I, IT, III. [J. Reine Argew, Math. 143

(1913), 128-175; 144 (1914), 1-40; 146 (1916),

1-52. ]

Stoker. J. J., Unbounded convex sets. [Amer. J. Math.

62 (1940), 165-179.]

Stelz, Otto, {rundzlige der Differential - und
Integralrechnung. Erster Theil. Leipzig 1893,

460 p.

Straszewlcz, Stefan, Beitrige zur Theorle der konvexen

Punktmengen. [Dissertation Zirieh 1914, 57 p. ]

——————————— . Uber exponierte Punkte abgeschlossener

Punktmengen. [Fund. Math. 24 (1935), 139-143,

]

Tortorici, P.,Sul massimi e minimi delle funzioni con-
vegse. L[Attil Accad. Naz. Lincei. Rend. (4) 14 (1931),

brz-u7h. ]

Tucker. A. W., Extersions cf theorems of Farkas and
Stiemke. [Bull. Amer. Math. Scc. 56 {1950), 57.]

—————— , see dale, David: Kuhn, Harold W.: Tucker,
Albert W.

~~~~~~ . see ¥uhn. B, W., and Tucker, A. W.

Z

- - » P - bl ] - \
Vincengini, Paul, Sur une extensgsion 4dlun théoreme de
T
M. J. Badon sur les ensembles convexes. (Bull. Soc.

Math. France 67 {1939}, 115-119.]

voen Neumann, <., Some matrix-inequalities and metrization

of matric-spacze. [Mitt. Forszh. - Inst. Math.
Univ. Tomsk, 1 {(1937), 286-299. ]

Mech.

Weyl, H., Elementare Theorie der kcnvexen Polyeder.
[Comment. Math. Helv. 7 {19%5), 290-306.]1 (English
translation; Contributicns to the theory of games,

Annals of Mathematics Study no. 24, Princeton 1950, 3-18.)

Young, L. C., On an inequality of Marcel Riesz.
Math, 40 {1939), 567-5T74. ]

149

[Arn. of



INDEX OF DEFINITIONS

Asymptotic cone, 42

Barrier, 45

Bo (M), 46

Boundary ray, 2

Boundary ray, relative, 3
Bound of a set, 45

Centrold, 36

Closed cone, 2

Closed convex function, 78
Concave function, 57

Concave function,
strictly, 57

Cone, 1
agymptotic, 42
cloged, 2
convex, 3
convex hull of, 8
dimension space S{M) of, 3
extreme ray of, 20
extreme support of, 21
linedlity of, 3
lineality space of, 3
linear dimension of, 3
normal, 9

of directions of
boundedness, 16

open, 2

poiar, 10

polyhedral, 22

projecting, 41

support of, 6
Conjugate function, 90

Convergence of a segquence
of rays, 2
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Convex Cone, 3%
Convex family, 118
Convex function, 57
closed, 78
strictly, 57
Convex hull of a cone, 8
of a set, 36
Convex set, 36
extreme point of, 51

p~Convexity of a hyperplane
set, b2

of a point set, 52
s-Convexity, 42

[p,f1, 57

Dimension, linear, of a
cone, 3

of a set, 79

Dimension space S{M) of a
cone, 3

Directional derivative, 79

g -neighborhood of a ray, 2
Exterior ray, 2

Extreme point of a convex
set, b1

Extreme ray of a cone, 20
Extreme support of a cone, 21

Flat, %2
oriented, 45
supporting, 45
non-vertical, 88
vertical, 88

Function, closed convex, 78
concave, 57
conjugate, 90
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runction (continued)
convex, 57
plecewise lirnear, 109
positively homogeneous, 606
quagi-convex, 117
strictly concave, 57
strictly convex, B7Y

Hyperplane set, p-convexity of, 52
Interior ray, 2

Level set, 115
Limit ray, 2
ILireallty of a cone, 3
Lineality space of a cone, 3
Linear combination of points, 29
Linearly dependent points, 31
Linear dimension of a cone, 3

of a set, 39

Metric on rays, 1

Neighborhood of a ray, 2
Non-vertical flat, 88
Normal cone, 9

Cpen cone, 2

Oriented flat, 45

p-Convexity of a hyperplane
gset, b2
of a point set, B2

p~Flat, 32

p-Simplex, 32

Piecewise linear function, 109

Point sei, p-convexlty of, 52

Point, relative boundary, 39
relative interilor, 39

Polar cone, 10

Polyhedral cone, 22
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Pogitively homogeneous
function, 66

Z ~profile, 122
Projecting cone, 41

Quasi-convex family, 118
Quasi-convex function, 117

Ray, 1

boundary, 2

& -neighberanood of, 2
exterior, 2

extreme, 20
interior, 2

1limit, 2

metric, 1

relative boundary, 3
relative interior, 3
topology, 1

Rays, convergence of &
seguence, 2

Relative interior point, 39
Relative interior ray, 3
Relative boundary point, 39
Relative boundary ray, 3

s-Convexity, 42
Set, barrier of, 45
bound of, 45
sonvex, 34
convex hull of, 356
linear dimension of, 39
support of, 45
support function of, 67
supporting flat of, 45
Simplex, 32

Strictly concave
function, 57

Strictly convex function, 57



Support, extreme, of a cone, 21 Topology on rays, 1
function of a set, 67 Transformable families, 117
of a cone, 6
of a set, 45

Supporting flat of a set, 45

Vertical flat, 88
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